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Abstract
Tracking genetic changes of populations through time allows a more direct study of theevolutionary processes acting on the population than a single contemporary sample. Sev-eral statistical methods have been developed to characterize the demography and selec-tion from temporal population genetic data. However, these methods are usually devel-oped under the assumption of outcrossing reproduction and might not be applicablewhen there is substantial selfing in the population. Here, we focus on a method to de-tect loci under selection based on a genome scan of temporal differentiation, adapting itto the particularities of selfing populations. Selfing reduces the effective recombinationrate and can extend hitch-hiking effects to the whole genome, erasing any local signalof selection on a genome scan. Therefore, selfing is expected to reduce the power ofthe test. By means of simulations, we evaluate the performance of the method underscenarios of adaptation from new mutations or standing variation at different rates ofselfing. We find that the detection of loci under selection in predominantly selfing popu-lations remains challenging even with the adapted method. Still, selective sweeps fromstanding variation on predominantly selfing populations can leave some signal of selec-tion around the selected site thanks to historical recombination before the sweep. Underthis scenario, ancestral advantageous alleles at low frequency leave the strongest localsignal, while new advantageous mutations leave no local footprint of the sweep.
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Introduction
Several evolutionary processes (such as migration, selection or drift) can change the geneticmake-up of populations through time. Thus, patterns of genetic diversity can inform us about theevolutionary history of the populations (see Pool et al., 2010, for a review). However, observingthe genetic diversity changes through time (instead of at a single time point) can provide moreprecise information about the evolutionary processes in action.Since the beginning of the 20th century, researchers have used repeated observations ofhereditary characters in the same populations (e.g. color patterns in Diabrotica soror, Kelloggand Bell, 1904) or subfossil records (e.g. banding patterns in Cepaea snails, Diver, 1929) to studyevolution. An emblematic example is the time-series data on the frequency of the medionigraphenotype in a population of the moth Callimorpha dominula, which inspired the discussion onthe prevalence of selection over drift between Fisher andWright (Fisher and Ford, 1947;Wright,1948) and has continued to offer insight into the evolutionary process through recent re-analyses(e.g. Foll et al., 2014, and references therein).The technological advances in molecular genetics have allowed these temporal studies toswitch fromMendelian characters to polytene chromosomes (e.g. Dobzhansky, 1943), isozymes(e.g. Yamazaki, 1971) and, eventually, to high throughput DNA sequencing (e.g. Frachon et al.,2017). Indeed, molecular genetics has opened the door to the study of short-generation-timemicroorganisms (Biek et al., 2015), ancient samples (e.g. subfossil samples, museum and herbariaspecimens; Leonardi et al., 2017) and experimental populations (Schlötterer et al., 2015), allow-ing for an increasing availability of temporal population genetic data.Temporal population genetic data allow to study the change of allele frequencies throughtime. In the absence of migration, mutation and selection, these changes are the product ofgenetic drift. As such, they can be used to estimate the effective population size, Ne, either withmoment based (e.g. Krimbas and Tsakas, 1971;Nei and Tajima, 1981;Waples, 1989) or likelihood-based approaches (e.g. Anderson et al., 2000; Williamson and Slatkin, 1999). If a sample fromthe source of migration is available, it is also possible to co-estimate migration and drift withan extension of the likelihood method (Jinliang Wang and Whitlock, 2003). These methods allassume short timescales and low mutation rates, so that no new mutations arrive during the
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studied period. However, for temporal data over larger scales in which mutations can no longerbe neglected, it is also possible to co-estimate substitution rate with effective population size(Drummond et al., 2002; Rambaut, 2000). Finally, like for migration or mutation rates, it is alsopossible to make inferences about selection. Two strategies can be followed. First, three or moretemporal samples may be used to separate the random component (drift) from the systematiccomponent (selection) in the changes of allele frequencies (e.g. Bollback et al., 2008; Buffalo andCoop, 2019; Feder et al., 2014). Alternatively, if only two temporal samples are available, lociunder selection may be detected by an outlier approach (e.g. Goldringer and Bataillon, 2004,described in more detail below).Most of the statistical methods in population genetics, including those mentioned above,have been developed for outcrossing populations. Methods specifically adapted to selfing popu-lations are scarce (Hartfield, Bataillon, and Glémin, 2017). Nevertheless, many plants reproducethrough selfing or partial selfing (see Whitehead et al., 2018, for a recent overview), includingan important proportion of the species considered in temporal monitoring programs (e.g. appen-dix A). Selfing, by increasing homozygosity and linkage disequilibrium, shapes the genetic diver-sity of populations in a particular way (Golding and Strobeck, 1980; Vitalis and Couvet, 2001).Notably, it generates repeated multi-locus genotypes that can persist over several generationsdue to the lack of effective recombination (Jullien et al., 2019). The dynamics of adaptation isalso impacted by selfing, with a general reduction in the efficacy of selection (e.g. Burgarella etal., 2015). In the light of these drastic effects, there is a need for development or adaptation ofmethods to take into account different mating systems.Even if we can adapt methods to release the assumption of random mating, distinguishingselection from demography in highly selfing species may be problematic because of the reducedeffective recombination due to self-fertilization. Selective sweeps in these populations could in-volve a genome-wide hitch-hiking effect, which prevents any difference in genetic diversity be-tween the neutral and adaptive regions. If that were the case, even methods adapted to selfingwould fail to detect regions under selection, which questions the relevance of temporal genomescans in predominantly selfing populations. On the other hand, a temporal genome scan on ahighly selfing Arabidopsis thaliana population (selfing rate, σ ≈ 0.94) revealed several outlier re-gions with compelling evidence for the action of selection on them (Frachon et al., 2017). There-fore, in the planning of future research, there is a need to understand under which circumstancesselfing imposes a limit for the detection of loci under selection.In this work, we introduce several modifications to the temporal genome scan approach pro-posed by Goldringer and Bataillon (2004) to take into account partial self-fertilization. Then, bymeans of simulated data, we evaluate the performance of this method for the estimation of theeffective population size (the first step of this genome scan) and the detection of regions underselection under different scenarios of adaptation (from new mutations or from standing varia-tion) and selfing. Our results highlight the importance of taking into account the mating systemin the analysis of population genetic data. They also highlight a threshold beyond which loci un-der selection cannot be detected for highly selfing populations. We applied the approach to apopulation of the predominantly selfing speciesMedicago truncatula and re-discuss some of theresults from Frachon et al. (2017) temporal genome scan on Arabidopsis thaliana.
1. Materials and Methods

1.1. Overview of the genome scan method.
In a single isolated population, allele frequencies change through time under the action ofselection, which acts upon specific loci, and genetic drift, which acts upon the whole genome.In order to identify loci subjected to selection, we use a procedure inspired from the test for ho-mogeneity of differentiation across loci by Goldringer and Bataillon (2004). The principle is that,in the case of complete neutrality across loci, all sampled markers should provide estimates ofgenetic differentiation drawn from the same distribution. Assuming a single isolated population,this distribution depends on the strength of genetic drift, that is, on the length of the period, τin number of generations, and on the effective population size, Ne (see Table 1 for a summary
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of notation). On the other hand, if some of the studied polymorphisms are under selection orlinked to selected variants, we expect some heterogeneity in the distribution of differentiationvalues, because directional selection induces larger values than expected under the neutral case.The approach we describe uses the expected distribution of temporal differentiation to iden-tify those polymorphisms showing outlier values compared to a neutral expectation. In Frachonet al. (2017), we already made some modifications (to account for the uncertainty of the initialallele frequency) to the approach proposed by Goldringer and Bataillon (2004) for the standard(random-mating or haploid) case. Here, we present further modifications for a more general caseincluding partial self-fertilization.
1.2. Estimation of effective population size.

The estimated magnitude of drift between two time samples is used as a null model in thistemporal genome scan method. Temporal differentiation can be measured by estimating the
FST with the analysis of variance approach proposed by Weir and Cockerham (1984). Weir andCockerham’s (1984) analysis of variance partitions variance within individuals, among individualswithin population and between populations, allowing to account for the correlation of allele iden-tity within individuals due to selfing in the FST estimate. Temporal FST can be used to estimate
Ne as N̂e = τ(1−F̂ST)

4F̂ST
(Frachon et al., 2017; Skoglund et al., 2014).

1.3. Building null distribution of drift.
In order to test the homogeneity between the focal-locus l and genome-wide differentiation,the null distribution for single locus F l

ST is built through simulations of drift. Each of these simu-lations consists of the following steps: 1) draw initial allele frequency π0 of the locus (conditionalon data), 2) simulate allele frequency change for τ generations (based on N̂e), 3) simulate samplesby sampling genotypes (genotype frequencies based on F̂IS) and 4) calculate F ∗
ST for the simu-lated sample. The proportion of F ∗

ST equal or larger than the observed F l
ST provides an estimateof the p-value for the test. A detailed description of these steps follows.Goldringer andBataillon (2004) considered the observed allele frequency in the sample as theinitial allele frequency in the population, π0 (from this point subscript 0 indicates values at time

t = 0). This approach ignores the uncertainty due to sampling. Instead, in Frachon et al. (2017),we improved this step by assuming that allele counts observed in a sample of n0 diploid individu-als come froma binomial distributionB(2n0,π0), where π0 is the (unknown) allele frequency in thepopulation. Using Bayes inversion formula and assuming a uniform prior for the allele frequency,this allows to sample from the posterior probability distribution with Beta(k0 + 1, 2n0 − k0 + 1),where k0 is the observed count of the reference allele in the sample. However, this assumes thatallele copies within an individual are independent samples from the population. In (partially) self-ing populations, gene copies are not independent samples, but individuals are. Genotype countsobserved in the simulated sample of n0 individuals can be modelled as coming from a multino-mial distribution Mult(n0, γ0), where γ0 are the genotype frequencies in the population. Similarlyto Frachon et al. (2017), assuming the same prior probability for the three genotype frequencies,we sample genotype frequencies in the population from the posterior probability distributionwith Dir(K0 + 1), where K0 is the observed genotype counts in the sample of the focal locus attime t = 0.Allele frequencies πt at subsequent generations (t ∈ [1, τ ]) were simulated following a bi-nomial distribution as πt ∼ B(2N̂e,πt−1)/2N̂e, where N̂e is the genome wide estimate of theeffective population size and π0 is determined by γ0. Simulated genotype counts in sample attime t = τ , K∗
τ , were taken from a multinomial distribution, K∗

τ ∼ Mult(nτ , γτ ), where nτ is thesample size (in number of diploid individuals) at time t = τ and γτ :
γAA,τ = π2

τ + F̂IS(1− πτ )πτ

γAa,τ = 2(1− πτ )πτ (1− F̂IS)
γaa,τ = (1− πτ )2 + F̂IS(1− πτ )πτ
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are the genotype frequencies in the populations as a function of the allele frequency πτ andinbreeding coefficient FIS (Haldane, 1924), assuming constant selfing rate and using the Weirand Cockerham’s (1984) multilocus inbreeding coefficient estimate from both temporal samples.Preliminary results revealed that filtering loci according to minor allele frequency (MAF) wasrequired to assure a uniform distribution of p-values from neutral sites (Fig. 6). Distribution of
p-values is important for studies at the genomic scale where thousands of loci are tested (seeFrançois et al., 2016, for a review). In these studies, a false discovery rate (FDR) is estimated tocontrol for multiple testing and this FDR estimation assumes the uniformity of p-values underthe null model (Storey, 2002). The criterion to filter loci was to have a minimum global MAF: lociwith min

(
p0+pτ

2 , 1− p0+pτ

2

)
< 0.05 were removed from the dataset. Thus, loci to be tested were

chosen based on their genetic diversity, a bias that has to be taken into account in the test. Thiswas done by discarding drift simulations that produced min
(p∗

0 +p∗
τ

2 , 1− p∗
0 +p∗

τ

2

)
< 0.05, where p∗

tis the frequency of the reference allele in the sample at time t in the simulation.
1.4. Simulations.

We produced simulated data using the individual-based forward population genetics simula-tor SLiM 1.8 (Messer, 2013). We considered a single isolated population sampled twice, at thebeginning and at the end of a time interval of τ generations. The population size N = 500 (num-ber of diploid individuals) and the selfing rate σ were constant through time, and the effectivepopulation size was Ne = (2−σ)N
2 under neutrality (Li, 1955; Pollak, 1987). The genome was com-posed by two linkage groups of size 2.5× 108 base pairs. The neutral mutation rate per base pairwas µ = 10−8 and the recombination rate between base pairs was r = 10−8. The recombinationrate between the two linkage groups was 0.5.In order to start our simulations with a population at mutation-drift equilibrium, SLiM wasrun for 20Ne generations. After that period of neutral evolution, two different selective scenar-ios were simulated: adaptation from newmutations or from standing variation. In the first case anew advantageous dominant mutation was introduced at t = 0 with a selection coefficient s at arandom position in the genome. In the case of selection on standing variation, a random neutralpolymorphic site was chosen at t = 0 and a selection coefficient s was assigned randomly toone of the two alleles, which also became dominant. The initial conditions of the simulationsof selection on standing variation are, therefore, variable. The initial frequency of the allele un-der selection is known to affect the signal of the sweep: an advantageous allele starting at highfrequency is expected to leave a lower signal than one starting at a lower frequency (Berg andCoop, 2015; Innan and Kim, 2004). This will likely affect the power of our test. We thereforestudied the effect of the initial frequency of the advantageous allele in scenarios of adaptationfrom standing variationwith additional simulations, where the site under selectionwas randomlychosen among those sites with the required allele frequency. The frequency of an allele is ex-pected to correlate with its age (Kimura and Ohta, 1973), and older alleles can accumulate moremutations in their neighborhood and recombine with the background variation, which couldfavour the presence of a local signal of selection (Fig. 7). Because ancestral alleles are older thanderived alleles, we also studied the effect of the nature of the allele in the set of simulations ofadaptation from standing variation.In order to ease comparisons across scenarios, the advantageous allele was also set as dom-inant. Indeed, in outcrossing populations adapting from new mutation, advantageous dominantalleles are expected to spread faster than recessive ones, an effect known as Haldane’s sieve(Haldane, 1927). However, this effect is reduced or absent in predominantly selfing populations(Charlesworth, 1992; Ronfort and Glémin, 2013) and populations adapting from standing varia-tion (Orr and Betancourt, 2001).Simulated populations were sampled at generations t = 0 and t = τ , with samples sizes

n0 = nτ = 50 diploid individuals. Data for 10000 polymorphic loci were taken randomly from allpolymorphic sites in the sample, except for the locus under selection that was always includedin the data.
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Figure 1 – Effective population size estimates from temporal differentiation. Estimatesof Ne from FST were obtained from simulated data of populations of N = 500 diploidindividuals, sampled twice with τ = 25 generations between samples and selfing rate σ.(a)Neutral selfing population. (b)Outcrossing population under selection: a new advanta-geous mutation appears at generation t = 0 with coefficient of selection s . Samples aremade of 50 diploid individuals genotyped at 10000 biallelic markers (including the locusunder selection), but only loci with a global MAF over 0.05 are used in the estimate (seedetails in Materials and Methods). Box-plot for estimates from 100 simulation replicates.Dashed line marks true effective population size, Ne, in panel (a) and census size, N , inpanel (b).
Different scenarios were considered by exploring values of selfing rate σ ∈ [0, 0.5, 0.75,0.8, 0.85, 0.9, 0.95, 0.99, 1], selection coefficient s ∈ [0, 0.1, 0.2, 0.3, 0.4, 0.5], duration ofperiod of selection τ ∈ [5, 10, 25, 50, 100, 200] (in generations), type of selection (neutral, newmutation or standing variation) and, in the case of selection from standing variation, whether thelocus was chosen randomly among all loci or among the loci with the required initial frequency(π0 ∈ [0.1, 0.5, 0.9]) and nature (ancestral or derived) of the allele becoming advantageous. Thecombinations of parameter values were chosen to highlight the patterns studied in this work bycreating strong selective sweeps. For each scenario, 100 simulation replicates were performed.Replicates in which the advantageous allele was lost were discarded and replaced by additionalreplicates.

1.5. Analysis of simulated data.
For each simulation replicate, data were analysed as described in the two previous sections.In addition, the effective population size was also estimated from FC (following Waples, 1989)for comparison. For a given scenario, the true positive rate was estimated from the test results atloci under selection. The false positive rate was estimated from the test results at the neutral loci
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on the linkage group that does not include the locus under selection. Neutral loci on the linkagegroup with the locus under selection were used to characterize the footprint of selection dueto hitch-hiking by estimating the positive rate as a function of the distance to the locus underselection. In order to quantify the variance of the selection signal, loci were bootstrapped andthe 95 % quantile interval for the proportion of positive tests was calculated. Positive tests weredefined with an arbitrary threshold of p-value<0.001. In order to control for multiple testing,FDR estimates were quantified with q-values for each locus, following Storey (2002), with theqvalue R package (Storey et al., 2019). Manhattan and QQ plots were generated with qqman Rpackage (Turner, 2017).As explained in the previous section, the genetic diversity around the selected locus couldinfluence the outlier test in a scenario of adaptation from standing variation in a predominantlysefing species (Fig. 7). Therefore, we examined the structure of genetic diversity at the begin-ning of the sweep in those scenarios. This allowed us to characterize the effects of historicalrecombination previous to the outset of the selective sweep. For each simulated population, thehaplotypes, defined as the whole linkage group under selection, were classified in two groups:one group for haplotypes carrying the advantageous allele and one group for haplotypeswith theneutral allele. Genetic diversity (measured as the average expected heterozygosity per bp) withinthe haplotypes carrying the advantageous allele and differentiation between the two groups ofhaplotypes (measured as the FST) were calculated in 3 000 bp windows at increasing distancefrom the locus under selection.
1.6. Real data application.

Medicago truncatula is an annual, predominantly selfing species (Siol et al., 2008) of the legumefamily (Fabaceae), found around the Mediterranean Basin. We conducted a temporal survey ina population located in Cape Corsica (42◦ 58.406’ North, 9◦ 22.015’ East, 362 m.a.s.l.). Samplesof around 100 pods were collected in 1987 and 2009 along three transects running across thepopulation, with at least one meter distance between each pod collected in order to avoid over-sampling the progeny of a single individual. The seeds were stored in a cold room between col-lection year and 2011, when plants were replicated from seeds in standardized greenhouse con-ditions. Using these samples, we collected leaf material from 64 plants from 1987 and 96 plantsfrom 2009 grown in greenhouse for DNA extraction. Between 100 mg and 200 mg of youngleaves were ground in liquid nitrogen in a Qiagen Retsch Tissue Lyser (Qiagen N. V., Hilden, Ger-many) during 2×1 min at 30 Hz. The fine powder was mixed with 600 µl of pre-heated lysisbuffer consisting of 100 mM Tris-HCl pH 8.0, 20 mM EDTA pH 8.0, 1.4 M NaCl, 2 %(w/v) CTAB,1 %(w/v) PVP40 and 1 %(w/v) sodium bisulphite plus 8 µl of 10 mg/ml RNAse per sample addedextemporaneously. After incubation for 20 min at 65 ◦C under medium shaking, 600 µl of chlo-roform were added and mixed with a vortex mixer. Each sample was centrifuged for 15 min at10000 g and 10 ◦C and the upper phase was transferred into a new tube and then mixed with60 µl of 3 M sodium acetate and 600 µl of cold isopropanol. DNA was precipitated by anothercentrifugation (30 min, 15000 g, 4 ◦C), rinsed with 300 µl of 70 % cold ethanol, centrifugedagain (10 min, 15000 g, 4 ◦C), dried for 10 min at room temperature and resuspended in 100 µlof sterile deionized water. The genotyping was performed using two SNP chips specifically de-veloped forM. truncatula (Loridon et al., 2013). Out of the 1920 SNPs, 137were located in genesencoding flowering time, 721 in other candidate genes, in particular genes involved in symbiosis,and 1062 at random positions of the genome. The 1920 SNPs were widespread across all eightlinkage groups (Table 2). The genotyping assays were achieved at GenoToul (Genomic Platform inToulouse, France) and at the BioMedical Genomics Center (Minneapolis, University ofMinnesota,USA) using GoldenGate Assay (J.-B. Fan et al., 2003; Jian-Bing Fan et al., 2006) and respectivelyIllumina’s VeraCode technology (Lin et al., 2009) or Bead Array technology. Data generated fromthe BeadXpressTM reader (384 SNP × 480 DNA) or BeadArray Reader (1536 SNP × 192 DNA)were analyzed as detailed in Loridon et al. (2013).These data were analysed using the temporal genome scan described in this paper, providingestimates of the effective population size (from FST) and the selfing rate (from FIS) of the popu-lation. Confidence intervals (CI) for those estimates were obtained by an approximate bootstrap
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Figure 2 – Power and false positive rate of the genome scan for increasing decisionthresholds. Receiver operating characteristic curve is estimated from 100 replicates ofsimulated data of one population of N = 500 diploid individuals, sampled twice with
τ = 25 generations between samples, selection coefficient s = 0.5 and selfing rate σ. (a)Selection on new mutation. (b) Selection on standing variation. Circles mark the valuesfor positive threshold of p-value>0.001, which is the threshold used in Fig. 3.

procedure over loci (DiCiccio and Efron, 1992). For loci with a global MAF higher than 0.05, weobtained a p-value for the test of homogeneity. In order to control for multiple testing, FDRestimates were quantified with q-values for each locus, following Storey (2002).
2. Results

2.1. Accuracy of Ne estimates.
In neutral scenarios, estimates of effective population size derived from FST performed rea-sonably well, decreasing in the presence of partial selfing following the Ne theoretical expecta-tion (Fig. 1a). Selfing also caused an increase of error in the estimation of Ne. In the presenceof selection, estimates of effective population size decreased with the strength of the selective
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Figure 3 – Selection footprint on the selected chromosome under different scenarios.Proportion of positive tests in function of distance to the locus under selection. Estimatesobtained from 100 replicates of simulated data of one population of N = 500 diploidindividuals, sampled twice with τ generations between samples and selection coefficient
s and selfing rate σ. (a) Adaptation from new mutation, τ = 25, s = 0.5. (b) Adaptationfrom standing variation, τ = 25, s = 0.5. (c) Adaptation from newmutation, τ = 25, σ = 0.(d) Adaptation from new mutation, s = 0.5, σ = 0. Distance measured in centimorgans(cM). Coloured areas mark the 95% bootstrap interval.

coefficient of the causal mutation (Fig. 1b). As expected, effective population size estimates from
FC showed a clear bias in the presence of partial self-fertilization while the bias was negligiblein estimates from FST (Fig. 8a).
2.2. Footprint of selection.

The temporal genome scan discriminated well between selected and neutral (on a separatelinkage group) sites in most scenarios (Fig. 2). Yet, in the case of selection on new mutations,extreme selfing rate decreased the performance of the test (Fig. 2a). In scenarios of selection onstanding variation the performance of the testwas lower (Fig. 2b). In addition, the effect of selfingwas more complex in the case of selection on standing variation. Moderate levels of selfingseemed to improve the discrimination capacity while the performance for high levels of selfingwas similar to the one for outcrossing simulations. Only complete selfing reduced dramaticallythe discrimination capacity of the method.These results, however, only consider the causal polymorphisms and completely independentneutral variants, ignoring linked sites that could have been subject to hitch-hiking. In practice, thesignal for the detection of regions under selection comes mainly from those linked sites, whichcan create a local excess of outlier loci testing positive around the site under selection (even ifthe later is not in the data set). We therefore examined the footprint of selection at increasingdistance from the advantageous allele, within a linkage group. As expected, the highest proba-bility of positive test was at the locus under selection; then probability decreased with distanceand reached very low values, similar to those for neutral loci on a separate linkage group (Fig. 3).
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The distance at which the hitch-hiking signal disappears depends on the scenario, beingsmaller for selection on scenarios of standing variation and larger for scenarios on new muta-tion, congruent with results by Hartfield and Bataillon (2020). Selfing rate increases distance atwhich there is a hitch-hiking effect (Fig. 10; Hartfield and Bataillon, 2020). However, this did nottranslate into a signal from FST at larger distances, but to a reduction in power.Under a scenario of adaptation from new mutations, the overall strength of the signal de-creased with increasing selfing rate (Fig. 3a) and decreasing selection coefficient (Fig. 3c). Thetime sample interval also influenced the strength of the signal, with intermediate values beingmore favourable for the detection of outlier loci (Fig. 3d).The results for the signal of hitch-hiking mirror those of the power to detect the causal site.In the case of selection on standing variation, there was an overall reduction of the signal com-pared to scenarios of selection on new mutation (Fig. 3a,b) except for highly selfing populations(σ ≥ 0.95). Nevertheless, as in the scenario of adaptation from new mutations, predominantlyselfing populations had a weaker signal of selection than outcrossing populations. However, thestrength of the signal for populations with intermediate levels of selfing (σ = 0.5, σ = 0.8) wassimilar or even higher than outcrossing populations (Fig. 3b).The initial frequency of the advantageous allele and whether it is ancestral or derived alsoinfluenced the strength of the signal in predominantly selfing populations (σ = 0.95, Fig. 4). Asexpected, the lower the initial frequency, the stronger was the signal of selection, but this wasmodulated by the nature of the allele. With low initial frequencies, selection on the ancestralallele left a stronger signal. Symmetrically, the signal was stronger for derived alleles if the initialfrequency was high. To understand these results, we examined the genetic diversity and the dif-ferentiation between the group of haplotypes carrying the advantageousmutation and the groupnot carrying it at the outset of the sweep. We found that this genetic differentiation decreaseswith the distance from the selected site, with higher differentiation for scenarios with strongersignal of selection (i.e. when the advantageous allele is ancestral with low initial frequency). Be-sides, ancestral alleles were associated to more diverse local haplotypes than derived allelesat the same frequency. These results show that no further recombination during the sweep isrequired to generate a local signal of selection.
2.3. Medicago truncatula.

From the 1920 SNPs genotyped, 1224 were polymorphic in the sample and 987 had a globalMAF higher than 0.05. Genetic differentiation between time samples was large, F̂ST = 0.207(95 % CI of 0.197 to 0.217) and so was the inbreeding coefficient, F̂IS = 0.972 (95 % CI of 0.969to 0.974). From those values, effective population size was estimated at N̂e = 42 (95 % CI of 39to 44) and selfing rate at σ̂ = 0.986 (95 % CI of 0.984 to 0.987). The test of homogeneity did notidentify any SNP as a strong candidate for being under selection: the lowest p-value was 0.04with a corresponding q-value of 0.48 (Fig. 5 and Table 2).
3. Discussion

3.1. Estimating effective population size under selfing and selection.
It is well known that self-fertilization reduces the effective size of populations. Our resultsshow that Weir and Cockerham’s (1984) FST allows to measure the amount of drift betweentwo temporal samples, even in the presence of selfing. However, the precision of the estimatesdiminishes with the rate of selfing. We hypothesize that it is the consequence of the effect ofreduced effective recombination in selfing, which reduces the number of loci with independentevolutionary histories. This effect is most extreme for completely selfing populations, wherethe whole genome behaves as a single locus, reducing dramatically the information availablein the data. In order to test this hypothesis, we estimated Ne for a similar set of simulationsunder an unrealistic model where each locus was simulated independently (appendix B). Onthose simulations, the precision of Ne estimates was no longer reduced by selfing (Fig. 8b).
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An alternative and common way to estimate Ne from temporal data uses the standardizedvariance in allele frequencies (FC, Nei and Tajima, 1981). This was the approach originally pro-posed for the temporal genome scan by Goldringer and Bataillon (2004). However, estimatesfrom FC suffer from a bias (Fig. 8) because this approach assumes that the 2n gene copies (in asample of n diploid individuals) are independent draws from the population gene pool, and usesa binomial distribution to model it (Waples, 1989). However, in the case of partially or predomi-nantly selfing populations, the two gene copies within an individual are not independent samplesfrom the population, which explains the bias of the estimate. UsingWeir and Cockerham’s (1984)
FST estimate corrects for this bias.Strong selection also reduces the effective population size by reducing the number of breed-ing individuals or increasing the variance of reproductive success among individuals (Robertson,1961; Santiago and Caballero, 1995). This is reflected in the estimation of Ne, which decreaseswith the strength of the selective coefficient of the mutation under selection in our simulations(Fig. 1b). Note that, in our case, this effect is not only driven by the local increase of temporalgenetic differentiation around the site under selection. The strong selection considered in oursimulations increases FST genome-wide, even in regions unlinked to the site under selection(e.g. distance of about 50 centimorgan or larger; Fig. 10). The combined effect of selfing (i.e. in-creased linkage disequilibrium) and selection produced very strong drift compared to a neutrallyevolving population with the same census size (Fig. 10).The effective population size estimated in Cape Corsica M. truncatula was extremely low, inagreement with the results from microsatellites data on the same population (N̂e = 20, Jullien etal., 2019). However, such smallNe estimatesmight reflect other processes in addition to drift. Forinstance, gene flow into the studied population can increase temporal FST and bias Ne estimates(Jullien et al., 2019). The effects of the violation of model assumptions are discussed furtherbelow.In our simulations we have considered that individual genotypes are available. However, inmany temporal experiments, sequencing is performed for pools of individuals (Pool-seq; e.g.Franks, Kane, et al., 2016) to reduce the costs. Estimating effective population sizes remainspossible, using Pool-seq adapted FST and FC estimates (Hivert et al., 2018; Jónás et al., 2016).However, since individual information is lost, these estimates cannot take into account thewithinindividual allele identity correlation due to selfing.When studying a selfing species, we thereforerecommend working with individuals genotypes. If Pool-seq is necessary due to budget limita-tions, we advise to follow a similar procedure as in Frachon et al. (2017) and reproduce seeds byselfing for one or more generations so that sequenced individuals are completely homozygousand can be treated as effectively haploid samples. However, this approach is likely to only givegood results with predominantly selfing species (with a small proportion of heterozygous loci tobe removed) and divides the amount of data by two.
3.2. Limits imposed by selfing to temporal genome scans of selection.

Our results show that the search for regions under selection with temporal FST genomescans in predominantley selfing populations can be challenging. In the case of complete selfing,the whole genome behaves as single locus and selection, if present, affects the whole genome.In partially selfing populations, the strength of the signal left by selection depends on whetherthe advantageous allele had the time to recombine with different genetic backgrounds. In a pop-ulation with a selfing rate as high as σ = 0.95, outcrossing events are unlikely to occur duringthe sweep of a new beneficial mutation and produce no effective recombination if they happenbetween close relatives sharing the same homozygous genotype. As a results, like completelyselfing populations, the selective sweep will reduce genetic diversity on the whole genome andwill leave no local signal of selection.On the contrary, when adaptation proceeds through standing variation, historical recombi-nation can put an allele on different genetic backgrounds before it becomes advantageous andsweeps. In that case, the sweeping haplotypes are only similar among them and different fromthe haplotypes in the rest of the population around the site under selection. As the distance to
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Figure 5 –Genome-scan for selection based on temporal differentiation in cape CorsicaMedicago truncatula population. − log10(p-value) of the simulation-based test of the nullhypothesis that the locus-specific differentiation measured at each SNP is only due togenetic drift. Only SNP markers with MAF>0.05 and known position at the referencegenome are shown. Red line marks p-value=0.001, the significance threshold used forfigures 3 and 4.

the selected site increases, the diversity of the sweeping haplotypes raises and the differenti-ation with the other haplotypes segregating in the population decreases due to the action ofhistorical recombination (Fig. 9). These differences along the genome create the local signal ofselection, even if no further (effective) recombination occurs during the sweep.Selection on standing variation is usually associated to a weak signal of selection (i.e. a softsweep, Hermisson and Pennings, 2005). Our results indeed confirm this expectation for outcross-ing populations (compare Fig. 3a,b for σ = 0). Interestingly, for predominantly selfing populations,the situation is reversed. Yet, the strength of the local signal of selection, and therefore the powerof the outlier test depends not only on the initial frequency of the advantageous allele, but alsoon its genetic background. Consider an advantageous derived allele at low frequency. Becauseof its low frequency, it is likely a young allele (Fig. 11) and few mutations will have accumulatedaround it. The selected haplotypes will therefore display low diversity and little differentiationfrom the deleterious haplotypes (Fig. 9). Thus, we expect that only few mutations will show asignificant change in allele frequencies around the site under selection (e.g. Fig. 7a). On the other

12 Miguel de Navascués et al.

Peer Community Journal, Vol. 1 (2021), article e37 https://doi.org/10.24072/pcjournal.47

https://doi.org/10.24072/pcjournal.47


hand, if the ancestral allele (at low frequency) becomes advantageous, it will be likely to be on avery old lineage (since a high frequency derived allele is expected to be old). Being older, suchallele has had more time for mutations to accumulate on both lineages, creating diversity thatis unique to the haplotypes under selection. This will lead to more sites with a significant allelefrequency change around the causal mutation (e.g. Fig. 7b). In the case of selection on an allelestarting at high frequency, the situation is reversed. The lowest signal is for selection on highfrequency ancestral alleles that not only will have a small change on allele frequency but alsocarry diversity common to the whole population. Finally, low frequency ancestral alleles mighthave the potential to create the strongest signal, but they are scarce in an equilibrium population(Fig. 11) so it is unlikely they represent a frequent case of sweep from standing variation.Although temporal genome scans in predominantly selfing species are able to reveal the foot-print of selection on standing variation, how prevalent is adaptation from pre-existing variationin selfing populations remains an open question. In the short-term, selection is most likely actingon standing variation (Barrett and Schluter, 2008), but there are no specific predictions for selfingpopulations. Theoretical models predict an overall limitation of adaptation in selfers comparedto outcrossers (Hartfield and Glémin, 2016). However, selfers can hold high levels of crypticgenetic variation for polygenic traits, due to negative linkage disequilibrium. This diversity mayallow a selfing population to adapt to changing conditions as quickly as outcrossing populations(Clo et al., 2020). Indeed, there is some evidence of selective sweeps in selfing species (Bon-homme et al., 2015; Huber et al., 2014). In agreement with this, the temporal genome scan ina predominantly selfing population of A. thaliana from a previous study showed footprints ofselection (Frachon et al., 2017). Such positive results could have been favoured by the relativelylarge genetic variation of this population (Baron et al., 2015; Frachon et al., 2017). Based on thesimulation results we present here, we can assume that this population has been adapting fromstanding variation over a short period of time (eight generations) rather than from many newmutations occurring during (or shortly before) the studied period.The absence of evidence for selection in the M. truncatula dataset is manifest. It is reason-able to attribute this results to the extreme selfing rate estimate (σ̂ = 0.986) in this population,for which our simulation approach gives little hope to detect any signal of selection. Indeed, thesame selfing lineages are observed throughout the study period of 22 generations (Jullien et al.,2019), which further suggest that almost no recombination occurs in the population. If selec-tion, either on new or pre-existing mutations, has occurred, it has changed the frequencies ofmultilocus genotypeswithout leaving any local signal along the genome. This would have dramat-ically reduced the effective population size, which is consistent with our extremely low estimate
N̂e = 42. An examination of the distribution of p-values from the genome scan shows a depar-ture from the expected distribution which could indicate an inappropriate null model (Fig. 12a).This deficit of low p-values means that the outlier test is too conservative because the null distri-bution of temporal FST is wider than the distribution observed genomewide. However, the QQplots for simulated populations show that, as the selfing rate increases, the test progressivelyshifts from delivering an excess of low p-values to delivering a deficit of low p-values (Fig. 12b),as observed forM. truncatula. The present analysis cannot be conclusive about the presence ofselection and the observed diversity changes can be the consequence of demographic processes,such as genetic exchanges with neighbouring populations, as discussed by Jullien et al. (2019).
3.3. Model assumptions.

The method and simulations presented here are based on simple models with one unstruc-tured population, constant parameters through time and a single selective event. These modelsare useful to highlight the effects of inbreeding and to point out to some solutions for the prob-lems posed by the presence of inbreeding. Real populations are complex systems and other de-mographic and selective processes are in action and they have consequences for the dynamicsof the selective sweeps and the performance of the statistical methods.The assumption that temporal data collected from the same geographical location belongto a single continuous population is probably wrong in many cases, even more so for predomi-nantly selfing populations, where the spatial structure is usually very strong (Bonnin et al., 2001).
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Estimates of effective population size from temporal samples have been shown to be affectedby population structure, often leading to underestimation (Gilbert and Whitlock, 2015; Rymanet al., 2014). Such bias can make the tests conservative, aggravating the problem of detectingloci under selection. One way to address this issue is to perform demographic inference undermore complex scenarios to be able to discriminate isolated from admixed populations, and jointlyestimate drift, migration and selfing parameters (e.g. using approximate Bayesian computationas in Jullien, 2019). Note, however, that some scenarios might enhance the signal of selection.Detection of sweeps from standing variation could be easier in populations with a larger histor-ical effective size than in populations that had always been at a smaller constant size, becausethey benefit from higher historical recombination.The presence of multiple loci under selection is also an important factor to consider, becausestrong selective interference is expected under selfing (Hartfield, Bataillon, and Glémin, 2017).Of particular interest is background selection which reduces the effective population size, aneffect exacerbated by selfing (Nordborg, 1997; Roze, 2016). In addition to the reduction in di-versity, purifying selection could also mimic the temporal signal of a selective sweep. Neutralalleles that are linked to less deleterious backgrounds can quickly rise to high frequencies (Cvi-jović et al., 2018). Recently, Johri et al. (2020) proposed using approximate Bayesian computationfor joint inference of demography and purifying selection, which could lead to more appropriatenull models for the detection of loci involved in adaptation. Further research is needed in this di-rection, it is unclear at this point the implications for temporal genome scans and partially selfingpopulations.Future developments should not focus only on improving the inference of the null model. Theclassification of loci as neutral or into different selection categories can benefit from other infor-mation than just the genetic differentiation. For instance, reduction of genetic diversity aroundthe locus under selection (e.g. Fig. 9) can add information about the presence and origin of the se-lection. Supervised machine learning methods have been shown to perform well and are promis-ing tools for this type of task (reviewed by Schrider and Kern, 2018). While these methods mightimprove the classification of loci under scenarios where there is some local footprint of selection,predominantly selfing population will remain a challenge as long as selective sweeps producegenome-wide hitch-hiking.
Conclusions.

Identifying regions under selection with a temporal genome scan can fail for several reasons.First, timing is paramount. A sample at the beginning and at the end of the selective sweepwouldbe ideal for detecting selection. However, the start and duration of the sweep and the samplingtimes cannot be synchronized except for some experimental evolution studies. Frequency ofthe advantageous allele at the beginning of the sweep can also reduce the chances of capturingany signal. On top of that, selfing presents itself as a strong additional difficulty for this task,reducing the efficacy of selection (reduced Ne) and extending hitch-hiking effects that blur thedistinction between neutral and selected regions. Nevertheless, scenarios of adaptation fromstanding variation can leave some signal of selection in highly selfing populations. Curiously,adaptation from newmutation under the same highly selfing scenarios leaves no signal, reversingthe general expectation for the footprint of selection from “hard” and “soft” sweeps. Chanceplays an important role in the success of a genome scan. Therefore, researchers should focuson the factors that can be controlled, such as the use of adapted methods to selfing species, toincrease the probability of a positive outcome.
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Appendix A. Predominantly selfing species in project Baseline
Project Baseline will track the evolution of natural populations from more than 60 plantspecies in the next 50 years through seed collection (www.baselineseedbank.org, Etterson etal., 2016). Many of the species included are capable of self-fertilization and at least six of themreproduce predominantly by selfing: Bromus diandrus (Kon and Blacklow, 1990), Bromus tectorum(Novak et al., 1991), Elymus canadensis (Sanders andHamrick, 1980), Impatiens pallida (Schemske,1978), Stipa pulchra (Larson et al., 2001) and Triodanis biflora (Goodwillie and Stewart, 2013).

Appendix B. Simulation of independent loci
Additional simulations were performed to show the effect in the estimation of Ne of non-independent sample of gene copies within individuals (i.e. FIS) without the effect of linkage dise-quilibrium due to selfing. The simulation approach is very similar to the simple drift model usedto build null distribution of the test described in the main text. The main difference is that ini-tial allele frequency is set as a fixed parameter. Simulations are used to generate temporal dataat 10000 biallelic loci per pseudo-observed dataset. Initial allele frequencies (π0) are fixed to0.5 for all loci. Allele frequency π in generation t were simulated with a binomial distribution as

πt ∼ B(2Ne,πt−1)/2Ne, where Ne is the effective population size in number diploid individuals,for generations t ∈ [1, τ ]. Thus, each locus is simulated independently from each other, ignoringthe linkage among them that should have occurred due to selfing. Genotype counts in samples,
K∗

t , at time t = 0 and t = τ are taken from a multinomial distribution, K∗
t ∼ Mult(nt , γt), where

nt is the sample size (in number of diploid individuals) at time t and γt :
γAA,t = π2

t + FIS(1− πt)πt

γAa,t = 2(1− πt)πt(1− FIS)
γaa,t = (1− πt)2 + FIS(1− πt)πtare the genotype frequencies in the populations in function of the inbreeding coefficient FIS,which is determined by the selfing rate FIS = σ/(2 − σ). Simulations were performed with pa-rameters values for Ne = 500 diploid individuals, τ = 25 generations, n0 = n25 = 50 diploidindividuals and selfing rate, σ, had values of 0, 0.5, 0.75, 0.8, 0.85, 0.9, 0.925, 0.95, 0.975 or 1.Results are presented in Fig. 8.
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Table 1 – Notation.
symbol meaning
γt genotype frequencies in the population at time

t
πt allele frequency (in the population) at genera-tion t
σ rate of reproduction by selfing in the population
τ time in generations between the two samplesAA, Aa, aa the three possible genotypes of a bi-allelic locus
F l

ST observed differentiation statistic FST at focal lo-cus l
Kt observed genotype counts in the sample at time

t
K∗

t simulated genotype counts in the sample attime t
kt observed count of the reference allele in sampleat time t
N census population size in number of diploid in-dividuals
Ne effective population size in number of diploid in-dividuals
nt sample size (number of diploid individuals) attime t
pt frequency of the reference allele in the sampleat generation t; pt = kt/2nt
p∗

t simulated frequency of the reference allele inthe sample at generation t; pt = kt/2nt
s selection coefficient of the adaptive locus
t time, measured in generations, with t = 0 forfirst sample and t = τ for last sample

Table 2 – Genome scan results forM. truncatula.
This table is provided in a supplementary file.
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Figure 6 – Effect of a filter on minor allele frequency (MAF) on the distribution of p-values. p-values calculated from 100 simulation replicates of a neutral outcrossing pop-ulation of N = 500 diploid individuals, sampled twice with τ = 25 generations betweensamples. The blue histogram shows the distribution of p-value using all loci, with cor-responding blue line in the QQ-plot. The orange histogram shows the distribution of
p-value using loci with a minimum global allele frequency of 0.05, with correspondingorange line in the QQ-plot.

22 Miguel de Navascués et al.

Peer Community Journal, Vol. 1 (2021), article e37 https://doi.org/10.24072/pcjournal.47

https://doi.org/10.24072/pcjournal.47


a

b
time

sa
m

pl
e 

1

***

sa
m

pl
e 

2

sa
m

pl
e 

1
sa

m
pl

e 
2

sa
m

pl
e 

1
sa

m
pl

e 
2

* *

********* ***

mutation at the locus under selection
mutation at site linked to the locus under selection

sw
ee

p

neutral evolution
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Figure 8 – Effective population size estimates from temporal differentiation from FCand FST. Estimates obtained from simulated data of populations of N = 500 diploid indi-viduals, sampled twice with τ = 25 generations between samples and 100 estimates atindependent simulation replicates. Dashed line marks true Ne = N(σ−2)
2 . (a) Simulationsperformed with SLiM (Messer, 2013) as described in the main text and presented par-tially in Fig. 1. (b) Simulations performed with a simple model of independent loci withinitial allele frequency of 0.5, as described in appendix B.
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Figure 12 – Departure from expectations of the p-value distribution forMedicago trun-catula genome scan. (a) QQ plots for Medicago truncatula (this study) and Arabidopsisthaliana (Fig. S21 Frachon et al., 2017). ForM. truncatula, p-values estimated for 987 SNPloci that were polymorphic in the sample with a global minor allele frequency higher than0.05 (Table 2). Null model considered Ne = 42 and σ = 0.99. (b) QQ plots for simulationsunder a scenario of adaptation from new mutations in a population of N = 500 diploidindividuals sampled twice with τ = 25 generations between samples and different ratesof selfing, σ. A new advantageous mutation appears at generation t = 0 with coefficientof selection s = 0.5. Samples are made of 50 diploid individuals genotyped at 10000 bial-lelic markers (including the locus under selection). The plot consider the distribution of
p-values from 100 simulation replicates.
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