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Abstract

Several studies have been conducted to understand the dynamic of primary
metabolisms in fruit by translating them into mathematics models. An ODE
kinetic model of sugar metabolism has been developed by Desnoues et al. [1]
to simulate the accumulation of di�erent sugars during peach fruit develop-
ment. Two major drawbacks of this model are (a) the number of parameters
to calibrate and (b) its integration time that can be long due to non-linearity
and time-dependent input functions. Together, these issues hamper the use
of the model for a large panel of genotypes, for which few data are available.
In this paper, we present a model reduction scheme that explicitly addresses
the speci�city of genetic studies in that: i) it yields a reduced model that
is adapted to the whole expected genetic diversity ii) it maintains network
structure and variable identity, in order to facilitate biological interpreta-
tion. The proposed approach is based on the combination and the systematic
evaluation of di�erent reduction methods. Thus, we combined multivariate
sensitivity analysis, structural simpli�cation and timescale-based approaches
to simplify the number and the structure of ordinary di�erential equations of
the model. The original and reduced models were compared based on three
criteria, namely the corrected Aikake Information Criterion (AICC), the cal-
ibration time and the expected error of the reduced model over a progeny
of virtual genotypes. The resulting reduced model not only reproduces the
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predictions of the original one but presents many advantages including a re-
duced number of parameters to be estimated and shorter calibration time,
opening new promising perspectives for genetic studies and virtual breeding.
The validity of the reduced model was further evaluated by calibration on 30
additional genotypes of an inter-speci�c peach progeny for which few data
were available.

Keywords: model reduction, sensitivity analysis, structural simpli�cation,
quasi-steady-state, peach fruit, kinetic model, model calibration,
gene-to-phenotype.

1. Introduction1

Plants are sessile organisms endowed with the capacity to alter their de-2

velopment, physiology, and morphology depending on the context. Plant3

phenotype is the result of the interaction between the environment, cultural4

practices and plant's genetic background (genotype). In the context of agron-5

omy, increasing e�orts have been made to select varieties that better meet6

consumers' expectations. Today it is clear that future breeding should ac-7

count for complex plant phenotypes, responding to a large panel of criteria,8

including increased yield, abiotic and biotic stress tolerance, and quality of9

food products.10

Genotype-phenotype models have been considered as the tools of the fu-11

ture to design new genotypes since they can help to test the performance12

of new genotypes (G) under di�erent Environments (E) x Management (M)13

conditions. The challenge is to build ecophysiological models that integrate14

genetic information associated to speci�c processes (traits). In general, geno-15

types are de�ned by a set of parameters, which depends on gene expression16

or allelic combination, depending on the genetic complexity of the considered17

trait as well as the available information [2]. Genetic-improved ecophysiolog-18

ical models can then be used to capture GxExM interactions. They can also19

be used to design �ideotypes� i.e. real or virtual plant cultivars expressing20

an ideal phenotype adapted to a particular biophysical environment, crop21

management, and end-use [3, 4]. For this, it is necessary to combine the22

genetic-improved ecophysiological model with a multi-objective optimization23

algorithm to identify the best genotypes for speci�c conditions [5].24

Construction of gene-to-phenotype models is challenging. First, the ap-25

proach requires that a sole and unique model can reproduce the behavior of26
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all genotypes, in multiple environments, the diversity observed being sup-27

ported by di�erent sets of parameters. Second, calibration of the models for28

a large number of genotypes is generally di�cult, due to a large number of29

parameters (typically from 50 to 200 in whole-plant ecophysiological mod-30

els) along with a restricted number of observations [6, 7]. Due to the model31

complexity and non-lineairities, evolutionary and bio-inspired algorithms are32

increasingly used both for parameter estimation and ideotype design. These33

methods can explore high-dimensional parameter space e�ciently but they34

rely on a large number of model evaluations, that can rapidly increase the35

computational time required to �nd a solution. Third, the genetic architec-36

ture of complex traits can be very complex, due to epistatic and pleiotropic37

e�ects. In this sense, the presence of biologically-meaningful parameters can38

considerably help the interpretation of the resulting genetic architecture, fa-39

cilitating the breeding process. Ideally, most the model is close to omics data,40

the easier the linkage between the parameters and the underlying physiolog-41

ical processes.42

Kinetic modeling has been successfully applied to several metabolic path-43

ways in plants [8, 9, 10]. In this spirit, a kinetic model of sugar metabolism44

has been developed in [1] to simulate the accumulation of di�erent sugars45

during peach fruit development. The model correctly accounts for annual46

variability and the genotypic variations observed in ten genotypes derived47

from a larger progeny of inter-speci�c peach cross. At term, the objective48

of the research is to integrate the genetic control of sugar metabolism in49

this kinetic model and develop a methodology to design ideotypes by vir-50

tual breeding. To achieve this, it is necessary to estimate accurately the51

values of the in�uential parameters of the model for the whole progeny of52

106 genotypes for which few data are available. Unfortunately, the size of53

the parameter space and the non-linearity of the reaction rates make the54

calibration of the model unreliable and time-consuming.55

One way to face these weaknesses is to reduce the complexity of the model56

[11]. Several reductions and approximation approaches exist in the literature,57

each one addressing a speci�c aspect of model complexity [12, 13]. A number58

of methods, such the lumping method [14, 15] or the classical quasi-steady-59

state (QSS) approaches, aim at reducing the number of variables based on60

chemical or time-scale considerations [16, 17]. Methods from sensitivity anal-61

ysis may help to reduce the parameter space by identifying non-in�uential62

parameters, whose values can be �xed by broad literature data [18, 19, 20, 21].63

Last but not least, the structure of the model itself can be simpli�ed. Meth-64
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ods for model decomposition [22, 23, 24] aim to separate the system into65

sub-networks or sub-models, that are easier to analyze and parameterize.66

The choice of reaction kinetics is also very important for model complexity.67

In this perspective, the use of simpli�ed enzyme kinetics [25, 26, 27] may be68

useful to avoid the emergence of numerical and identi�ability issues.69

Di�erent reduction methods can be combined together. In [28] for in-70

stance, model decomposition is associated to variable transformation, re-71

sulting in a low-dimensional description of the �exterior� part of the system,72

whereas in [15] time scale analysis is used to identify a cluster of fast variables73

to be lumped together.74

In the work of Apri et al. [29] di�erent reduction steps (parameter re-75

moval, node removal, variable lumping) are sequentially tested following a76

practical scheme: at each step, if the reduced model, after parameter re-77

estimation, can reproduce some target outputs, the modi�cation is selected,78

and rejected otherwise. From the point of view of genetic applications, a79

major drawback of the approach of Apri et al. [29] is that the selection of80

acceptable reduction results depends on the speci�c target dynamics.81

As a consequence, di�erent target outputs (i.e. genotypes) can give rise82

to reduced models with di�erent structures or parameters number, making83

their comparison di�cult in the perspective of genetic studies.84

The objective of this work was to provide a method to build a reduced85

model that is adapted to the speci�city of genetic studies in that: i) it yields86

a reduced model that is adapted to the whole expected genetic diversity ii) it87

maintains network structure and variable identity, in order to facilitate the88

biological interpretation of the reduced model.89

Similarly to the approach of Apri et al. [29], our reduction strategy tests90

di�erent methods in several parallel steps that, if retained, are combined91

together into a �nal reduced model (Fig. 1).92

First, multivariate sensitivity analysis was attempted to reduce the pa-93

rameter space [30]. Second, we tried to simplify the structure of the model94

by reducing non-linearity and time-dependent forcing, and �nally, a quasi-95

steady-state approximation based on time-scale separation was tested to re-96

duce the size of the system. Particular attention was devoted to the system-97

atic evaluation of the di�erent reduction methods. Three main criteria were98

used to assess the interest of the reduction: i) the corrected AIC value, eval-99

uating the relative gain between model simpli�cation and loss of accuracy100

over an experimental dataset, ii) the calibration time, as a measure of model101

e�ciency, iii) the expected error between the original and the reduced model102
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over a population of virtual genotypes, as a measure of the reliability of the103

simpli�cation scheme.104

As a case study, the proposed reduction scheme was applied to the model105

of sugar metabolism proposed by Desnoues et al. [1]. The resulting reduced106

model correctly reproduces data on the original 10 genotypes with only 9 es-107

timated parameters (out of 14 in the original model) and a gain in calibration108

time over 40%. In addition, the reduced model was successfully calibrated on109

30 new genotypes of the same inter-speci�c peach progeny, for which fewer110

data points were available.111

The paper is organized as follows. In the next section, we brie�y present112

the original model of sugar metabolism developed by Desnoues et al. [1].113

Section 3 is devoted to the description of the individual reduction methods,114

whereas Sections 4 and 5 present, respectively, the datasets and the numerical115

methods used for the assessment of the proposed model reduction. The116

results of the application of our reduction scheme to the model of sugar117

metabolism are reported in section 6. A general discussion on the advantages118

and limitations of our approach closes the paper.119

2. Description of the peach sugar model120

The model developed by Desnoues et al. [1] describes the accumulation121

of four di�erent sugars (sucrose, glucose, fructose, and sorbitol) in peach122

fruit during its development over a progeny of ten peach genotypes with123

contrasting sugar composition. The fruit was assumed to behave as a single124

big cell with two intra-cellular compartments, namely the cytosol and the125

vacuole. Carbon enters the fruit from the plant sap which is transformed by a126

metabolic network, including enzymatic reactions and transport mechanisms127

between the cytosol and the vacuole.128

The developed dynamical model made explicit use of experimental data to129

describe the evolution of the sub-cellular compartment (due to fruit growth)130

and enzyme activities (due to fruit developmental program) over time. To131

this aim, measured fruit dry and fresh masses and enzyme activities were132

represented by genotype-speci�c temporal functions and provided as input133

to the model.134

From a mathematical point of view, the model can be described as a set
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of parametric ordinary di�erential equations:

dx

dt
= f(x(t), I(t), v(t), p), (1)

x(t0) = x0, (2)

where t is the independent time variable in days after bloom (DAB); x ∈ R10
135

is the concentration vector of metabolites in the corresponding intra-cellular136

compartment and x0 ∈ R10 in Eq.(2) is the vector of the corresponding ini-137

tial values. I ∈ R is the time-dependent input of carbon from the plant138

and v ∈ R7 is the vector of time-dependent measured enzymatic activities;139

p = (p1, . . . , p23) is the vector of parameters de�ning the rate reactions where140

p1, . . . , p14 have to be estimated and p15, . . . , p23 are �xed from literature141

data. f(x(t), I(t), v(t), p) of Eq.(1) describes the change in compounds con-142

centrations. Equations of the reduced and original model are introduced in143

Appendix Appendix A.1.144

3. Model reduction methods145

In this section, we present a reduction scheme explicitly dedicated to146

genetic studies that combines di�erent methods in several parallel steps as147

shown in (Fig. 1) and explained in the next subsections.148
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Figure 1: Graphical representation of the proposed model reduction scheme. Yellow di-
amonds represent model evaluation steps by means of our 3 criteria: the corrected AIC
value, calibration time and expected error over a virtual population. The tested reduction
methods are indicated in green. Multivariate sensitivity analysis and three structural sim-
pli�cation methods are independently applied to the original model and evaluated. The
validated methods are then combined into an intermediate reduced model whose perfor-
mances are again submitted to evaluation. Finally, the application of a QSS approximation
over the intermediate reduced model is tested to yield the �nal reduced model.

3.1. Multivariate sensitivity analysis149

Generally, in the case of complex models, estimating parameters requires150

a lot of e�ort and is known to be a di�cult and challenging task. In par-151

ticular, it is tricky to determine which parameters can be �xed. The global152

sensitivity analysis methods allow to explore the in�uence of each parameter153

on model outputs and thus to identify the key parameters that a�ect model154
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performance and play important roles in model parameterization, calibra-155

tion and optimization [21]. Multivariate sensitivity is a method developed156

by Lamboni et al. [30] that allows the application of global sensitivity anal-157

ysis to models having a multivariate (eg. dynamic) output. The idea is to158

perform a principal components analysis on the outputs, and then compute159

the sensitivity indexes for each principal component. The results are sum-160

marized by the generalized sensitivity indices (GSI) that provide a unique161

ranking of the parameters over the whole output.162

This method was applied to the 23 parameters of the original model163

and to the measured enzymatic activities v. Each parameter was studied at164

three levels, corresponding to 0.05, 0.5 and 0.95 quantiles of the previously165

estimated 14 parameters values [1] and to a variation of −20% and +20%166

of the �xed values for the other parameters. For time-dependent enzyme167

activities, the same −20% and +20% variation was applied on their average168

values over the whole dynamics.169

In order to evaluate the impact of the genotype choice on the results of170

the sensitivity analysis, simulations were performed according to a factorial171

design, following the ANOVA model genotypes×(p1+ . . . p23+v1+ . . .+v7)
2.172

The package "Planor" in R (R Development Core Team 2015) was used.173

The minimum resolution of the plan was �xed by using the tool MinT [31]174

to test all main e�ects and interactions. The factorial design resulted in175

10× 39 = 196 830 simulations.176

Multivariate sensitivity analysis was performed independently on the dy-177

namics of the four output sugars (i.e sucrose, glucose, fructose, and sorbitol)178

that compose peach fruit. In order to determine the least sensitive parame-179

ters, the whole sugar phenotype has to be taken into account, with respect to180

the relative proportions of each sugar. For this aim, an aggregate generalized181

sensitivity index (aGSI) was constructed for each parameter as182

aGSI =
4∑
i=1

GSIi βi (3)

where GSI is the generalized sensitivity indice computed for the sugar i and183

βi the relative proportion of sugar i in the fruit. β = (0.72, 0.13, 0.09, 0.05)184

for sucrose, glucose, fructose, and sorbitol, respectively.185

3.2. Structural simpli�cation methods186

This section aims to simplify the structure of the model in terms of net-187

work and reaction rates while preserving its predictive ability. The structural188
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simpli�cation includes the three following strategies:189

3.2.1. Simplifying the description of enzymatic capacities190

Seven enzymatic capacities Vmax are represented in the original model.191

Some of these capacities were assumed to vary over time (temporal e�ect)192

and/or to depend on the phenotypic group (phenotype e�ect), according to193

experimental evidences [32]. The characteristics of enzyme capacities are194

summarized in Table 1. In order to simplify the model, we systematically195

tested the impact of the suppression of the phenotype and/or the tempo-196

ral e�ect on each single capacity. Depending on the characteristics of the197

considered enzyme (Table 1), the procedure is slightly di�erent:198

Phenotype effect :

{
V 1
max

V 2
max

→ V 1
max + V 2

max

2
(4)

Temporal effect : Vmax(t)→< Vmax(t) >t (5)

Double effect : (4) then (5) applied (6)

where < . >t stands for temporal average over the whole dynamics.199

Table 1: Characteristics of enzymatic activities in [1]

Vmax Phenotype e�ect Temporal e�ect
v1 No No
v2 No Yes
v3 Yes No
v4 No Yes
v5 No Yes
v6 Yes Yes
v7 Yes Yes

3.2.2. Rate simpli�cation200

In the original model, enzymatic reactions were represented by an irre-201

versible Michaelis-Menten (MM) equation:202

u(x, t) = Vmax
x(t)

Km + x(t)
(7)
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where Vmax is the enzymatic capacity. Km is the a�nity of the enzyme for203

the substrate, x(t) is the concentration of the substrate at time t.204

The objective here is to simplify Eq.(7) in order to improve the e�ciency205

of the numerical simulation. Depending on the relative levels of the substrate206

concentration and the MM equation a�nity, two simpli�cations of the �ows'207

equations can be made:208

Case 1: if x(t) << Km209

Substrate concentration is small compared to the a�nity of the enzyme for210

the substrate then we can write: u(x, t) = Vmax

Km
x(t).211

Case 2: if x(t) >> Km212

Substrate concentration exceeds the a�nity of the enzyme for the substrate,213

so that the enzyme can be supposed close to saturation: u(x, t) = Vmax.214

3.2.3. Futile cycle removal215

The presence of internal cycles within a metabolic network can lead to216

the appearance of thermodynamically unfeasible loops i.e. reactions that run217

simultaneously in opposite directions (for example Fig. 2) and have no overall218

e�ect on the exchange �uxes of the system. This is an undesirable situation219

that causes numerical issues and makes the estimation of the corresponding220

parameter values an ill-posed problem.221

Figure 2: S4 is the glucose in the cytosol transported to the vacuole as S9 via an active
(unidirectional transport) and passive (reversible transport).

In this context, our strategy was to remove each futile cycle by replacing222

the antagonist reactions by a single e�ective reaction preserving the net ex-223

change �ux of the system. Di�erent kinetics can be tested for the e�ective224
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reaction, as alternative reduction approaches. Consistently with the previous225

reduction method, we decided to test two linear reaction forms, namely226

u(x, t) = kixi − kjxj (8)

and227

u(x, t) = ki(xi − xj) (9)

where xi, xj are the variables involved in the futile cycle and ki, kj are the228

coe�cients to be estimated.229

3.3. Time-scale analysis and QSS approximation230

Biological systems are often characterized by the presence of di�erent231

time scales (seconds, hours, days). Following Heinrich and Schuster [17], an232

appropriate measure of the time scales involved is given by233

τi(t) = − 1

Re(λi(t))
(10)

where Re(λi) are real parts of the eigenvalues λi of the Jacobian matrix of the234

system, along a given trajectory. The presence of fast modes in the system235

allows the reduction of the number of variables based on a quasi-steady-state236

assumption.237

Based on the above information and on the analysis of time-series of the238

full model, variables can be divided into two groups x = (x(1), x(2)), where239

x(1) and x(2) correspond respectively to the slow and fast variables of the240

system [17, 33].241

Application of the QSS approximation states that242

dx(2)

dt
= f2(x

(1), x(2), I(t), v(t), p) = 0 → x(2)ss = g(x(1)) (11)

It follows that, after a relaxation period, the system can be approximated by243

the reduced model:244

dx(1)

dt
= f1((x

(1), g(x(1)), I(t), v(t), p) (12)

of lower dimension.245
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4. Experimental and arti�cial data246

4.1. Experimental data247

The 106 peach genotypes used in this study come from an inter-speci�c248

progeny obtained by two subsequent back-crosses between Prunus davidi-249

ana (Carr.) P1908 and Prunus persica (L.) Batsch `Summergrand' and then250

`Zephyr' [34]. They were planted in 2001 in a completely randomized design251

in the orchard of the INRAE Research Centre of Avignon (southern France).252

Experimental monitoring of peach fruit growth and quality has been con-253

ducted in 2012, as described in [32]. The concentration of di�erent metabo-254

lites, namely sucrose, glucose, fructose, sorbitol, and hexoses phosphates, the255

fruit �esh fresh weight and dry matter content were measured at di�erent256

time points during fruit development, for all genotypes. In addition, the257

temporal evolution of enzymatic capacities (maximal activity) of the twelve258

enzymes involved in sugar metabolism was measured over the whole pop-259

ulation [32]. The resulting dynamic patterns were analyzed and compared260

by means of a generalized mixed linear-e�ect model (GLMM). Accordingly,261

some enzyme activities were shown to vary over time and/or depend on the262

phenotypic group [32].263

Training set264

The 10 genotypes already used by Desnoues et al. [1] were selected as265

the training set for our reduction strategies. They include �ve genotypes266

having a `standard phenotype', namely a balanced fructose-to-glucose ratio267

at maturity between 0.6 and 0.9, and �ve considered to have a `low fructose268

phenotype' due to the lower proportion of fructose compared with glucose269

based on their sugar composition at maturity [1]. For these 10 genotypes, 3270

biological measurements are available at 6 dates after bloom.271

The training set was used to test each reduction method individually as272

well as their combination, based on the AICC value and the calibration time273

(see section 5.3).274

Validation set275

The quality of the �nal reduced model was evaluated by calibration on a276

validation set for which fewer data points were available (one single biological277

measurement at 6 dates). The idea was to select 30 additional genotypes of278

the inter-speci�c peach progeny, which in complement to the training set,279

represented the greatest diversity in terms of growth rate and duration. For280
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this aim, experimentally measured growth curves were interpolated with a281

smoothing spline algorithm [35] with 16.4 degrees of freedom in R (R Devel-282

opment Core Team 2015) and the maximum and average growth rate quan-283

ti�ed as the maximum and the average of the growth curve's derivative over284

fruit development. A principal component analysis (PCA) was performed on285

growth rate and growth duration for the whole progeny of 106 genotypes us-286

ing the R ADE4 library. The �rst two principal components accounted for287

more than 90% of the genetic diversity. The �rst axis was mainly related to288

the growth rate whereas the second one re�ected the duration of growth. As289

shown in Fig. 3, the ten genotypes of the original study provided a good rep-290

resentation of the observed diversity in growth rate. However, their growth291

duration was relatively short, compared to the existing variability. As a con-292

sequence, most of the new genotypes have been selected in the upper-left293

panel of the plan, in order to capture the greatest genetic diversity in terms294

of fruit development. An equal proportion of the two phenotypic groups was295

maintained.296
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Figure 3: Principal component analysis (PCA) for the whole progeny of 106 genotypes. It
represents the projection on the Dim1 and Dim2 of the growth duration and growth rate
obtained with growth curves.

4.2. Virtual genotypes297

In addition to the training set, a virtual experiment was performed to298

evaluate the reliability of the reduction methods to variations in parameter299

values, initial conditions, and input functions, expected in large genetic pop-300

ulations. For this aim, 20 000 virtual genotypes were generated by randomly301

assigning model parameters and inputs, based on data from the 10 pro�les302

used in [1].303

The values of the parameters p were taken randomly using a uniform304

distribution between the minimum and the maximum of the previously es-305

timated values over the set of 10 genotypes [1]. Initial conditions, such as306

initial fruit weight, and initial sugar concentration were assigned ran-307

domly using a uniform distribution within the range of observed values plus308

a variation of 40%.309

Given the high correlation among parameters describing fruit growth curves310
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[36], model inputs, such as fruit weight, were randomly assigned using a uni-311

form distribution picking one of the observed growth dynamics and adding312

an overall random variation between zero and 10% on fruit weight. Finally,313

shifts in the duration of fruit development among genotypes were also consid-314

ered. The maturity date was chosen randomly using a uniform distribution315

within the range of observed dates broaden of 40%.316

5. Numerical methods317

5.1. Mathematical notations318

• x(t, p(k)): original model associated to parameters p(k) (i.e. genotype319

k )320

• x̃(t, p̃(k)): reduced model for the genotype k.321

Note that the notation x̃(t, p̃(k)) can apply to di�erent versions of the reduced322

model, depending on the considered reduction method.323

• T (k)
S : set of the NS simulation times for the genotype k324

• T (k)
M : set of the NM measurement times for the genotype k325

• X(k)(tj): N experimental observations for the genotype k, with tj ∈326

T (k)
M . Note that N = 4 ×NM × r, where r is the number of replicates327

at time tj, for the 4 di�erent sugars (sucrose, glucose, fructose and328

sorbitol). r = 3 for the training set and r = 1 for the validation set.329

5.2. Parameter estimation330

In this section, we aim to estimate the parameters of the models to �t
our observations i.e. our measured sugars concentrations. For this purpose,
we note X(k) = (X

(k)
1 , . . . , X

(k)
N ) the vector of the experimental observations

at several times for the genotype k and suppose that:

E(X
(k)
i ) =Mp(k)(x

(k)
i )

where x(k)i = (x(k)(ti)) is the set of system variables at (ti)i∈[1,N ], p(k) is331

the vector of parameters to be estimated and Mp(k) is the mathematical332

function relying the considered model to the data (see Appendix A for more333
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information). Here, the observations X(k) are assumed to follow a Gaussian334

law N (Mp(k)(x
(k)), σ2

k) with constant variance σ2
k.335

The estimation of our parameters can be performed through the maxi-336

mization of the likelihood. We note `(p(k), σ2
k) the log-likelihood function for337

the genotype k.338

Under the assumption of observation independence, the log-likelihood can
be de�ned as follows:

`(p(k), σ2
k) = −N

2
log(2π)− N

2
log(σ2

k)−
1

2σ2
k

N∑
i=1

(X
(k)
i −Mp(k)(x

(k)
i ))2 (13)

A maximum log-likelihood estimator (p̂(k), σ̂k
2) of (p(k), σ2

k) is a solution to339

the maximization problem:340

(p̂(k), σ̂k
2) = arg max

p(k),σ2
k

`(p(k), σ2
k) (14)

In this Gaussian case, the maximum log-likelihood estimator is thus equiv-341

alent to the ordinary least-square estimator:342

p̂(k) = arg max
p(k)

N∑
i=1

(X
(k)
i −Mp(k)(x

(k)
i ))2 (15)

σ̂2
k =

1

N

N∑
i=1

(X
(k)
i −Mp̂(k)(x

(k)
i ))2 (16)

Matlab software (MATLAB R2018a, The MathWorks Inc., Natick, MA)343

was used for model integration (solver ode23tb [37]) and calibration. A ge-344

netic algorithm (function ga [38] of Global Optimisation Toolbox) was used345

for maximization of Eq. (15). The population size, the maximum number346

of generations, and the crossover probability have been respectively set at347

200, 300, and 0.7. For each reduced version of the model (individual or com-348

bined reduction methods), free parameters were numerically re-estimated.349

The �tting process was considered at convergence when the average relative350

change in the best-cost function, i.e. the sum of squared errors, value over351

generations was less than 10−6. For each genotype k and reduced model,352

estimations procedure has been repeated ten times to take into account the353

stochastic nature of the genetic algorithm and to ensure the good exploration354

of the parameters' space. The solution having the best score was kept for355

subsequent analyses.356
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5.3. Model selection357

Individual and combined reduction methods were evaluated according to358

three criteria of major importance for our application: the corrected Akaike359

Information Criterion (AICC), the gain in calibration time (%) and the ex-360

pected error (%) between the original and reduced models.361

Akaike Information Criterion362

The AIC gives information on the likelihood of the proposed model based363

on available experimental data and weighted by the number of free parame-364

ters: [39]:365

AIC(p) = −2 `(p, σ2) + 2np (17)

where np is the number of estimated parameters p and `(p, σ2) is the max-366

imum log-likelihood. In this paper, we used the corrected AIC as we deal367

with a small set of observations and a considerable number of parameters.368

AICC(p) = AIC(p) +
2np(np + 1)

N − np − 1
(18)

whereN is the number of observations. For genotype k and for each reduction369

method, we de�ned370

∆
(k)
AICC

(p̃(k), p(k)) = AICCreduced(p̃
(k))− AICCoriginal(p(k)) (19)

as the AICC di�erence between the reduced and the original model. Note371

that ∆AICC
is always computed using the best estimated parameter solution372

for the considered model. Whenever the average over the 10 genotypes (<373

∆AICC
>G) was negative, the reduction method was validated.374

Gain in calibration time375

We used the calibration of a speci�c genotype (E43) as a proxy of the376

maximum expected calibration time on the population. Genotype E43 was377

selected because it required a long calibration time on the original model378

proposed by Desnoues et al. [1] (approximately 11 hours on average on a379

3.1GHz Intel(R) Xeon(R) processor) but it did not su�er from numerical380

instabilities, that could complicate the calibration process. Note that the381

overall calibration time of a model depends both on the integration time of382

each evaluation step and on the convergence of the cost function that sets383

the actual number of generations performed by the algorithm. Both aspects384

may be a�ected by the model reduction.385
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To evaluate the gain in calibration time due to model reduction, pa-386

rameter estimation was performed for each reduction method, following the387

general procedure (see section 5.2), and compared to the calibration time388

obtained for the original model. An initial population P0 was randomly se-389

lected assuming a uniform distribution in the parameter range and then kept390

�xed for all calibration processes (both original and reduced models). For391

models having a reduced number of parameters, the initial population was392

directly derived from P0.393

The gain (Gt) was de�ned as the gain (in %) in calibration time T between394

the original and the reduced model:395

GT =
Toriginal − Treduced

Toriginal
× 100

Expected error396

Simulations of the original and reduced models were compared by the397

Normalized Root Mean Square Error over the 10 model variables :398

Ji(p
(k), p̃(k)) =

√
1
NS

∑NS

j=1(xi(tj, p
(k))− x̃i(tj, p̃(k)))2

maxj(xi(tj, p(k)))−minj(xi(tj, p(k)))
∀i ∈ {1, . . . , 10} (20)

where x(t, pk) and x̃(t, p̃k) are the concentration predicted by the original and399

reduced model, respectively. Parameters for the reduced model were derived400

from the values of the corresponding parameters in the original model.401

The quality of the QSS approximation was assessed by computing Ji for402

each variable in the model, over the whole dynamics.403

In the context of the virtual experiment, the Expected Error (%) of the404

reduced model was de�ned as the average distance J over the virtual popu-405

lation:406

Expected Error =
1

NV G

NV G∑
k=1

< Ji(p
(k), p̃(k)) > ×100 (21)

with

< Ji(p
(k), p̃(k)) >=

1

10

10∑
i=1

Ji(p
(k), p̃(k))

where NV G is the number of virtual genotypes and 10 is the number of407

variables. In our case, NV G = 20 000. The Expected Error was used to408

quantify the reliability of the reduction.409
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6. Results410

6.1. Strategy 1: Identi�cation of low sensitive parameters411

The objective of the sensitivity analysis was to identify parameters having412

a signi�cant in�uence on the outputs of the model, over the whole dynamics413

and for all tested genotypes. A multivariate sensitivity analysis [30] was used414

for this purpose. The aggregate generalized sensitivity indices (aGSI) (see415

section 3.1) shown in Fig. 4 give a common ranking of model parameters416

according to their in�uence on the whole sugar phenotype, as it is made up417

by the four output sugars (sucrose, sorbitol, glucose, and fructose).418

Figure 4: Aggregate Generalized sensitivity indices (aGSI) for the parameters of the model
and genotypes (the training set) on four outputs (Sucrose, Sorbitol, Glucose and Fructose)
of the sugar model. The main sensitivity indices are in dark bars and interaction ones are
in grey bars.

Parameter (p1) related to the action of cell-wall invertase in fruit apoplasm419

and the coe�cient of sucrose import (p8) are the most important parameters,420

followed by the activities of acid invertase (p2), the activities of Fructokinase421

(p3), Hexokinase (p4) and the resynthesis rate of sucrose from hexose phos-422

phate (p7). Indeed, p1, p3, and p4 parameters are the most sensitive param-423

eters for sucrose, fructose and glucose concentrations respectively (see Fig.424

B.2 ).425

Interestingly, the genotype factor is ranked third, meaning that it does426

not a�ect parameters' sensitivity as much as expected. A closer look at the427
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results shows that the choice of the genotype essentially a�ects the second428

principal component, via the de�nition of the initial conditions of the model429

(see the supplemental information Fig. B.1).430

Among the 14 parameters estimated (p1, . . . , p14) in the original model,431

four parameters, namely p5, p10, p12 and p14, have a negligible e�ect on432

the four outputs, independently of the peach genotype. Accordingly, these433

parameters can be �xed to their nominal values i.e. their average value over434

the ten genotypes, without a�ecting the quality of predictions. The validity435

of such a reduction strategy was tested on the ten genotypes of the training436

set. The di�erence in Akaike criterion (∆AICC
) between the reduced and437

the original models was computed for each genotype. Results presented in438

Table 2 show that such a reduction in the number of parameters is strongly439

bene�cial for nine out of the ten genotypes with largely negative ∆AICC
440

values, and roughly neutral for one genotype (∆AICC
∼ 0). The gain in441

calibration time, however, is important (25%) and the expected error over442

the progeny of virtual genotypes is low, demonstrating a good reliability of443

the proposed simpli�cation. For these reasons, the model with 10 parameters444

to be estimated was selected.445

Table 2: ∆AICC
calculated between reduced and original models for the training set and

the gain in calibration time (%) for E43. The Expected error ± standard deviation (Std)
between original and di�erent reduced models for 20 000 virtual genotypes.
Simpli�cation

method

∆AICC
Calibration Expected

Error

E1 E33 E43 F111 E22 F106 F146 H191 C216 C227 < ∆AICC
>G Time gain % Virtual

genotypes

Low sensitive

parameters

�xed

-11.5 -6.4 -0.9 -14.04 -13.2 -28.3 -13.5 -14.3 -18.7 -87.7 -20.8 25.8 4.9± 6.5

Vmax Type v3 -1.01 -5.9 -4.15 -4.2 1.1 -2.3 -0.3 -6.1 -6.1 -72.02 -7.9 22.4 0.5± 1.3
e�ect v6 -0.1 -4.3 0.06 - 3.9 0.7 -5.5 -0.3 -5.4 -6.1 -87.7 -11.3 26.6 1.7± 1.6
removed v7 -0.7 -36.4 0.2 -6.02 1.4 -5.6 1.9 -5.2 -4.9 -94.5 -14.9 33.9 2.9± 4.5
Vmax v2 -0.1 -3.1 0.06 -3.7 0.7 -5.1 -0.3 -0.3 -6.3 -83.4 -10.1 31.6 0.3± 0.7
Temporal v4 -0.8 -8.2 0.7 -5.6 -5.03 -2.5 -2.5 -5.1 - 6.1 -90.3 -12.3 19.4 2.9± 2.5
e�ect v5 0.2 -6.8 0.5 -4.8 1.8 -5.8 2.03 -2.9 -6.1 -91.1 -11.3 20.3 5.5± 5.7
removed v6 -0.3 -0.4 -0.1 -27.04 1.7 -5.5 -0.2 -5.3 -5.7 -84.9 -12.7 30.5 4.1± 3.1

v7 8.6 -25.1 21.1 11.02 19.6 20.01 29.05 12.4 15.6 -97.5 1.5 24.2 6.8± 4.5
Rate

simpli�cation

-17.2 -53.4 8.9 -35.4 -2.9 2.7 -14.7 -22.9 -5.7 - 71.04 -21.1 6.7 18.6± 9.7

Futile cycle Eq.(8) 2.5 -0.9 15.6 -1.6 -0.01 -2.3 -0.6 -1.5 -5.9 -43.23 -3.8 23.6 12.7± 14.7
removal Eq.(9) 0.7 - 56.7 -5.6 -37.1 - 9.02 - 10.5 -6.7 -35.5 -12.2 - 70.7 -24.3 24.1 11.5± 9.9
Intermediate

reduced

model

-32.7 -18.6 -3.7 - 24.5 -11.8 -24.04 -16.5 -20.3 -18.8 -43.1 -21.4 30.5 22.5± 8.4

Final reduced

model

-32.5 -19.1 -4.3 -25.1 -12.7 -1.01- - 16.4 -20.4 -18.8 -43.3 -18.5 43.3 22.5± 8.5

6.2. Strategy 2: Structural simpli�cation of the model446

Structural simpli�cation methods are another way to reduce the com-447

plexity of dynamic systems by improving the generality of the model and the448

numerical integration of the ordinary di�erential equations.449
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Firstly, we tried to remove the temporal and the phenotype e�ects in the450

enzyme activities, v2, . . . , v7 (v1 has neither phenotype nor temporal e�ects).451

The results of this simpli�cation are shown in Table 2. The elimination of452

the phenotype e�ect for v3, v6 and v7 resulted in a decrease of the AICC453

value for nine genotypes, neutral for one genotype, and was thus selected for454

the �nal reduction. The elimination of the temporal e�ect for v2, v4, v5, v7455

was also advantageous on the corrected AIC results for all ten genotypes.456

Nevertheless, when we tried to eliminate the temporal e�ect of v7, the result-457

ing ∆AICC
was positive for most genotypes. This is in line with the results458

of multi-variate sensitivity analysis according to which v2, . . . , v6 have a low459

sensitivity on the four outputs of the model, whereas v7 has a non-negligible460

e�ect on the dynamics of glucose concentration. According to these results,461

the elimination of the temporal e�ect was validated only for v2, v4, v5, v6.462

In support of this choice, the test with the virtual genotypes shows that the463

expected error between the reduced and the original model is small (Table464

2).465

In the second phase, we tested the possibility of simplifying the enzymatic466

reaction rates (Eq.(7)). For each reaction in the model, Fig. 5 compares the467

order of magnitude of the substrate x(t) to the corresponding a�nity Km.468

The boxplots show that (Case 2, see section 3.2.2) simpli�cation strategy469

can be applied only for the reaction rates u5 and u7. Therefore, their reaction470

rates can be written as u = Vmax. All other �ows verify the (Case 1, see471

section 3.2.2) and can therefore be expressed as u = Vmax

Km
x(t). The rates472

simpli�cation improves the corrected AIC for eight genotypes and yields a473

substantial gain in the calibration time. The expected error over the virtual474

progeny is higher than in the previous reduction steps, but still in the range475

of accuracy of the original model [1]. According to these observations, the476

enzymatic reaction rates simpli�cation strategy was validated.477

21



Figure 5: Di�erences in order of magnitude between enzyme a�nity (Km) and substrate
concentration (x) calculated over the whole dynamics and the training set for each reaction
rate ui, i ∈ {5, 7, 9 . . . 15}.

Eventually, futile cycles were detected to reduce the full system. In the478

original model, glucose, and fructose sugars can be transported to the vacuole479

via two possible mechanisms: an active, unidirectional transport (u5, u7)480

and passive reversible transport (u6, u8). Simulations showed that, whenever481

the genotype, the net �ux mostly pointed in the direction of an export for482

both fructose and glucose from the vacuole to the cytosol [1]. However,483

futile cycles occurred due to the presence of the active transport mechanism,484

that continually brings glucose and fructose back into the vacuole. Indeed,485

u5 and u6 (respectively u7 and u8) had the same evolution over the whole486

dynamics for all ten genotypes (Fig. 6): the active and passive transport ran487

simultaneously in two opposite directions.488

According to our strategy (section 3.2.3), we tried to remove futile cycles489

by replacing reactions (u5, u6) (respectively (u7, u8)) with an e�ective reac-490

tion rate of the form p10 x9−p11 x4 (respectively p9 x8−p12 x3) preserving the491
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net export �ux from vacuole to the cytosol. We compared the performance of492

the reduced model with respect to the original one (Table 2). The corrected493

AIC values were generally slightly negative, with the exception of genotypes494

E1 and E43, suggesting an overall improvement of the model structure. No-495

tice that the present strategy did not reduce the total parameters number496

but decreased model complexity and improved the calibration time.497

As a further simpli�cation, we then tried to use a special case of the above498

mentioned reaction rate with p10 = p11 (respectively p9 = p12). This time,499

the simpli�cation was fully validated by the corrected AIC on all genotypes500

(Table 2, Eq.(9)). The expected error over the virtual genotypes was esti-501

mated to 13% and the calibration time was lowered by 24% with respect to502

the original model, thanks to structural simpli�cation and the reduction of503

the number of parameters to be estimated. Accordingly to these results, the504

simpli�cation by Eq.(9) was validated.505
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Figure 6: Evolution of the active �ux (solid lines) and passive transport (dashed lines)
for glucose (respectively fructose) and net �ux during fruit development (DAB, day after
bloom) for the ten genotypes of the training set (di�erent colors).

6.3. Strategy 3: Time-scale analysis and QSSA506

Results from the reduction strategies 1 and 2 were combined into an inter-507

mediate reduced model. This model had only 9 parameters to be estimated,508

linear �ows and only one temporal enzymatic capacity, common to all geno-509

types. Improvement in AICC with respect to the original model con�rmed510

a strong bene�ce for all ten genotypes (Table 2). The expected error over511

a large progeny was estimated around 20%, close to the performance of the512

original model.513
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Figure 7: Order of magnitude of time scales τi along fruit development (DAB, days after
bloom) for the 10 genotypes of the training set.

On the basis of this intermediate reduced model, time scale analysis was514

performed to detect the possible presence of fast modes in the system. The515

analysis of the Jacobian matrix, indeed, con�rmed the presence of di�erent516

modes, with typical time scales spanning a few seconds up to days, for all517

tested genotypes (Fig. 7).518

A fast transient dynamics, followed by a slow one, was observable in the519

numerical simulations of the original and intermediate reduced models for520

the hexose phosphates concentration (variable x5, see supplemental infor-521

mation, Fig. D.4). In addition, following the method proposed in [33, 17],522

we analyzed the predicted concentration of sugars in both intracellular com-523

partments, for all genotypes. The concentration of the hexose phosphate524

(x5) was systematically lower than the concentrations of the other variables525

in the system, as expected for the fast components of the system (Fig. 8).526

25



Accordingly, x5 was assumed to be at quasi-steady-state and its equation was527

replaced by an algebraic function of the slow variables.528

Figure 8: Order of magnitude of the predicted sugars concentrations (mg gFW−1) in the
cytosol (x1: Sucrose, x2: Sorbitol, x3: Fructose, x4: Glucose, x5: Hexose Phosphate, x10:
Other compounds) and vacuole (x6: Sucrose, x7: Fructose, x8: Glucose, x9: Sorbitol),
along fruit development (DAB, days after bloom) for the ten genotypes of the training set.

We compared the intermediate reduced model with its QSS approxima-529

tion by calculating Ji (Eq.(20)) as explained previously. Ji was very low, less530

than 1%, over the whole dynamics for all variables (Fig. 9). This result was531

validated also on the virtual genotypes simulated with QQS approximation532

(see the supplemental information Fig. D.5). In addition the QSS assump-533

tion, further increased the performance of the model, leading to a gain in the534

calibration time of 40% with respect to the original model.535
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Figure 9: Normalized Root Mean Square Errors Ji, i ∈ {1, . . . , 10} between the interme-
diate and reduced models after application of the QSSA to x5. The boxplot shows the
variability of Ji over the training set

6.4. Evaluation of the reduced model536

The validity of the reduced model was veri�ed on some new genotypes of537

the inter-speci�c peach progeny, for which few data were available.538
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Figure 10: Evolution of the concentration (mggFW−1) of sugars during fruit development
(DAB, days after bloom) for ten representative genotypes of the validation set with stan-
dard (left) and low fructose (right) phenotypes. Dots represent experimental data and
lines are model simulations.

The reduced model was then calibrated on the dynamics of sugar concen-539

tration of these selected genotypes, as described in section 5.2. The results540

presented in (Fig. 10) showed a satisfactory agreement between model and541

data, all over fruit development, for most genotypes. The average NRMSE542

(Table D.6) ranged from 10% to 30% for the main sugars, in good agreement543

with estimations over the virtual progeny. These results con�rmed that the544

reduced model o�ered a quality of prediction close to the original one with545

fewer parameters to be estimated and shorter integration time.546

From a biological perspective, an important prediction of the model de-547

veloped by Desnoues et al. [1] was that a di�erence in fructokinase a�nity548

could be at the origin of the phenotypic di�erence observed between standard549

and low fructose genotypes.550

We checked if the estimations obtained with the reduced model still sup-551

ported this hypothesis. Fig. 11 shows a signi�cant di�erence of estimated552

fructokinase a�nity between the two phenotypic groups, in agreement with553

the original model based on the Student t-test (p-value <2.0187e−9 )554
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Figure 11: Di�erence in the estimated fructokinase a�nity between standard and low
fructose phenotypes, for forty genotypes (training and validation sets). The di�erence is
signi�cant with a p-value < 2.0187e−9.

7. Discussion555

Models of metabolic systems are usually very complex. Complexity stems556

from the number of components and the high degree of non-linearity included557

in both the network structure and the individual reaction rates. As a conse-558

quence, metabolic models usually su�er from numerical and identi�ability is-559

sues that seriously hamper their application in the context of genetic studies,560

especially when they have to be calibrated for hundreds of genotypes. In this561

paper, we present a reduction scheme that explicitly accounts for genomic562

diversity. Our approach is based on the systematic evaluation of di�erent563

reduction methods, that, if successful, are then combined together to yield564

the �nal reduced model. When applied to the model of sugar metabolism565

developed by Desnoues et al. [1] our approach led to a reduced model that566
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could be e�ciently calibrated on a large diversity of genotypes, for which few567

data are available. The reduced model showed comparable predictions and568

biological interpretation as the original model, with only a limited number of569

estimated parameters. Indeed, calibration time was reduced by 40%, a con-570

siderable improvement when considering that the calibration of the original571

model could span up to 30 hours for a single genotype. Moreover, mitigation572

of model non-linearities can help limiting numerical issues and increase the573

reliability of estimated parameters, an important aspect in the context of574

genetic studies, where large genetic populations have to be calibrated.575

The proposed reduction scheme is especially suitable for dynamical mod-576

els of metabolic and biochemical networks, in which a large number of chem-577

ical reactions interact with similar non-linear kinetics. In these systems,578

indeed, the connectivity properties of the network usually prime over the579

precise description of the individual rate laws [40]. The presence of satu-580

rating kinetic functions (like the classical Michaelis-Menten), in particular,581

allows the simpli�cation of the rate function depending on the substrate582

range whereas the presence of redundant or opposite reactions opens the583

way to structural simpli�cation of the system. The extension of these reduc-584

tion steps to another kind of models is less straightforward. Crop models for585

instance can involve a large variety of process kinetics, one for each described586

physiological process. The complexity of the cellular network is replaced by587

the interaction of a comparatively small number of processes but described588

by complicated, ad-hoc kinetic functions that can involve several model com-589

ponents as well as external environmental variables (temperature, humidity,590

light). The simpli�cation of individual rate laws is still possible but it in-591

volves case-by-case study.592

Although the application of speci�c reduction methods is tailored to593

model structure, the proposed evaluation strategy is pretty generic and easily594

adaptable to a large range of biological models. The main objective of this595

work was to provide a method to build a reduced model that is adapted to596

the application to a large panel of genotypes. In this sense, we do not look597

for the best model for a given genotype but rather for the best compromise598

in terms of accuracy and e�ciency over a large genetic diversity. The ques-599

tion recalls the one of "model validation domain" i.e. the ability for a given600

model to describe data obtained in conditions di�erent from those in which601

the model itself was calibrated [41]. Here it is about selecting for a reduced602

model having a large validation domain and able to cope with changes in603

model's inputs, parameter values, and initial conditions.604
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For this aim, we proposed a criterium based on the simulation of a large605

number of virtual genotypes and the systematic comparison of the expected606

distance between the original and the reduced models. Virtual genotypes are607

built based on the variability observed in a sub-sample of the population,608

plus a basal variability, expressed as a random e�ect, to limit the bias due to609

the choice of the initial sample and to assure a minimal diversity across the610

virtual population. A few remarks are needed. First, the above method tests611

the reliability of the reduction, assuming that the original model is valid. In612

this sense, the amplitude of the basal random e�ect should be subject to an613

expert knowledge so to avoid biologically unreasonable situations, that fall614

outside the conditions of applicability of the model. Second, it is worth to615

notice that, given the virtual nature of our comparison, the reduced model616

is parameterized using parameter values that are directly derived from the617

parameters of the original model, to which it is compared. In this sense, the618

'expected NRMSE error' of the reduced model represents an upper bound of619

its actual accuracy over an experimental dataset, as parameter re-calibration620

can signi�cantly improve the performances of the reduced model on real ge-621

netic populations.622

Ultimately, the existence of a reduced model will considerably speed up623

the integration of genetic control into ecophysiological models. Currently,624

most genetic-improved ecophysiological models make use of Quantitative625

Trait loci (QTL) to describe the genetic architecture of speci�c model param-626

eters. Basically, each parameter has a speci�c distribution in the population627

of genotypes and QTL analyses can be performed for each parameter to deci-628

pher the architecture of its genetic control (QTL number and e�ects, linkage).629

However, a major drawback of this approach is the di�culty in the calibra-630

tion of the models for a large number of genotypes (due to a large number631

of parameters along with restricted number of observations) [6, 7]. Indeed,632

the statistical power of QTL analyses strongly depends on the size of the633

population and on the QTL e�ects i.e. their contribution to the variation of634

the trait they are associated with [42]. So, in order to be of interest, genetic635

parameters have to vary among genotypes and be quanti�able with relevant636

accuracy either experimentally or through numerical optimization.637

In this perspective, a reduced model with a simpler structure will allow for638

a better exploration of the parameter space and a more accurate estimation639

of parameter values. Moreover, the improved calibration time opens the640

possibility of exploring larger genetic populations so to get more robust QTLs641

estimation. Finally, it will allow to do simulations over a large number of642
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environmental conditions and/or climatic scenarios.643

This is an important step towards dealing with complex Genotype x Envi-644

ronment x Management interactions issues expected in the near future. The645

development of reliable gene-to-phenotype models will be an important lever646

to optimize farming in the future climatic conditions.647
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Appendices787

Appendix A. Model description788

Appendix A.1. Model equations789

The original model [1] was written in terms of species carbon quantities790

C(t). Here, we decided to rewrite the system as a function of species concen-791

tration xi(t), for a better readability. The quantity of carbon as a sugar i (Ci)792

depends on the concentration of i (xi) according to the following equation:793

Ci = σi xi Vj (A.1)
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where σi is the carbon concentration of sugar i and Vj is the volume of the794

intracellular compartment (cytosol or vacuol) in which species i is located.795

The carbon content σi for the di�erent sugar molecules is reported in Table796

A.1. Table A.2 speci�es variable location within the cell's compartments.797

Di�erentiation of Equation (Eq. (A.1)) leads to:798

dxi
dt

=
1

σiVj

dCi
dt
− 1

Vj
xi
dVj
dt

(A.2)

Accordingly, for variables 1, . . . , 5, 10, Ci = σixiV1 whereas Ci = σixiV2 for799

i ∈ [6, 9]. For simplicity,we assume V1
V2

= α. This leads to µ(t) = 1
V1

dV1
dt

=800

1
V2

dV2
dt
.801

802

Table A.1: Carbon content of each sugar

σ Sugar Value
σ1, σ6 Sucrose 0.421
σ3, σ8 Fructose 0.4
σ2, σ7 Sorbitol 0.39
σ4, σ9 Glucose 0.4
σ5 Hexose phosphate 0.27
σ10 Other compounds 0.44

Table A.2: Model variables and location
S1 Sucrose Cytosol
S2 Sorbitol Cytosol
S3 Fructose Cytosol
S4 Glucose Cytosol
S5 Hexose phosphate Cytosol
S6 Sucrose Vacuole
S7 Sorbitol Vacuole
S8 Fructose Vacuole
S9 Glucose Vacuole
S10 Other compounds Cytosol
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Table A.3: Reaction rates of the original and reduced models

Equations Original Model Reduced Model

Input �ows

I(t) = σf
dDW
dt

+R(t) = (σf + qg)
dDW
dt

+ qmDWQ
(T−20)

10
10

R(t) = qmDWQ
(T−20)

10
10 + qg

dDW
dt

DW = DW (t0) + w1(1− e−w2t) + w3

1+e−w4(t−w5)

u1(I) = 1
σ1V1

λλsuc(t)I(t)

λsuc(t) = p1t
tmax

where tmax corresponds to the maturation time

u2(I) = 1
σ2V1

(1− λ)I(t)

u3(I) = 1
σ3V1

λ
2
(1− λsuc(t))I(t)

Metabolism

u9(v2, x1) = v2(t)
p5+x1

x1(t) u9(x1) = v2
p5
x1(t) = r1x1(t)

u10(x1) = v3
p21+x1

x1(t) u10(x1) = v3
p21
x1(t) = r2x1(t)

u11(v4, x2) = v4(t)
p22+x2

x2(t) u11(x2) = v4
p22
x2 = r3x2(t)

u12(v5, x2) = v5(t)
p13+x2

x2(t) u12(x2) = v5
p13
x2(t) = r4x2(t)

u13(x6, x8, x9) = v1
(1+

x8+x9
p2

)p23+x6
x6(t) u13(x6) = r5x6(t)

u14(v6, x3) = v6(t)
p3+x3

x3(t) u14(x3) = v6
p3
x3(t) = r6x3(t)

u15(v7, x4) = v7(t)
p4+x4

x4(t) u15(v7, x4) = v7(t)
p4
x4(t)

u16(x5) = p7x5(t) u16(x5) = p7x5(t)

u17(x5) = p6x5(t) u17(x5) = p6x5(t)

u18(R) = R(t) u18(R) = R(t)

Transport processes

u4(S, x1) = p8x1(t)S(t) u4(S, x1) = p8x1(t)S(t)

u5(S, x3, x4) = p11
p19+x3+x4

x4(t)S(t) u5 = 0

u6(S, x4, x9) = (x9 − x4)p10S(t) u6(S, x4, x9) = (x9 − x4)p10S(t)

u7(S, x3, x4) = p12
p20+x3+x4

x3(t)S(t) u7 = 0

u8(S, x3, x8) = (x8 − x3)p9S(t) u8(S, x3, x8) = (x8 − x3)p9S(t)

u19(S, x2, x7) = p14(x7 − x2)S(t) u19(S, x2, x7) = p14(x7 − x2)S(t)

The original model by Desnoues et al. [1] was composed by a network803
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of 19 reactions and one input function I(t). The latter described the carbon804

supply from the mother plant to the fruit and it was estimated as the sum805

of the carbon used for fruit dry mass (DW ) increase and the carbon lost by806

respiration (R(t)). Two parameters λ and λsuc described the fraction of the807

input �ow that is converted into the di�erent forms of sugars. Fruit respira-808

tion was computed following the growth-maintenance paradigm, as described809

in [1].810

Reaction rates are reported in Table A.3. Enzymatic reactions were generally811

described using an irreversible Michaelis-Menten kinetics, with experimentally-812

measured capacities vi(t). Transport processes between cytosol and vacuole813

were assumed proportional to the vacuole surface (hypothesis of constant814

density of transporters) computed from vacuole fresh mass (proxy of the vol-815

ume) supposing the vacuole as a sphere of surface S(t) = (4π)
1
3 (V2)

2
3 (see [1]816

for more information). Both active and passive transport mechanisms were817

considered for fructose and glucose.818

Model equations are reported in Table A.4, for both the original and the819

reduced model.820
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Table A.4: System of original and reduced models

System of original model System of reduced model
dx1
dt

= u1 + σ5
σ1
u16 − u10 − u4 − µ(t)x1

dx2
dt

= u2 − u11 − u12 + 1
σ2V1

u19 − µ(t)x2

dx3
dt

= u3 + 1
σ3V1

u8 + 1
2
σ1
σ3
u9 + 1

2
σ1
σ3
u10 + σ2

σ3
u11 − u7 − u14 − µ(t)x3

dx3
dt

= u3 + 1
σ3V1

u8 + 1
2
σ1
σ3
u9 + 1

2
σ1
σ3
u10 + σ2

σ3
u11 − u14 − µ(t)x3

dx4
dt

= u3 + 1
σ4V1

u6 + 1
2
σ1
σ4
u10 + σ2

σ4
u12 − u5 − u15 − µ(t)x4

dx4
dt

= u3 + 1
σ4V1

u6 + 1
2
σ1
σ4
u10 + σ2

σ4
u12 − u15 − µ(t)x4

dx5
dt

= 1
2
σ1
σ5
u9 + σ3

σ5
u14 + σ4

σ5
u15 − u17 − u16 − 1

σ5V1
u18 − µ(t)x5 x5 = 1

p6+p7+µ(t)
(1
2
σ1
σ5
u9 + σ3

σ5
u14 + σ4

σ5
u15 − 1

σ5V1
u18)

dx6
dt

= αu4 − u13 − µ(t)x6

dx7
dt

= − 1
σ7V2

u19 − µ(t)x7

dx8
dt

= αu7 + 1
2
σ6
σ8
u13 − 1

σ8V2
u8 − µ(t)x8

dx8
dt

= 1
2
σ6
σ8
u13 − 1

σ8V2
u8 − µ(t)x8

dx9
dt

= αu5 + 1
2
σ6
σ9
u13 − 1

σ9V2
u6 − µ(t)x9

dx9
dt

= 1
2
σ6
σ9
u13 − 1

σ9V2
u6 − µ(t)x9

dx10
dt

= σ5
σ10
u17 − µ(t)x10
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Appendix A.2. Model parameterization and initialization821

A total of 23 parameters are needed to fully de�ne the reaction rates of822

Table A.3. Following [1], 9 of these parameters were �xed based on published823

data, which were obtained from research studies of peach or fruit. The re-824

maining 14 parameters were estimated numerically, as described in section825

5.2. In order to compare model and data, sugar concentrations at the fruit826

level have to be computed from model variables, describing the metabolite827

concentration within intra-cellular compartments. Assuming a constant pro-828

portion of vacuolar space in fruit cells, the concentration of each sugar j829

(sucrose, glucose, fructose, and sorbitol) at the fruit level is given by:830

E(Xj) =Mp(xi) = xvaci

1

α + 1
+ xcyti

α

α + 1
(A.3)

where xvaci and xcyti are respectively the variables located in the vacuole (i ∈831

[6, 9]) and cytosol (i ∈ [1, 5]) (see Table A.2) and α =
V1
V2

is the intra-cellular832

volume ratio. The value of α was estimated by cytological analysis to 0.08 (833

see [1] for more information). Fruit fresh mass was assumed as a proxy for834

total volume V1 + V2.835

For each genotype k, initial conditions x(k)0 were set using the concentra-
tions X(k)(t0) of sucrose, glucose, fructose, sorbitol, and hexose phosphates,
measured at the fruit level at the �rst stage of development. The conversion
between total and intra-cellular metabolite concentrations was performed
based on metabolite localization at maturity. Accordingly, 98% of fructose,
glucose, sucrose content and 90% of sorbitol content were assumed to be lo-
cated in the vacuole, whereas the hexose phosphates were restricted to the
cytosol. Accordingly, for sucrose, fructose, and glucose:

cytosol : x
(k)
i (t0) = 0.02X(k)(t0)

(1 + α)

α
i ∈ {1, 3, 4}

vacuole : x
(k)
i (t0) = 0.98X(k)(t0) (1 + α) i ∈ {6, 8, 9}

for sorbitol,

cytosol : x
(k)
i (t0) = 0.10X(k)(t0)

(1 + α)

α
i = 2

vacuole : x
(k)
i (t0) = 0.90X(k)(t0) (1 + α) i = 7
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and for the hexoses phosphates

cytosol : x
(k)
i = X(k)(t0)

(1 + α)

α
i = 10
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Table A.5: Table of original and reduced models parameter description
pi Parameter Corresponding model Description Reference Value Unit

p1 λSuc original and reduced sucrose proportion hydrolyzed in the apoplasm Estimated 0-1

p8 TactifSuc original and reduced coe�cicent of sucrose transport (active import) from cytosol to vacuole Estimated 0-400 mg gFW−1day−1

p10 TpassifGlu
reduced

coe�cient of glucose passive transport between cytosol and vacuole and in the opposite direction
Section. 3.1 112.1559

mg gFW−1day−1
original Estimated 0-150

p9 TpassifFru original and reduced coe�cient of fructose passive transport between cytosol and vacuole and in the opposite direction Estimated 0-150 mg gFW−1day−1

r1 = v2
p5

Rsusy = Vsusy
Ksusy

reduced coe�cient of the transfer function between sucrose and (fructose + hexoses phosphate) under action of sucrose synthase (susy) enzyme Section. 3.2.2 1.8809 day−1

r2 = v3
p21

Rni = Vni

Kni
reduced coe�cient of the transfer function between sucrose and (glucose +fructose) under action of neutral invertase (ni) enzyme Section. 3.2.2 95.5875 day−1

r3 = v4
p22

Rsdh = Vsdh
Ksdh

reduced coe�cient of the transfer function between sorbitol and fructose under action of sorbitol dehydrogenase (sdh) enzyme Section. 3.2.2 7.1592 day−1

r4 = v5
p13

Rso = Vso
Kso

reduced coe�cient of the transfer function between sorbitol and glucose under action of sorbitol oxydase (so) enzyme Estimated 0-10 day−1

r5 = v1
p23

Rai = Vai
Kai

reduced coe�cient of the transfer function between sucrose and (glucose +fructose) under action of acid invertase (ai) enzyme Estimated 0-1 day−1

p2 KiAI original inhibitor constant of acid invertase Estimated 0-10 mg gFW−1

r6 = v6
p3

Rfk =
Vfk
Kfk

reduced coe�cient of the transfer function between fructose and hexoses phosphate under action of fructokinase (fk) enzyme Estimated 0-5000 day−1

v7 V hk(t) reduced hexokinase activity (hk) to transfer glucose to hexoses phosphate Section. 3.2.1 86.2− 2.3t+ 2e−2t2 − 8.3e−5t3 mg gFW−1day−1

p4 Khk original and reduced hexokinase a�nity Estimated 1-300 mg gFW−1

p7 ReSyntSuc original and reduced coe�cient of the transfer function between hexoses phosphate and sucrose Estimated 0-300 day−1

p6 OthComp original and reduced coe�cient of the transfer function between hexoses phosphate and other compounds Estimated 450-1500 day−1

p14 TpassifSor
reduced

coe�cient of sorbitol passive transport between cytosol and vacuole
Section. 3.1 4.1305

mg gFW−1day−1
original Estimated 0-150

σf PropCdw original and reduced carbon concentration of the mesocarp [43] 0.44 gC gDW−1

p17 qg original and reduced growth respiration coe�cient [43] 0.084 gC gDW−1

p18 qm original and reduced maintenance respiration coe�cient [43] 2.76e-4 gC gDW−1day−1

p16 Q10 original and reduced temperature ratio of maintenance respiration [43] 1.9

p15 λ original and reduced sucrose sap proportion [1] 0.65

p11 V mtactifFru original fructose active import (activity) Estimated 0-150 mg gFW−1day−1

p12 V mtactifGlu original Glucose active import (activity) Estimated 0-150 mg gFW−1day−1

p19 KmtactifGlu original Glucose active import (a�nity) [44] 0.054 mg gFW−1

p20 KmtactifFru original fructose active import (a�nity) [44] 0.288 mg gFW−1
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Appendix B. Multi-variate sensitivity analysis836

Appendix B.1. Multi-variate sensitivity analysis837

Figure B.1: PCA-based sensitivity analysis of the sugar model. Columns: principal com-
ponents. Top row: correlation coe�cients (y-axis) between the principal component and
the output of each sugar during fruit development (DAB, days after bloom on the x-axis).
Bottom row: �rst order sensitivity indices (dark bars) and total sensitivity indices (pale
bars).

Multivariate sensitivity [30] was used to identify the in�uence of each838

parameter on the dynamic output x(t) during fruit development. Where839

x(t) is the sugar concentration (sucrose, glucose, fructose and glucose) and840

t is the independent time variable for 20 days after bloom (t = (V 1 =841
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min(DAB), V 2 = max(DAB)/2 + 2, . . . , V 19 = max(DAB)/2 + 19, V 20 =842

max(DAB))). Results of the principal components and sensitivity principal843

indices are presented in Fig. B.1. For sucrose, glucose and fructose, the �rst844

two components explained 96% of the total inertia of the simulated sugar845

dynamics. For sorbitol, the �rst three components explained 97%. The �rst846

component was positively correlated with all time-points. Correlation val-847

ues in Fig. B.1 show that the �rst principal component corresponds to the848

average concentration of sugars (sucrose, glucose, fructose and sorbitol) pro-849

duced during the whole fruit development. The second principal component850

was positively correlated with sugar concentration at stage 1 and poorly or851

slightly negatively correlated with simulated sugar during the second half852

of fruit development. Thus, the second principal component corresponds to853

the di�erence in sugar initialization values, that strongly depends on the854

genotype factor. For sorbitol, the third principal component accounts for a855

much smaller part of inertia, associated with the di�erence between the sor-856

bitol produced in the middle of fruit development and the sorbitol produced857

both very early and late. It was sensitive to the set of genotypes.858
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Figure B.2: Generalized sensitivity indices (GSI) for the �rst ten sensitive parameters
(pi) and ten genotypes (the training set) on four outputs (Sucrose, Sorbitol, Glucose, and
Fructose) of the sugar model. The main sensitivity indices are in dark bars and interaction
ones are in grey bars.

The generalized sensitivity indices (GSI) shown in Fig. B.2 gives a com-859

mon ranking of model parameters according to their in�uence on the four out-860

put sugars (Sucrose, Sorbitol, Glucose and Fructose), for all tested genotypes.861

Parameter p1 related to the action of cell-wall invertase in fruit apoplasm is862

the most important parameter, for its e�ect on both sucrose (rank 1) and863

glucose (rank 3) dynamics. The activities of Fructokinase (p3) and Hexok-864

inase (p4) are the most sensitive parameters for fructose and glucose con-865

centrations, respectively, whereas the sorbitol oxydase a�nity (p13) and the866

proportion of sucrose in the plant sap (p15) a�ect sorbitol content in the fruit.867
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Interestingly, the genotype factor is ranked only third to �fth, depending on868

the sugar, meaning that it does not a�ect parameters' sensitivity as much as869

expected. A closer look at the results shows that the choice of the genotype870

essentially a�ects the second principal component, via the de�nition of the871

initial conditions of the model (see the supplemental information Fig. B.1).872

Appendix C. Virtual experiment873

In order to evaluate the reliability of the proposed simpli�cations over a874

larger diversity, a progeny of virtual genotypes was randomly created based875

on a careful recombination, with noise, of the original 10 dynamics. This876

included changes in parameters values, initial conditions and input functions.877

We used the results from the principal component analysis (PCA) per-878

formed on growth rate and growth duration for the whole progeny of 106879

genotypes to verify the distribution of virtual genotypes. To this aim, growth880

rates and durations of the 20 000 virtual genotypes were projected on the881

PCA plan de�ned by the previous analysis. As shown in Fig. C.3, the virtual882

genotypes provide a good representation of the diversity in growth rate and883

growth duration observed in the real progeny.884
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Figure C.3: Principal component analysis (PCA) for the whole progeny of 106 genotypes (grey) and 500, out of 20000, virtual
genotypes (black). Represents the projection on the Dim1 and Dim2 of the growth duration and growth rate obtained with
curves growth.
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Appendix D. Time-scale analysis and QSSA885

Timescale-based approaches and quasi-steady-state approximation [17]886

were applied to reduce the number of ODEs of the model and to obtain887

the �nal reduced model. The predicted concentrations of sugars in both in-888

tracellular compartments were analyzed. A fast transient dynamics of the889

concentration of the hexose phosphate (x5), followed by a slow one, was890

observable in the numerical simulations of the original and intermediate re-891

duced model (Fig. D.4. Together with the analysis of the Jacobian matrix,892

this observation led to the assumption of x5 as a fast variable of the system.893

Quasi-steady-state approximation on x5, indeed, strongly reduced the fast894

transient dynamics in the �nal reduced model, for most genotypes. Notice895

that a few fast modes (already pointed out by the analysis of the Jacobian896

matrix) may nonetheless remain in the system. Their elimination would re-897

quire a linear combination of the original variables, which is incompatible898

with our objective to preserve the biological interpretation of the model. We899

therefore decided not to push the simpli�cation of the model further.900
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Figure D.4: Evolution of the concentration (mggFW−1) of x5 : Hexose Phosphate during
fruit development (DAB, days after bloom) for ten genotypes for the original, intermediate
reduced and �nal models.
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Appendix D.1. Results of quasi-steady-state approximation applied on the901

intermediate reduced model for the 20 000 virtual genotypes902

Figure D.5: Normalized Root Mean Square Errors Ji, i ∈ {1, . . . , 10} between the inter-
mediate and reduced model after application of the QSSA to x5. The boxplot shows the
variability of Ji over the virtual genotypes

We compared the intermediate reduced model with its QSS approxima-903

tion by calculating the Normalized Root Mean Square Error (Ji) on the 20904

000 virtual genotypes. All Ji was very low, less than 0.045, over the whole905

dynamics for all variables (Fig. D.5).906
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Table D.6: NRMSE between model simulation and experimental data. Calculated values
of the normalized root mean squared error (NRMSE) are presented for each genotype, the
four sugars separately.

Genotype Phenotype Year Sucrose Sorbitol Fructose Glucose Mean

T
ra
in
ig

se
t

E1 Standard 2012 0.09 0.14 0.16 0.26 0.16
E33 Standard 2012 0.04 0.19 0.27 0.17 0.16
E43 Standard 2012 0.07 0.11 0.24 0.16 0.14
F111 Standard 2012 0.13 0.13 0.21 0.23 0.17
C227 Standard 2011 0.07 0.28 0.16 0.13 0.16
E22 Low 2012 0.11 0.09 0.21 0.18 0.14
F106 Low 2012 0.07 0.7 0.14 0.15 0.26
F146 Low 2012 0.05 0.14 0.02 0.17 0.10
H191 Low 2012 0.07 0.15 0.18 0.16 0.14
C216 Low 2011 0.08 0.26 0.25 0.11 0.17

V
al
id
at
io
n
se
t

H163 Standard 2012 0.10 0.35 0.18 0.19 0.20
F107 Standard 2012 0.11 0.11 0.24 0.25 0.17
E23 Standard 2012 0.15 0.30 0.10 0.17 0.18
E17 Standard 2012 0.14 0.37 0.19 0.05 0.18
E21 Standard 2012 0.13 0.21 0.16 0.24 0.18
E41 Low 2012 0.08 0.35 0.35 0.24 0.25
E18 Low 2012 0.13 0.26 0.26 0.09 0.18
F113 Low 2012 0.12 0.32 0.35 0.20 0.24
F90 Low 2012 0.06 0.47 0.26 0.13 0.23
C243 Low 2012 0.18 0.49 0.24 0.09 0.25
C199 Low 2012 0.22 0.46 0.25 0.19 0.28
C207 Low 2012 0.19 0.28 0.23 0.24 0.23
E36 Low 2012 0.09 0.13 0.13 0.16 0.12
E48 Low 2012 0.07 0.41 0.14 0.14 0.19
F101 Low 2012 0.15 0.43 0.20 0.05 0.20
F109 Low 2012 0.07 0.31 0.27 0.24 0.22
F127 Low 2012 0.09 0.17 0.22 0.10 0.14
F144 Low 2012 0.19 0.11 0.24 0.22 0.19
F141 Low 2012 0.14 0.22 0.36 0.16 0.22
F86 Low 2012 0.06 0.13 0.30 0.32 0.20
C232 Standard 2012 0.05 0.30 0.25 0.13 0.18
E5 Standard 2012 0.22 0.07 0.12 0.24 0.16
E19 Standard 2012 0.05 0.14 0.24 0.03 0.11
E20 Standard 2012 0.19 0.17 0.07 0.18 0.11
E26 Standard 2012 0.05 0.20 0.18 0.38 0.20
E34 Standard 2012 0.22 0.43 0.20 0.15 0.25
E35 Standard 2012 0.11 0.27 0.19 0.07 0.16
E37 Standard 2012 0.24 0.24 0.13 0.26 0.21
F83 Standard 2012 0.09 0.19 0.06 0.27 0.15
F115 Standard 2012 0.03 0.20 0.10 0.07 0.10
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The NRMSE can de�ned as follows:907

NRMSE(p̃(k)) =
4∑
i=1

Ji(p̃
(k))

with908

Ji(p̃
(k)) =

√
1
NM

∑NM

j=1(x̃i(tj, p̃
(k))−X(k)

i (tj))2

maxj(X
(k)
i (tj))−minj(X(k)

i (tj))
(D.1)

where NM is the number of observations, x̃(t, p̃(k)) are the concentrations909

predicted by the model and X(k)t(t) are the experimental data and i is the910

sugar index.911
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