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Abstract: In a bivariate setting, we consider the problem of detecting
a sparse contamination or mixture component, where the effect manifests
itself as a positive dependence between the variables, which are otherwise
independent in the main component. We first look at this problem in the
context of a normal mixture model. In essence, the situation reduces to a
univariate setting where the effect is a decrease in variance. In particular,
a higher criticism test based on the pairwise differences is shown to achieve
the detection boundary defined by the (oracle) likelihood ratio test. We
then turn to a Gaussian copula model where the marginal distributions
are unknown. Standard invariance considerations lead us to consider rank
tests. In fact, a higher criticism test based on the pairwise rank differences
achieves the detection boundary in the normal mixture model, although
not in the very sparse regime. We do not know of any rank test that has
any power in that regime.
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1. Introduction

The detection of rare effects has been an important problem for years in settings,
and may be particularly relevant today, for example, with the search for person-
alized care in the health industry, where a small fraction of a population may
respond particularly well, or particularly poorly, to some given treatment [20].

Following a theoretical investigation initiated in large part by Ingster [16] and
broadened by Donoho and Jin [10], we are interested in studying two-component
mixture models, also known as contamination models, in various asymptotic
regimes defined by how the small mixture weight converges to zero. Most of the
existing work in the setting of univariate data has focused on models where the
contamination manifests itself as a shift in mean [12, 11, 14, 7, 19] with a few
exceptions where the effect is a change in variance [1], or a change in both mean
and variance [6].

In the present paper, we are interested in bivariate data, instead, and more
specifically in a situation where the effect felt in the dependence between the two
variables being measured. This setting has been recently considered in the liter-
ature in the context of assessing the reproducibility of studies. For example, [18]
aims to identify significant features from separate studies using an expectation-
maximization (EM) algorithm. They applied a copula mixture model and as-
sumed that changes in the mean and covariance matrix differentiate the contam-
inated component from the null component. [23] studies another model where
variables from the contamination are stochastically larger marginally. In both
models, the marginal distributions have some non-null effects. Similar settings
have been considered within a multiple testing framework [5, 22].

While existing work has focused on models motivated by questions of repro-
ducibility, in the present work we come back to basics and directly address the
problem of detecting a bivariate mixture with a component where the variables
are independent and a component where the variables are positively dependent.

1.1. Gaussian mixture model

Ingster [16] and Donoho and Jin [10] started with a mixture of Gaussians, and
we do the same, and in our setting, this means we consider the following mixture
model

(X,Y ) ∼ (1− ε)N (0, I) + εN (0,Σρ), Σρ :=

(
1 ρ
ρ 1

)
, (1)

where ε ∈ [0, 1/2) is the contamination proportion and 0 ≤ ρ ≤ 1 is the correla-
tion between the two variables under contamination. We consider the following
hypothesis testing problem: based on (X1, Y1), . . . , (Xn, Yn) drawn iid from (1),
decide

H0 : ε = 0 versus H1 : ε > 0, ρ > 0. (2)
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Note that under the null hypothesis, (X,Y ) is from the bivariate standard
normal. Under the alternative, X and Y remain standard normal marginally.
Following the literature on the detection of sparse mixtures [16, 10], we are most
interested in a situation, asymptotic as n → ∞, where ε = εn → 0, and the
central question is how large ρ = ρn needs to be in order to reliability distinguish
these hypotheses.

The formulation (1) suggests that the alternative hypothesis is composite, but
if we assume that (ε, ρ) are known under the alternative, then the likelihood ratio
test (LRT) is optimal by Neyman–Pearson lemma. We start with characterizing
the behavior of the LRT, which provides a benchmark. We then study some other
testing procedures that do not require knowledge of the model parameters:1

• The covariance test rejects for large values of
∑

i XiYi, and coincides with
Rao’s score test in the present context. This is the classical test for inde-
pendence, specifically designed for the case where ε = 1 and ρ > 0 under
the alternative. We shall see that it is suboptimal in some regimes.

• The extremes test rejects for small values of mini |Xi − Yi|. This test ex-
ploits the fact that, because ρ is assumed positive, the variables in the
contaminated component are closer to each other than in the null compo-
nent.

• The higher criticism test was suggested by John Tukey and deployed by
[10] for the testing of sparse mixtures. We propose a version of that test
based on the pairwise differences, Ui := (Xi − Yi)/

√
2. In detail, the test

rejects for large values of

sup
u≥0

√
n (F̂ (u)−Ψ(u))√
Ψ(u)(1−Ψ(u))

, (3)

where Ψ(u) := 2Φ(u) − 1, with Φ denotes the standard normal distribu-
tion function, and F̂ (u) := 1

n

∑n
i=1 I{|Ui| ≤ u}, the empirical distribution

function of |U1|, . . . , |Un|.
As is common practice in this line of work [16, 10], under H1 we set

ε = n−β , β ∈ (0, 1) fixed. (4)

The setting where β ≤ 1/2 is often called the dense regime and the setting where
β > 1/2 is often called the sparse regime. Our analysis reveals the following:

(a) Dense regime. The dense regime is most interesting when ρ → 0. In that
case, we find that the covariance test and the higher criticism test match
the asymptotic performance of the likelihood ratio test to first-order, while
the extremes test has no power.

(b) Sparse regime. The sparse regime is most interesting when ρ → 1. In that
case, we find that the higher criticism test still performs as well as the
likelihood ratio test to first order, while the covariance test is powerless,
and the extremes test is suboptimal.

1Such procedures are said to be adaptive.
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1.2. Gaussian mixture copula model

From a practical point of view, the assumption that both X and Y are normally
distributed is quite stringent. Hence, we would like to know if there are nonpara-
metric procedures that do not require such a condition but can still achieve the
same performance as the likelihood ratio test. In the univariate setting where
the effect arises as a shift in mean, this was investigated in [2]. In the bivariate
setting, in a model for reproducibility, [23] proposes a nonparametric test based
on a weighted version of Hoeffding’s test for independence.

Here, instead of model (1), we suppose (X,Y ) follows a Gaussian mixture cop-
ula model (GMCM) [4], meaning that there is a latent random vector (Z1, Z2)
such that

F (X) = Φ(Z1), G(Y ) = Φ(Z2), (5)

(Z1, Z2) ∼ (1− ε)N (0, I) + εN (0,Σρ), Σρ :=

(
1 ρ
ρ 1

)
,

where F and G are unknown distribution functions on the real line, and Φ is the
standard normal distribution function, while ε ∈ [0, 1/2) is the contamination
proportion and 0 ≤ ρ ≤ 1 is the correlation between Z1 and Z2 in the contami-
nated component, as before in model (1). [18] also uses a copula mixture model,
but they placed emphasis on the mean while we focus on the dependence.

We still consider the testing problem (2), but now in the context of Model
(5). The setting is nonparametric in that both F and G are unknown. Model
(5) is crafted in such a way that the marginal distributions of X and Y con-
tain absolutely no information that is pertinent to the testing problem under
consideration.

The model is also attractive because of an invariance under all increasing
marginal transformations of the variables. This is the same invariance that leads
to considering rank based methods such as the Spearman correlation test [17,
Chp. 6]. In fact, we analyze the Spearman correlation test, which is the nonpara-
metric analog to the covariance test, showing that it is first-order asymptotically
optimal in the dense regime. We also propose and analyze a nonparametric ver-
sion of the higher criticism based on ranks which we show is first-order asymp-
totically optimal in the moderately sparse regime where 1/2 < β < 3/4. In the
very sparse regime, where β > 3/4, we do not know of any rank-based test that
has any power.

2. Gaussian mixture model

In this section, we focus on the Gaussian mixture model (1). We start by deriving
a lower bound on the performance of the likelihood ratio test, which provides a
benchmark for the other (adaptive) tests, which we subsequently analyze.

We distinguish between the dense and sparse regimes:

dense regime ρ = n−γ , γ > 0 fixed; (6)
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sparse regime ρ = 1− n−γ , γ > 0 fixed. (7)

We say that a testing procedure is asymptotically powerful (resp. powerless)
if the sum of its probabilities of Type I and Type II errors (its risk) has limit 0
(resp. limit inferior at least 1) in the large sample asymptote.

2.1. The likelihood ratio test

Theorem 1. Consider the testing problem (2) with ε parameterized as in (4).
In the dense regime, with ρ parameterized as in (6), the likelihood ratio test
is asymptotically powerless when γ > 1/2 − β. In the sparse regime, with ρ
parameterized as in (7), the likelihood ratio test is asymptotically powerless when
γ < 4(β − 1/2).

This only provides a lower bound on what can be achieved, but it will turn
out that to be sharp once we establish the performance of the higher criticism
test in Proposition 2 below.

Proof. The proof techniques are standard and already present in [12, 16], and
many of the subsequent works.

Defining U := (X − Y )/
√
2 and V := (X + Y )/

√
2, the model (1) is equiva-

lently expressed in terms of (U, V ), which has distribution

(U, V ) ∼ (1− ε)N (0, I) + εN (0,Δρ), Δρ := diag(1− ρ, 1 + ρ). (8)

Note that U and V are independent only conditional on knowing what distri-
bution they were sampled from. In terms of the (U, V )’s, the likelihood ratio
is

L :=

n∏
i=1

Li,

where Li is the likelihood ratio for observation (Ui, Vi), which in the present
case takes the following expression

Li =

1−ε
2π exp(−1

2U
2
i − 1

2V
2
i ) +

ε

2π
√

1−ρ2
exp(− 1

2(1−ρ)U
2
i − 1

2(1+ρ)V
2
i )

1
2π exp(−1

2U
2
i − 1

2V
2
i )

= 1− ε+ ε(1− ρ2)−1/2 exp(− ρ
2(1−ρ)U

2
i + ρ

2(1+ρ)V
2
i ).

The risk of the likelihood ratio test is equal to [17, Problem 3.10]

risk(L) := 1− 1

2
E0[|L− 1|].

We show that risk(L) = 1+o(1) under each of the stated conditions. We consider
each regime in turn.
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Dense regime. It turns out that it suffices to bound the second moment. Indeed,
using the Cauchy–Schwarz inequality, we have

risk(L) ≥ 1− 1

2

√
E0[L2]− 1,

reducing the task to showing that E0[L
2] ≤ 1 + o(1). We have

E0[L
2] =

n∏
i=1

E0[L
2
i ] = (E0[L

2
1])

n

where

E0[L
2
1] = E0

[(
1− ε+ ε(1− ρ2)−1/2 exp(− ρ

2(1−ρ)U
2
1 + ρ

2(1+ρ)V
2
1 )

)2]
= (1− ε)2 + 2(1− ε)ε

+ ε2(1− ρ2)−1
E0

[
exp(− ρ

(1−ρ)U
2
1 )
]
E0

[
exp( ρ

(1+ρ)V
2
1 )

]
= 1− ε2 + ε2(1− ρ2)−1

E0

[
exp(− ρ

(1−ρ)U
2
1 )
]
E0

[
exp( ρ

(1+ρ)V
2
1 )

]
.

For the third term, we have

E0

[
exp(− ρ

(1−ρ)U
2
1 )
]
=

1√
2π

∫ ∞

−∞
e−

ρ
1−ρu

2− 1
2u

2

du =

√
1− ρ

1 + ρ
,

and

E0

[
exp( ρ

(1+ρ)V
2
1 )

]
=

1√
2π

∫ ∞

−∞
e

ρ
1+ρ v

2− 1
2 v

2

dv =

√
1 + ρ

1− ρ
.

Hence, we have
E0[L

2
1] = 1 + ε2ρ2/(1− ρ2),

and, therefore,

E0[L
2] =

[
1 + ε2ρ2/(1− ρ2)

]n ≤ exp
[
nε2ρ2/(1− ρ2)

]
,

so that E0[L
2] ≤ 1 + o(1) when

nε2ρ2 = o(1),

since ρ is assumed to be bounded away from 1. Under the specified parameter-
ization, this happens exactly when γ > 1/2− β.

Sparse regime. It turns out that simply bounding the second moment, as we
did above, does not suffice. Instead, we truncate the likelihood and study the
behavior of its first two moments. Define the indicator variable Di = I{|Vi| ≤√
2 log n} and the corresponding truncated likelihood ratio

L̄ =
n∏

i=1

L̄i, L̄i := LiDi.
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Using the triangle inequality, the fact that L̄ ≤ L, and the Cauchy–Schwarz
inequality, we have the following upper bound:

E0 |L− 1| ≤ E0 |L̄− 1|+ E0(L− L̄)

≤
[
E0[L̄

2]− 1 + 2(1− E0[L̄])
]1/2

+ (1− E0[L̄]) ,

so that risk(L) = 1 + o(1) when E0[L̄
2] ≤ 1 + o(1) and E0[L̄] ≥ 1− o(1).

For the first moment, we have

E0[L̄] =

n∏
i=1

E0[L̄i] = (E0[L̄1])
n

where, using the independence of U1 and V1, and taking the expectation with
respect to U1 first,

E0[L̄1] = E0

[(
1− ε+ ε(1 + ρ)−1/2 exp( ρ

2(1+ρ)V
2
1 )

)
D1

]
= (1− ε)Ψ(

√
2 logn) + εΨ(

√
2 log n/

√
1 + ρ)

= (1− ε)(1−O(n−1/
√
logn)) + ε(1−O(n−1/(1+ρ)/

√
logn))

= 1− o(1/n)− o(εn−1/(1+ρ)),

where, for t ≥ 0,

Ψ(t) = P(|N (0, 1)| ≤ t) = 2Φ(t)− 1 =

∫ t

−t

e−s2/2

√
2π

ds,

and we used the fact that 1−Ψ(t) 	 e−t2/2/t when t → ∞. Since ε = n−β with
β > 1/2 in the sparse regime, for ρ sufficiently close to 1, εn−1/(1+ρ) ≤ 1/n, in
which case E0[L̄1] ≥ 1− o(1/n). This yields

E0[L̄] ≥ (1− o(1/n))n = 1− o(1).

For the second moment, we have

E0[L̄
2] =

n∏
i=1

E0[L̄
2
i ] = E0[L̄

2
1]

n,

where

E0[L̄
2
1] = E0

[(
1− ε+ ε(1− ρ2)−1/2 exp(− ρ

2(1−ρ)U
2
1 + ρ

2(1+ρ)V
2
1 )

)2

D1

]
= (1− ε)2Ψ(

√
2 logn) + 2(1− ε)εΨ(

√
2 logn/

√
1 + ρ)

+ ε2(1− ρ2)−1
E0[exp(− ρ

(1−ρ)U
2
1 )]E0[exp(

ρ
(1+ρ)V

2
1 )D1].

The sum of first two terms is bounded from above by (1−ε)2+2(1−ε)ε = 1−ε2.
For the third term, we have

E0[exp(− ρ
(1−ρ)U

2
1 )] =

1√
2π

∫ ∞

−∞
e−

ρ
1−ρu

2− 1
2u

2

du =

√
1− ρ

1 + ρ
,
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and

E0[exp(
ρ

(1+ρ)V
2
1 )D1] =

1√
2π

∫ √
2 logn

−
√
2 logn

e
ρ

1+ρ v
2− 1

2v
2

dv ≤ 1√
2π

2
√
2 log n,

using the fact that ρ ≤ 1. Hence,

E0[L̄
2
1] ≤ 1− ε2 + ε2(1− ρ2)−1

√
1− ρ

1 + ρ

1√
2π

2
√
2 logn

≤ 1 + ε2(1− ρ)−1/2(logn)1/2,

when ρ is sufficiently close to 1. This in turn yields the following bound

E0[L̄
2] ≤

[
1 + ε2(1− ρ)−1/2(logn)1/2

]n ≤ exp
[
nε2(1− ρ)−1/2(logn)1/2

]
,

so that E0[L̄
2] ≤ 1 + o(1) when

nε2(1− ρ)−1/2(log n)1/2 = o(1).

Under the specified parameterization, this happens exactly when γ < 4β−2.

In the dense regime, with ρ parameterized as in (6), we say that a test achieves
the detection boundary if it is asymptotically powerful when γ < 1/2− β, and
in the sparse regime, with ρ parameterized as in (7), we say that a test achieves
the detection boundary if it is asymptotically powerful when γ > 4(β − 1/2).

2.2. The covariance test

Recall that the covariance test rejects for large values of Tn :=
∑n

i=1 XiYi,
calibrated under the null where X1, . . . , Xn, Y1, . . . , Yn are iid standard normal.

Proposition 1. For the testing problem (2), the covariance test achieves the
detection boundary in the dense regime, while it is asymptotically powerless in
the sparse regime.

Proof. We divide the proof into the two regimes.

Dense regime. Under H0, we have

E0(Tn) = nE0(X1Y1) = nE0(X1)E0(Y1) = 0,

Var0(Tn) = nVar0(X1Y1) = nE0(X
2
1 )E0(Y

2
1 ) = n,

so that, by Chebyshev’s inequality,

P0(|Tn| ≥ an
√
n) → 0,

for any sequence (an) diverging to infinity.
Under H1, we have

E1(Tn) = nE1(X1Y1) = nερ,
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Var1(Tn) = nVar1(X1Y1) = n(1 + 2ερ2 − ε2ρ2) ≤ 3n,

so that, by Chebyshev’s inequality,

P1(|Tn − nερ| ≥ an
√
n) → 0.

Thus the test with rejection region {Tn ≥ an
√
n} is asymptotically powerful

when √
nερ ≥ 2an.

If we choose an = logn, for example, and ρ is parameterized as in (6), this
happens for n large enough when γ < 1/2− β.

Sparse regime. To prove that the covariance test is asymptotically powerless
when β > 1/2, we show that, under H1, Tn converges to the same limiting
distribution as under H0.

Under H0, by the central limit theorem,

Tn√
n
⇀ N (0, 1).

Under H1 the distribution of the (Xi, Yi)’s (which remain iid) depends on n,
but the condition for applying Lyapunov’s central limit theorem are satisfied
since

E1[(XiYi − ερ)4] ≤ 8(E1[(XiYi)
4] + (ερ)4),

with (ερ)4 ≤ 1 and

E1[(XiYi)
4] ≤

[
E1(X

8
i )E1(Y

8
i )

]1/2
= E(Z8) = const,

where Z ∼ N (0, 1) and the inequality is Cauchy–Schwarz’s, while

Var1(XiYi) = 1 + 2ερ2 − ε2ρ2 ≥ 1,

so that the test statistic still converges weakly to a normal distribution,

Tn − E1(Tn)√
Var1(Tn)

⇀ N (0, 1).

In the present regime, we have

E1(Tn) = nερ, Var1(Tn) = n(1 + 2ερ2 − ε2ρ2),

so that E1(Tn)/
√

Var1(Tn) → 0 and Var1(Tn) ∼ n, and thus we conclude by
Slutsky’s theorem that Tn/

√
n ⇀ N (0, 1).

Remark 1. There are good reasons to consider the covariance test in this specific
form since the means and variances are known. It is worth pointing out that the
Pearson correlation test, which is more standard in practice since it does not
require knowledge of the means or variances, has the same asymptotic power
properties.
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2.3. The higher criticism test and the extremes test

Define Ui = (Xi − Yi)/
√
2, and note that

U1, . . . , Un
iid∼ (1− ε)N (0, 1) + εN (0, 1− ρ).

Seen through the Ui’s, the problem becomes that of detecting a sparse contam-
ination where the effect is in the variance. We recently studied this problem in
detail [1], extending previous work by Cai et al [6], who considered a setting
where the effect is both in the mean and variance. Borrowing from our prior
work, we consider a higher criticism test, already defined in (3), and an extremes
test, which rejects for small values of mini |Ui|.
Proposition 2. For the testing problem (2), the higher criticism test achieves
the detection boundary in the dense and sparse regimes.

Proof. Set σ2 = 1−ρ, which is the variance of the contaminated component. In
our prior work [1, Prop 3], we showed that the higher criticism test as defined
in (3) is asymptotically powerful when

(a) σ2 = n−γ with γ > 0 fixed such that γ > 4(β − 1/2);
(b) |σ2 − 1| = n−γ with γ > 0 fixed such that γ < 1/2− β.

This can be directly translated into the present setting, yielding the stated
result.

Proposition 3. For the testing problem (2), the extremes test is asymptotically
powerless when ρ is bounded away from 1, while when ε parameterized as in (4)
and ρ parameterized as in (7), it is asymptotically powerful when γ > 2β, and
asymptotically powerless when γ < 2β.

Proof. This is also a direct corollary from our prior work our prior work [1,
Prop. 2].

Thus the extremes test is grossly suboptimal in the dense regime, while it is
suboptimal in the sparse regime due to the fact that 2β−4(β−1/2) = 2−2β > 0.

Remark 2. The higher criticism and extremes tests are both based on the Ui’s.
This was convenient as it reduced the problem of testing for independence to
the problem of testing for a change in variance (both in a contamination model).
However, reducing the original data, meaning the (Xi, Yi)’s, to the Ui’s implies
a loss of information. Indeed, a lossless reduction would be from the (Xi, Yi)’s
to the (Ui, Vi)’s, where Vi := (Xi + Yi)/

√
2, with joint distribution given in (8).

It just turns out that ignoring the Vi’s does not lead to any loss in first-order
asymptotic power.

2.4. Numerical experiments

We performed some numerical experiments to investigate the finite sample per-
formance of the tests considered here: the likelihood ratio test, the Pearson
correlation test (instead of the covariance test from a practical point of view),
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the extremes test, the higher criticism test, and also a plug-in version of the
higher criticism test where the parameters of the bivariate normal distribution
(the two means and two variances) are estimated under the null. The sample
size n is set large to n = 106 in order to capture the large-sample behavior
of these tests. We tried four sparsity levels, setting β ∈ {0.2, 0.4, 0.6, 0.8}. The
p-values for each test are computed as follows:

(a) For the likelihood ratio test, the p-values are estimated based on 103 per-
mutations.

(b) For the higher criticism test and the plug-in higher criticism test, the
p-values are estimated based on 200 permutations.

(c) For the extremes test, we used the exact null distribution, which is available
in a closed form.

(d) For the Pearson correlation test, the p-values are from the limiting distri-
bution.

For each scenario, we repeated the process 200 times and calculated the
fraction of p-values smaller than 0.05, representing the empirical power at the
0.05 level.

The results of this experiment are reported in Figure 1 and are broadly
consistent with the theory developed earlier in this section. Though we show
that the higher criticism test is first-order comparable to the likelihood ratio
test in the dense regime, even with a large sample, its power is much lower. The
Pearson correlation test does better in that regime. The plug-in higher criticism
test has a similar performance as the higher criticism test in the dense regime,
while it loses some power in the moderately sparse regime, and is powerless in
the very sparse regime.

3. Gaussian mixture copula model

In this section we turn to the Gaussian mixture copula model introduced in
(5). The setting is thus nonparametric, since the marginal distributions are
completely unknown, and standard invariance considerations [17, Ch 6] lead us
to consider test procedures that are based on the ranks. For this, we let Ri

denote the rank of Xi among {X1, . . . , Xn}, and similarly, we let Si denote the
rank of Yi among {Y1, . . . , Yn}. (The ranks are in increasing order, say.)

Although not strictly necessary, we will assume that F and G in (5) are
strictly increasing and continuous. In that case, the ranks are invariant with
respect to transformations of the form (x, y) 
→ (p(x), q(y)) with p and q strictly
increasing on the real line. In particular, for the rank tests that follow, this allows
us to reduce their analysis under (5) to their analysis under (1).

3.1. The covariance rank test

The covariance rank test is the analog of the covariance test of Section 2.2. It
rejects for large values of Tn :=

∑
i RiSi (redefined). As is well-known, this is

equivalent to rejecting for large values of the Spearman rank correlation.
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Fig 1. Empirical power comparison with 95% error bars for the likelihood ratio test (black),
the Pearson correlation test (green), the extremes test (blue), the higher criticism test (red,
solid) and the plug-in higher criticism test (red, dashed). (a) Dense regime where β = 0.2. (b)
Dense regime where β = 0.4. (c) Sparse regime where β = 0.6 and ρ → 1. (d) Sparse regime
where β = 0.8 and ρ → 1. The horizontal line marks the level (set at 0.05) and the vertical
line marks the asymptotic detection boundary derived earlier. The sample size is n = 106 and
the power curves and error bars are based on 200 replications.

Proposition 4. For the testing problem (2) under the model (5), the covari-
ance rank test achieves the detection boundary in the dense regime, while it is
asymptotically powerless in the sparse regime.

Proof. We again divide the proof into the two regimes.

Dense regime. We start by considering the null hypothesis H0. From [13, Eq.
3.11–3.12, Ch. 11], we have

E0(Tn) = n(n+ 1)2/4 = n3/4 +O(n2),

Var0(Tn) = n2(n− 1)(n+ 1)2/144 	 n5, (9)

so that, using Chebyshev’s inequality,

P0(Tn ≥ n3/4 + ann
5/2) → 0,

for any sequence (an) diverging to infinity.
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We now turn to the alternative hypothesis H1. For convenience, we assume
that the ranks run from 0 to n − 1. This does not change the test procedure
since Tn = −1

2

∑
i(Ri − Si)

2 + const, but makes the derivations somewhat less
cumbersome. In particular, we have

Ri =

n∑
j=1

Aij , Aij := I{Xi > Xj},

Si =
n∑

j=1

Bij , Bij := I{Yi > Yj},

so that

Tn =

n∑
i=1

n∑
j=1

n∑
k=1

AijBik.

For the expectation, we have

E1(Tn) = n(n− 1)(n− 2)E1[A12B13] +O(n2)

= n3
E1[A12B13] +O(n2).

The expectation is with respect to (X1, Y1), X2, Y3 independent, with (X1, Y1)
drawn from the mixture (1), and X2 and Y3 standard normal. Let U = (X1 −
X2)/

√
2 and V = (Y1 − Y3)/

√
2, so that E1[A12B13] = P1(U > 0, V > 0).

We note that (U, V ) is bivariate normal with standard marginals. Moreover,
when (X1, Y1) comes from the main component, U and V are uncorrelated,
and therefore independent; while when (X1, Y1) comes from the contaminated
component, U and V have correlation ρ/2. Therefore,

E1[A12B13] = (1− ε)Λ(0) + εΛ(ρ/2),

where Λ(ρ) = P(U > 0, V > 0) under (U, V ) ∼ N (0,Σρ). We immediately have
Λ(0) = 1/4, and in general,2

Λ(ρ) =
1

4
+

1

2π
sin−1(ρ).

We conclude that

E1(Tn) = n3
[
1
4 + 1

2π ε sin
−1(ρ/2)

]
+O(n2)

≥ 1
4n

3 + 1
4πn

3ερ+O(n2),

using the fact that sin−1(a) ≥ a for all a ≥ 0. For the variance, we start with
the second moment

E1(T
2
n) = n(n− 1) · · · (n− 5)E1[A12B13A45B46] +O(n5)

2This identity is well-known, and not hard to prove (https://math.stackexchange.com/
questions/255368/getting-px0-y0-for-a-bivariate-distribution). It also appears, for
example, in [21, Lem. 1].

https://math.stackexchange.com/questions/255368/getting-px0-y0-for-a-bivariate-distribution
https://math.stackexchange.com/questions/255368/getting-px0-y0-for-a-bivariate-distribution
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= n6
E1[A12B13A45B46] +O(n5),

which then implies that

Var1(Tn) = n6
E1[A12B13A45B46] +O(n5)−

[
n3

E1[A12B13] +O(n2)
]2

= O(n5),

the same bound we had for Var0(Tn). Thus, by Chebyshev’s inequality, we have

P1

(
Tn ≤ 1

4n
3 + 1

4πn
3ερ− ann

5/2
)
→ 0,

for any sequence (an) diverging to infinity.

We consider the test with rejection region {Tn ≥ n3/4+ann
5/2}. Our analysis

implies that this test is asymptotically powerful when

n3ερ/4π ≥ 2ann
5/2.

If we choose an = logn, for example, and ρ is parameterized as in (6), this
happens for n large enough when γ < 1/2− β.

Sparse regime. To prove that the covariance rank test is asymptotically powerless
when β > 1/2, similarly as the covariance test, we show that, under H1, Tn

converges to the same limiting distribution as under H0. Under H0, we have
[13, Ch. 11],

Tn − ζn
τn

⇀ N (0, 1), n → ∞, (10)

where ζn := E0(Tn) and τ2n := Var0(Tn). We place ourselves under H1, and show
that (10) continues to hold. For this we use a simple coupling. We couple Tn with
a new statistic T ′

n, defined just like Tn, except that, for each pair (Xi, Yi) drawn
from the contaminated component, we replace Yi by Y ′

i ∼ N (0, 1) independent
of Xi and any other variable. Let M denote the number of pairs drawn from
the contaminated component, and note that M is random, having the binomial
distribution with parameters (n, ε). It’s not hard to show that |Tn−T ′

n| ≤ Mn2,
so that |Tn−T ′

n| = OP (n
3ε). And by construction, T ′

n has the same distribution
as Tn under H0. We use this in what follows

Tn − ζn
τn

=
T ′
n − ζn
τn

+
Tn − T ′

n

τn
,

where, on the RHS, the first term converges weakly to the standard normal
distribution, while the second term is = OP (n

3ε/τn) = oP (1), since ε = n1−β

with β > 1/2 and τn 	 n5/2 by (9). We thus conclude that (10) with an
application of Slutsky’s theorem.
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3.2. The higher criticism rank test

The analog of the higher criticism test of (3) is a higher criticism based on the
pairwise differences in ranks, Di := |Ri − Si|. To be specific, we define

HCrank = max
0≤t≤n/2

∑n
i=1 I{Di ≤ t} − nu(t)√

nu(t)(1− u(t))
,

where u(t) is the probability P0(Di ≤ t), which can be expressed in closed form
as

u(t) =
n2 − (n− t)(n− t− 1)

n2
=

n(2t+ 1)− t(t+ 1)

n2
.

Note that in this definition the denominator is only an approximation to
the standard deviation of the numerator. The standard deviation has a closed-
form expression which can be derived from a more general result of Hoeffding
[15, Th. 2], but it is cumbersome and relatively costly to compute (although
its computation is only done once for each n). Also, there is a fair amount
of flexibility in the choice of range of thresholds t considered. This particular
choice seems to work well enough. As any other rank test, it is calibrated by
permutation (or Monte Carlo if there are no ties in the data).

Theorem 2. For the testing problem (2) under the model (5), the higher criti-
cism rank test achieves the detection boundary in the dense and in the moderately
sparse regimes.

Proof. As usual, we first control the test statistic under the null, and then
analyze its behavior under the alternative.

Under the null hypothesis
We start with the situation under the null hypothesis H0, where we show

that HCrank is of order at most O(log n) based on the concentration inequality
for randomly permuted sums. Fixing critical value t, define

ai,j = I{|i− j| ≤ t}, for 1 ≤ i, j ≤ n.

Since X is independent of Y , as we are under the null, we have that

Δ(t) :=

n∑
i=1

I{Di ≤ t} (11)

has the same distribution as An :=
∑n

i=1 ai,πn(i) when πn is a uniformly dis-
tributed random permutation of [n] := {1, · · · , n}. Note that

E(An) =
1

n

n∑
i=1

n∑
j=1

ai,j =
n(2t+ 1)− t(t+ 1)

n
= nu(t). (12)

By [8, Prop. 1.1],

P(|An − E(An)| ≥ b) ≤ 2 exp

(
− b2

4E(An) + 2b

)
. (13)



Detection of sparse positive dependence 717

This implies that, for q ≥ 1,

P0

(
Δ(t) ≥ nu(t) + q

√
nu(t)(1− u(t))

)
≤ 2 exp

(
− q2nu(t)(1− u(t))

4nu(t) + 2q
√
nu(t)(1− u(t))

)

≤ 2 exp (−q/c1) ,

for some other constant c1 > 0, using the fact that 1/n ≤ u(t) ≤ 3/4 + 1/2n
when 0 ≤ t ≤ n/2, which is the range of t’s we are considering. Hence, choosing
q = 2c1 logn and using the union bound, we have

P0(HCrank ≥ q) ≤
∑

t≤n/2

P0

(
Δ(t) ≥ nu(t) + q

√
nu(t)(1− u(t))

)
≤ 2(n/2 + 1) exp (−q/c1) 	 1/n → 0.

Under the alternative hypothesis
We now consider the alternative H1, and show that HCrank � log n in prob-

ability under the stated condition. For this, it suffices to find some t = tn ≤ n/2
such that, for some q = qn � logn,

Δ(t) ≥ nu(t) + q
√

nu(t)(1− u(t)), (14)

with probability tending to 1 (under H1).
Since rank-based methods are invariant with respect to increasing transfor-

mations, in the following analysis we simply assume that F = G = Φ.

Dense regime. Define F̂ (x) = 1
n

∑n
i=1 I{Xi ≤ x} and Ĝ(y) = 1

n

∑n
i=1 I{Yi ≤ y}.

These empirical distribution functions are useful because, by definition, Ri =
nF̂ (Xi) and Si = nĜ(Yi), so that

Di/n = |Ri − Si|/n
= |F̂ (Xi)− Ĝ(Yi)|
≤ |F̂ (Xi)− Φ(Xi)|+ |Φ(Xi)− Φ(Yi)|+ |Φ(Yi)− Ĝ(Yi)|
≤ |Φ(Xi)− Φ(Yi)|︸ ︷︷ ︸

Mi

+ ‖F̂ − Φ‖∞ + ‖Ĝ− Φ‖∞︸ ︷︷ ︸
K

.

This gives

Δ(t) ≥ I{K ≤ k/n}Λ(t), Λ(t) :=
n∑

i=1

I{Mi ≤ (t− k)/n}. (15)

By the Dvoretzky–Kiefer–Wolfowitz (DKW) concentration inequality, there
is a universal constant c0 such that, for any b ≥ 0,

P(K ≥ b) ≤ c0 exp(−nb2/c0).
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We choose k = (logn)
√
n, and with that choice we have that I{K ≤ k/n} = 1−

Qn, where Qn is Bernoulli with parameter bounded by η := c0 exp(−(log n)2/c0)
(so that Qn = OP (η)).

As for the sum, the Mi are iid, and for an observation (Xi, Yi) that comes
from the null component, Xi, Yi are iid standard normal, while when it comes
from the contaminated component, Xi, Yi are still marginally standard normal
but no longer independent: Yi =

√
1− ρ2 Ỹi + ρXi, where Ỹi is independent of

Xi and also standard normal. We thus have

P1(Mi ≤ s) = (1− ε)vs(0) + εvs(ρ),

where
vs(ρ) := E[fs(Z,

√
1− ρ2Z ′ + ρZ)],

where in the expectation Z,Z ′ are iid standard normal, and fs(z, z
′) := I{|Φ(z)−

Φ(z′)| ≤ s} is bounded and measurable. Elementary calculations show that
vs(0) = 1− (1− s)2, and an application of Lemma 1 shows that vs is infinitely
differentiable, with derivative at 0 equal to E[fs(Z,Z

′)ZZ ′], and second deriva-
tive uniformly bounded over [−1/2, 1/2] by some numerical constant, say c2,
independently of s. Recalling that ρ is small in the present regime, a Taylor
development based on the above gives

vs(ρ) ≥ 1− (1− s)2 + v′s(0)ρ− c2ρ
2/2, ρ ∈ [−1/2, 1/2].

In the dense regime, remember that 0 < β < 1/2 and ρ = n−γ . We place
ourselves above the detection boundary, meaning that we fix γ < 1/2− β. Here
we choose t = n/2 (assumed to be an integer for convenience), let s = (t−k)/n =
1/2 − k/n. We note that v′s(0) is continuous in s (by dominated convergence),
and because s → 1/2 in our setting, we have

v′s(0) → v′1/2(0) = E[I{|Φ(Z)− Φ(Z ′)| ≤ 1/2}ZZ ′] =: c1 > 0.

Indeed, using the fact that

|Φ(z)− Φ(z′)| ≤ 1/2 ⇔ (Φ(z)− 1/2) ∨ 0 ≤ Φ(z′) ≤ (Φ(z) + 1/2) ∧ 1,

with Φ(z) ≤ 1/2 if and only if z ≤ 0, we have

c1 =

∫ ∞

0

∫ ∞

Φ−1(Φ(z)−1/2)

φ(z′)dz′︸ ︷︷ ︸
>0

φ(z)z︸ ︷︷ ︸
>0

dz

+

∫ 0

−∞

∫ Φ−1(Φ(z)+1/2)

−∞
φ(z′)dz′︸ ︷︷ ︸

<0

φ(z)z︸ ︷︷ ︸
<0

dz,

where the inner integrals are positive by the fact that φ is symmetric, and the
inequalities are indeed strict except when z = 0.



Detection of sparse positive dependence 719

Thus, eventually (as n → ∞),

vs(ρ) ≥ 1− (1− s)2 + (c1/2)ρ.

Thus, an application of Chebyshev’s inequality gives

Λ(n/2) ≥ n
[
(1− ε)vs(0) + εvs(ρ)

]
+OP (

√
n).

Putting everything together, we have

Δ(t)− nu(t)

= (1 +OP (η))n
[
(1− ε)vs(0) + εvs(ρ)

]
+OP (

√
n)− nu(t)

≥ n
[
1− (1− (t− k)/n)2 − u(t)

]
+ nε(c1/2)ρ+OP (nη) +OP (

√
n)

= nε(c1/2)ρ+OP ((log n)
√
n),

using the fact that η = o(1/n2). For (14) to hold it thus suffices that nερ �
(log n)

√
n, which is the case since nερ = n1−β−γ with 1− β − γ > 1/2.

Moderately sparse regime. Let I0 and I1 index the observations coming from the
null and contaminated components, respectively. We have

Δ(t) =
∑
i∈I0

I{Di ≤ t}+
∑
i∈I1

I{Di ≤ t} =: Δ0(t) + Δ1(t). (16)

We lower bound both terms on the right-hand side, starting with Δ0(t). To do
this, we consider a slightly smaller threshold, specifically t0 = (1 − ω)t with
ω = o(1) specified below, and compare Δ0(t) with Δ0(t0) :=

∑
i∈I0

I{D0
i ≤ t0},

where D0
i := |R0

i − S0
i | with R0

i denoting the rank of Xi among {Xj : j ∈ I0}
and S0

i denoting the rank of Yi among {Yj : j ∈ I0}. Conditional on |I0| = n0,
Δ0(t0) has the same distribution as Δ(t0) in (11) under the null hypothesis but
with n replaced by n0, so that from (12) we deduce that it has expectation

μ := (n0(2t0 + 1)− t0(t0 + 1))/n0,

and from (13) that

Δ0(t0) ≥ μ− 8(logn)
√

μ ∨ log n

with probability at least 1 − 2/n when n is large enough. (Again, this is con-
ditional on |I0| = n0.) Because ε � n−1/2 in the present regime, we have
|I0| ≥ n − (logn)

√
n with probability at least 1 − 1/n when n is large enough.

Also, we will choose t below such that
√
n � t � n, and ω such that ω � 1, so

that t0 ∼ t. Together, this implies that

Δ0(t0) ≥ 2t0+1− t0(t0 + 1)

n− (logn)
√
n
−8(log n)

√
2t0 + 1 = 2t0−

t20
n
−O((log n)

√
t),

eventually, with probability at least 1− 3/n.
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We now claim that, with probability tending to 1, Δ0(t) ≥ Δ0(t0). Indeed,
by definition of the ranks Ri and modified ranks R0

i , we have

Ri −R0
i =

∑
j∈I1

I{Xj ≤ Xi} = |I1|F̂1(Xi),

where F̂1(x) := 1
|I1|

∑
j∈I1

I{Xj ≤ x} is the empirical distribution function

associated with the contaminated X observations. In particular, when |I0| = n0,
so that |I1| = n− n0 =: n1, we have∣∣Ri −R0

i − n1Φ(Xi)
∣∣ ≤ n1‖F̂1 − Φ‖∞,

valid for all i ∈ I0. At the same time, and with analogous notation, we also have∣∣Si − S0
i − n1Φ(Yi)

∣∣ ≤ n1‖Ĝ1 − Φ‖∞,

valid for all i ∈ I0. Combining these, we obtain

|Ri − Si|︸ ︷︷ ︸
Di

≤ |R0
i − S0

i |︸ ︷︷ ︸
D0

i

+n1|Φ(Xi)− Φ(Yi)|+ n1

(
‖F̂1 − Φ‖∞ + ‖Ĝ1 − Φ‖∞

)︸ ︷︷ ︸
=:K1

,

valid for all i ∈ I0. Letting F̂0 denote the empirical distribution function of
{Xi : i ∈ I0} and Ĝ0 denote that of {Yi : i ∈ I0}, we have

|Φ(Xi)− Φ(Yi)| ≤ |F̂0(Xi)− Ĝ0(Yi)|︸ ︷︷ ︸
D0

i /n0

+ ‖F̂0 − Φ‖∞ + ‖Ĝ0 − Φ‖∞︸ ︷︷ ︸
=:K0

, (17)

valid for all i ∈ I0. Note that this is conditional on |I0| = n0 and that the
distributions of K0 and K1 depend (implicitly) on n0 (and n1). We conclude
that, conditional on |I0| = n0, for any i ∈ I0,

Di ≤ (n/n0)D
0
i + n1(K0 +K1). (18)

Applying the DKW inequality with the tight constant, we have that K0 ≤
(logn)/

√
n0 and K1 ≤ (logn)/

√
n1 with probability at least 1− 2/n when n is

large enough, and when this is the case, Di ≤ (n/n0)D
0
i +2(logn)

√
n1, assuming

that n0 ≥ n1. This is given |I0| = n0 and (therefore) |I1| = n1, and we also know
that |I0| ≥ n− (logn)

√
n and |I1| ≤ 2nε with probability at least 1− 1/n when

n is large enough. (We are using that |I1| ∼ Bin(n, ε) with nε = n1−β with
β < 1.) Hence, with probability at least 1− 3/n,

Di ≤
nD0

i

n− (logn)
√
n
+ 2(logn)

√
2nε,

for any i ∈ I0. In particular, if we choose ω = (logn)2 max
(
1/

√
n,

√
nε/t

)
, then,

with probability at least 1− 2/n when n is large enough, D0
i ≤ t0 implies that

Di ≤ t for any i ∈ I0, implying that Δ0(t) ≥ Δ0(t0).
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We thus conclude that

Δ0(t) ≥ 2t0 − t20/n−OP ((log n)
√
t).

As for Δ1(t), as in (15), we have

Δ1(t) ≥ I{K ≤ k/n}Λ1(t), Λ1(t) :=
∑
i∈I1

I{Mi ≤ (t− k)/n}.

We choose k = (log n)
√
n as we did before, so that I{K ≤ k/n} = 1 + OP (η),

with the same η defined previously. As for the sum, Λ1(t) has the same distri-

bution as
∑B

i=1 I{M̃i ≤ (t− k)/n}, with B binomial with parameters (n, ε) and

M̃i = |Φ(X̃i)−Φ(Ỹi)| with (X̃i, Ỹi) iid normal with standard normal marginals
and correlation ρ. In particular,

M̃i ≤ 1√
2π

|X̃i − Ỹi| =: 1√
π
|Ũi|,

by the fact that Φ has derivative bounded by 1/
√
2π everywhere, and where

Ũi ∼ N (0, 1− ρ), and simple calculations give

v(s) := P(M̃i ≤ s) ≥ Ψ

( √
πs√

1− ρ

)
=: λ(s), s ∈ [0, 1].

We thus have
E1(Λ1(t)) = nεv((t− k)/n),

and

Var1(Λ1(t)) = Var(B)v((t− k)/n)2 + E(B)v((t− k)/n) ≤ 2nεv((t− k)/n),

and applying Chebyshev’s inequality, we thus have

Λ1(t) = nεv((t− k)/n) +O(
√

nεv((t− k)/n))

≥ (1 + oP (1))nελ((t− k)/n)),

as long as the right-hand side diverges.
In the moderately sparse regime, remember that 1/2 < β < 3/4 and ρ =

1−n−γ . We place ourselves just above the detection boundary, meaning that we
fix γ > 4(β− 1/2). We focus on the harder sub-case where, in addition, γ < 2β.
In that case, we can fix a such that 1/2 > a > γ/2 and 1/2−β+γ/2−a/2 > 0,
and set t = �n1−a�. Note that such a real number a exists, and that t ≤ n/2
with t � k. We also have nε = n1−β and u(t) 	 t/n 	 n−a, as well as

λ((t− k)/n) = Ψ

(√
π(t− k)

n
√
1− ρ

)
	 nγ/2−a, since

√
π(t− k)

n
√
1− ρ

	 nγ/2−a → 0,

and Ψ is differentiable at 0 with positive derivative. In particular, nελ((t −
k)/n) 	 n1−β+γ/2−a → ∞. Putting everything together, we have

Δ(t)− nu(t) ≥ 2t0 − t20/n−OP ((log n)
√
t) + (1 + oP (1))nελ((t− k)/n)
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−
(
2t+ 1− t(t+ 1)/n

)
= −OP ((log n)

√
t) + nε(1 + oP (1))λ((t− k)/n),

after some simplifications, using the definition of ω above and the fact that√
n � t � n. For (14) to hold, it is thus enough to have nελ((t − k)/n) �

(logn)
√
t, which is the case since

nελ((t− k)/n)√
t

	 n1−β+γ/2−a

n1/2−a/2
= n1/2−β+γ/2−a/2,

with 1/2− β + γ/2− a/2 > 0 by our choice of a.

Lemma 1. Let A,B be iid standard normal, and for f : R2 → [0, 1] measurable
and r ∈ [−1, 1], define Γf (r) = E[f(A,

√
1− r2B + rA)]. Then Γf is infinitely

differentiable, with Γ′
f (0) = E[f(A,B)AB], and with sup|r|≤1/2 |Γ′′

f (r)| bounded
by some numerical constant (independent of f).

Proof. We have

Γf (r) =

∫ ∞

−∞

∫ ∞

−∞
f(a, b)φ(a, b; r)dadb,

where

φ(a, b; r) :=
exp

[
− (a2 − 2rab+ b2)/(2− 2r2)

]
2π

√
1− r2

.

An application of the dominated convergence theorem allows us to differentiate
under the integral at will. In particular,

Γ
(k)
f (r) =

∫ ∞

−∞

∫ ∞

−∞
f(a, b)∂k

rφ(a, b; r)dadb.

Elementary calculations show that ∂rφ(a, b; 0) = (2π)−1ab exp[−(a2 + b2)/2].
We also obtain

|Γ′′
f (r)| ≤

∫ ∞

−∞

∫ ∞

−∞
|∂2

rφ(a, b; r)|dadb,

which is easily seen to uniformly bounded for |r| ≤ 1/2.

It is natural to wonder whether the higher criticism rank test has some power
in the very sparse regime. The following indicates that it is powerless in that
regime.

Proposition 5. Consider the very sparse regime in the most extreme case
where ρ = 1. In that setting, any test that rejects for large values of Δ(t) :=∑n

i=1 I{Di ≤ t} (where the threshold t is allowed to vary with n) is asymptoti-
cally powerless.

Proof. By a compactness argument, we may assume that either t → ∞ or t is
constant (as n varies). We start with the former and address the latter at the
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end. We focus on the case where t � n, as the case where t 	 n can be dealt
with in a very similar fashion.

Under the null hypothesis

We first consider the behavior of Δ(t) under the null hypothesis, and argue
that Δ(t) is asymptotically normally distributed. This is based on an application
of a combinatorial central limit theorem due to Hoeffding [15]. Remember that
underH0, Δ(t) has the distribution of An =

∑n
i=1 ai,πn(i) when πn is a uniformly

distributed random permutation of [n] and ai,j = I{|i− j| ≤ t}. We saw that

E(An) =
1

n

n∑
i=1

n∑
j=1

ai,j =
n(2t+ 1)− t(t+ 1)

n
= nu(t),

and, as derived in [15], we also have

Var(An) =
1

n− 1

n∑
i=1

n∑
j=1

d2i,j ,

where

di,j = ai,j −
1

n

n∑
g=1

ag,j −
1

n

n∑
h=1

ai,h +
1

n2

n∑
g=1

n∑
h=1

ag,h.

[15, Th. 3] implies that An is asymptotically normal when

max i,j∈[n] d
2
i,j

1
n2

∑
i∈[n]

∑
j∈[n] d

2
i,j

→ 0.

Elementary but somewhat tedious calculations yield that this is the case if and
only if t → ∞, which we assume. Further elementary calculations, in part similar
to some appearing in the proof of Theorem 2, yield that

Var(An)

nu(t)(1− u(t))
→ 1.

We thus have, under the null hypothesis,

Δ(t)− nu(t)√
nu(t)(1− u(t))

⇀ N (0, 1),

and therefore, together with the fact that 1 � t � n, we conclude that

Δ(t)− 2t+ t2/n√
2t

⇀ N (0, 1), (19)

again under the null hypothesis.
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Under the alternative hypothesis
We now consider the alternative, again in the very sparse regime and in the

most advantageous case where ρ = 1, and show that the same weak limit holds.
For this, we follow the arguments of the proof of Theorem 2 in the moderately
sparse regime, although in the reverse direction so-to-speak. We use the same
notation.

Starting from the decomposition (16), we have

Δ(t)− 2t+ t2/n√
2t

=
Δ0(t)− 2t+ t2/n√

2t
+

Δ1(t)√
2t

. (20)

In what follows, we first show that the first term on the RHS is asymptotically
standard normal, and then we show that the second term converges to 0 in
probability.

First term in (20). For i ∈ I0, as in (18) but in reverse, we have

D0
i ≤ (1 + |I1|/n)Di + |I1|(K0 +K1)

≤
(
1 + ε+ (logn)

√
ε/n

)
Di + (log n)

√
nε,

with probability tending to 1 uniformly over i ∈ I0. Assuming this is true, then
Di ≤ t implies that

D0
i ≤

(
1 + ε+ (log n)

√
ε/n

)
t+ (logn)

√
nε

≤ t0 := (1 + ε)t+ 2(logn)
√
nε.

Hence, with probability tending to 1,

Δ0(t) ≤ Δ0(t0).

As before, conditional on |I0| = n0, Δ
0(t0) has the same distribution as Δ(t0)

in (11) under the null hypothesis but with n replaced by n0. This, the fact that
|I0| ≥ n−OP (

√
n), and (19), implies that

Δ0(t0)− 2t0 + t20/n√
2t0

⇀ N (0, 1).

We used the fact that t20/n ≤ t20/|I0| ≤ t20/(n−O(
√
n)), which implies that

t20/|I0|√
t0

=
t20/n√
t0

+O(t0
√
t0/n

√
n)︸ ︷︷ ︸

o(1)

,

where the O term is o(1) by the fact that t0/n = o(1). Continuing, with proba-
bility tending to 1, we have

Δ0(t)− 2t+ t2/n√
2t

≤ Δ0(t0)− 2t+ t2/n√
2t
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=
√
t0/t

Δ0(t0)− 2t0 + t20/n√
2t0

+
2t0 − t20/n− 2t+ t2/n√

2t

⇀ N (0, 1), (21)

whenever t0/t → 1 and (t0 − t)/
√
t → 0 (using the fact that t ≤ t0 � n). This

is the case exactly when t � (logn)2nε.
We now consider the complementary case. In fact, what follows applies when

t ≤ √
n. We use a slightly different strategy. Recall that, for i ∈ I0,

Ri −R0
i =

∑
j∈I1

I{Xj ≤ Xi},

Si − S0
i =

∑
j∈I1

I{Yj ≤ Yi},

and combined with the triangle inequality, and recalling that Xj = Yj when
j ∈ I1, we have

|Di −D0
i | ≤ Wi :=

∑
j∈I1

I{Xi ∧ Yi ≤ Xj ≤ Xi ∨ Yi}.

Consider the event

Ω =
{
|I1| ≤ 2nε,K0 ≤ (logn)/

√
n
}
,

which happens with probability tending to one. Given Ω, we have

{Di ≤ t} = {Di ≤ t,D0
i ≤ t} ∪ {Di ≤ t,D0

i > t}
⊂ {D0

i ≤ t} ∪ {Wi ≥ D0
i − t, 2nε+ t ≥ D0

i > t},

using the fact that D0
i ≤ Di + |I1|, so that

Δ0(t) ≤ Δ0(t) +
∑
i∈I0

I{Wi ≥ D0
i − t, 2nε+ t ≥ D0

i > t}. (22)

Given {(Xk, Yk) : k ∈ I0}, and conditional on (|I0|, |I1|) = (n0, n1), Wi is
binomial with parameters n1 and Pi := |Φ(Xi) − Φ(Yi)|. As in (17), the latter
is bounded by D0

i /n+K0, which itself is bounded (eventually) by 2(logn)/
√
n

under Ω when D0
i = d with d ≤ t + 2nε (since we work under the assumption

that t ≤ √
n). Thus, for such a d, eventually,

P(Wi ≥ w | Ω, D0
i = d) ≤ E

[
P
(
Wi ≥ w | Ω, D0

i = d, (Xk, Yk)k∈I0

)]
≤ 2P

(
Wi ≥ w | Pi ≤ 2(logn)/

√
n
)

≤ 2Prob
(
Bin(2nε, 2(logn)/

√
n) ≥ w

)
≤ c0(nε× (logn)/

√
n)w,

where c0 is a universal constant. The factor of 2 in the second inequality comes
from de-conditioning from {K0 ≤ (log n)/

√
n. In the last line we used the fact
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that Prob(Bin(m, q) ≥ k) ≤
(
m
k

)
qk, referred to as the Giné–Zinn inequality in

[9]. We also have

P(D0
i = d | Ω) ≤ 2P(D0

i = d | |I1| ≤ 2nε) ≤ 2
2

n− 2nε
≤ 5

n
,

eventually, using the fact that P(D0
i = d | |I0| = n0) ≤ 2/n0. Together, this

yields

P
(
Wi ≥ D0

i − t, 2nε+ t ≥ D0
i > t | Ω

)
≤

t+2�nε	∑
d≥t+1

P
(
Wi ≥ d− t | Ω, D0

i = d)× P(D0
i = d | Ω)

≤ c1

t+2�nε	∑
d≥t+1

((logn)
√
nε)d−t × 1

n
,

≤ c1 ×
2

n
× ((log n)

√
nε).

Hence, the second term on the RHS of (22) has expectation of order at most n
times the last term in our last derivations, which is of order at most (log n)

√
nε =

o(1). Since that term is integer-valued, this implies that Δ0(t) ≤ Δ0(t) with
probability tending to one. In particular, (21) applies.

Second term in (20). Consider i ∈ I1. Because ρ = 1, we have Xi = Yi, and
conditional on Xi = z, Ri − 1 and Si − 1 are iid with distribution Bin(n− 1, p)
where p := Φ(z). In particular, Di has the distribution of |U − V | where U and
V are iid with distribution Bin(n − 1, P ) and P ∼ Unif(0, 1). Let u2(t) denote
the probability that Di ≤ t. We want to bound u2(t) from above.

For p ∈ [0, 1], define g(p) as the probability that |U−V | ≤ t when U and V are

iid Bin(n− 1, p), and note that u2(t) =
∫ 1

0
g(p)dp. Define σ2 = 2(n− 1)p(1− p),

which is the variance of U − V , and also h(a) = P((U − V )/σ ≤ a). Using the
fact that U − V is integer valued, we have

g(p) = h(t/σ)− h(−(t+ 1)/σ) ≤ Φ(t/σ)− Φ(−(t+ 1)/σ) + 2‖h− Φ‖∞.

Where Φ is the standard normal distribution function. Because Φ has derivative
bounded by 1/

√
2π everywhere, the first term on the RHS is = O(t/σ). For the

second term, we use the Berry–Esseen inequality (seeing U and V , each, as the
sum of n−1 iid Ber(p) random variables), to get that it is = O(1/σ). Therefore,
since t ≥ 1, there is a universal constant c0 such that g(p) ≤ c0t/σ. Of course,
being a probability, we also have g(p) ≤ 1. Hence,

u2(t) =

∫ 1

0

g(p)dp ≤
∫ 1

0

(
1 ∧ c0t

2(n− 1)p(1− p)

)
dp 	 1 ∧ t/

√
n.

Now, by Markov’s inequality, and the fact that |I1| is binomial with param-
eters (n, ε), the second term in (20) is

=
OP (nε)OP (u2(t))√

nu(t)(1− u(t))
	 n1−β(1 ∧ t/

√
n)√

t
	 n1−βt−1/2 ∧ n1/2−βt1/2 → 0,

for any choice of t when β > 3/4 (very sparse regime).
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Special case: t constant. When t is constant, the null distribution of Δ(t) is
known to converge to the Poisson distribution of mean 2t+1. (See [3, Exa 1.3],
which is only cosmetically different.) The control under the alternative can be
secured in exactly the same way. In particular, it holds that Δ0(t) ≤ Δ0(t) with
probability tending to one, with Δ0(t) having the same asymptotic distribution
(Poisson with mean 2t+ 1).

3.3. Numerical experiments

We consider the same setting as in Section 2 and compare the two nonparametric
tests, the covariance rank test and the higher criticism rank test, to the para-
metric tests. The p-values for the higher criticism rank test are obtained based
on 105 permutations, while the p-values for the covariance rank test are taken
from the limiting distribution based on its correspondence with the Spearman
rank correlation.

The results are presented in Figure 2. In finite samples, the higher criticism
rank test exhibits substantially more power than the higher criticism in the
dense and moderately sparse regime. We have no good explanation for this
rather surprising phenomenon. However, the higher criticism rank test has no
power in the very sparse regime, and neither does the covariance rank test.

4. Discussion

The power residing in the Vi In Proposition 2 we established that the
higher criticism test based on U1, . . . , Un achieves the detection boundary in
the Gaussian mixture model. It is natural, however, to ask whether one could
do better in finite samples by also utilizing V1, . . . , Vn. We performed some side
experiments to quantify this by comparing the full LRT, meaning the LRT based
on (U1, V1), . . . , (Un, Vn), the LRT based on U1, . . . , Un only, and the LRT based
on V1, . . . , Vn only. We did so in the same parametric setting of Section 2.4. The
results are reported in Figure 3, and can be to some extent anticipated from
our previous work [1]. In a nutshell, in the dense regime, what matters is the
deviation of the variance from 1, and this is felt by all tests, so that the U -LRT
and the V -LRT are seen to be also as powerful as the full LRT. In the sparse
regime, however, we can see that the V -LRT has essentially no power. This is
due to the fact that the Vi’s in that case have variance 1 + ρ, which is bounded
from above by 2, so that no test depending on the Vi’s can have any power as
we show in [1]. The U -LRT, which we know to be asymptotically optimal to
first order, remains competitive, although now clearly less powerful than the
full LRT.

The power of rank tests in the very sparse regime In Proposition 5 we
argued, we hope convincingly, that no test that resembles the higher criticism
rank test has any power in the very sparse regime (β > 3/4). This seems clear
from the experiments reported in Figure 2. This begs the question of whether
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Fig 2. Empirical power comparison with 95% error bars for the likelihood ratio test (black),
the covariance rank test (green), the higher criticism test (red) and the higher criticism rank
test (purple). (a) Dense regime where β = 0.2. (b) Dense regime where β = 0.4. (c) Sparse
regime where β = 0.6 and ρ → 1. (d) Sparse regime where β = 0.8 and ρ → 1. The horizontal
line marks the level (set at 0.05) and the vertical line marks the asymptotic detection boundary
derived earlier. The sample size is n = 106 and the power curves and error bars are based on
200 replications.

there are any rank tests that have any (asymptotic) power in the very sparse
regime. We do not know the answer to that question, but are willing to conjec-
ture that there are no such tests.

The two-sided problem We focused on the one-sided setting (1), effectively
testing ρ = 0 versus ρ > 0. Knowing the sign of ρ is not crucial, as one can apply
a one-sided test for ρ > 0 to the transformed data (X1,−Y1), . . . , (Xn,−Yn).
Less trivial is the case where there are three components

(X,Y ) ∼ (1− ε)N (0, I) +
ε

2
N (0,Σρ) +

ε

2
N (0,Σ−ρ).

We did not look at this model, in part because we wanted to test against a
monotonic association (in the contamination component), which is perhaps the
most popular alternative in a nonparametric context.
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Fig 3. Empirical power comparison with 95% error bars for the full LRT (black), the U-
LRT (red) and the V -LRT (blue). (a) Dense regime where β = 0.4. (b) Sparse regime where
β = 0.6 and ρ → 1. The horizontal line marks the level (set at 0.05) and the vertical line
marks the asymptotic detection boundary derived earlier. The sample size is n = 106 and the
power curves and error bars are based on 200 replications.

Acknowledgements

We are grateful to two anonymous referees for asking pertinent questions that
helped improved the paper, and for asking about a technical point in the proof
of Theorem 2 lacking rigor.

References

[1] Arias-Castro, E. and Huang, R. (2018). The Sparse Variance Contam-
ination Model. arXiv preprint arXiv:1807.10785.

[2] Arias-Castro, E. and Wang, M. (2016). Distribution-free tests for
sparse heterogeneous mixtures. TEST 26 71–94. MR3613606

[3] Arratia, R., Goldstein, L. and Gordon, L. (1990). Poisson ap-
proximation and the Chen–Stein method. Statistical Science 403–424.
MR1092983

[4] Bilgrau, A. E., Eriksen, P. S., Rasmussen, J. G., Johnsen, H. E.,
Dybkær, K. and Bøgsted, M. (2016). GMCM: Unsupervised cluster-
ing and meta-analysis using Gaussian mixture copula models. Journal of
Statistical Software 70 1–23.

[5] Bogomolov, M. and Heller, R. (2018). Assessing replicability of find-
ings across two studies of multiple features. Biometrika 105 505–516.
MR3842881

[6] Cai, T. T., Jeng, X. J. and Jin, J. (2011). Optimal detection of het-
erogeneous and heteroscedastic mixtures. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 73 629–662. MR2867452

[7] Cai, T. T. and Wu, Y. (2014). Optimal detection of sparse mixtures
against a given null distribution. IEEE Transactions on Information Theory
60 2217–2232. MR3181520

https://arxiv.org/abs/arXiv:1807.10785
http://www.ams.org/mathscinet-getitem?mr=3613606
http://www.ams.org/mathscinet-getitem?mr=1092983
http://www.ams.org/mathscinet-getitem?mr=3842881
http://www.ams.org/mathscinet-getitem?mr=2867452
http://www.ams.org/mathscinet-getitem?mr=3181520


730 E. Arias-Castro et al.

[8] Chatterjee, S. (2007). Stein’s method for concentration inequalities.
Probability Theory and Related Fields 138 305–321. MR2288072

[9] DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability.
Springer. MR2664452

[10] Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse het-
erogeneous mixtures. The Annals of Statistics 32 962–994. MR2065195

[11] Donoho, D. and Jin, J. (2008). Higher criticism thresholding: Optimal
feature selection when useful features are rare and weak. Proceedings of the
National Academy of Sciences 105 14790–14795. MR2520682

[12] Donoho, D. and Jin, J. (2015). Higher criticism for large-scale inference,
especially for rare and weak effects. Statistical Science 30 1–25. MR3317751

[13] Gibbons, J. D. and Chakraborti, S. (2003). Nonparametric Statistical
Inference 168, 4th ed. Marcel Dekker, Inc. MR2064386

[14] Hall, P. and Jin, J. (2010). Innovated higher criticism for detecting
sparse signals in correlated noise. The Annals of Statistics 38 1686–1732.
MR2662357

[15] Hoeffding, W. (1951). A combinatorial central limit theorem. The Annals
of Mathematical Statistics 22 558–566. MR0044058

[16] Ingster, Y. I. (1997). Some problems of hypothesis testing leading to
infinitely divisible distributions. Mathematical Methods of Statistics 6 47–
69. MR1456646

[17] Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypothe-
ses, 3rd ed. Springer. MR2135927

[18] Li, Q., Brown, J. B., Huang, H. and Bickel, P. J. (2011). Measur-
ing reproducibility of high-throughput experiments. The Annals of Applied
Statistics 5 1752–1779. MR2884921

[19] Moscovich, A., Nadler, B. and Spiegelman, C. (2016). On the exact
Berk–Jones statistics and their p-value calculation. Electronic Journal of
Statistics 10 2329–2354. MR3544289

[20] Redekop, W. K. and Mladsi, D. (2013). The faces of personalized
medicine: A framework for understanding its meaning and scope. Value
in Health 16 S4–S9.

[21] Xu, W., Hou, Y., Hung, Y. S. and Zou, Y. (2013). A comparative
analysis of Spearman’s rho and Kendall’s tau in normal and contaminated
normal models. Signal Processing 93 261–276.

[22] Zhao, S. D. (2015). False discovery rate control for identifying simultane-
ous signals. arXiv preprint arXiv:1512.04499.

[23] Zhao, S. D., Cai, T. T. and Li, H. (2017). Optimal detection of weak
positive latent dependence between two sequences of multiple tests. Journal
of Multivariate Analysis 160 169–184. MR3688697

http://www.ams.org/mathscinet-getitem?mr=2288072
http://www.ams.org/mathscinet-getitem?mr=2664452
http://www.ams.org/mathscinet-getitem?mr=2065195
http://www.ams.org/mathscinet-getitem?mr=2520682
http://www.ams.org/mathscinet-getitem?mr=3317751
http://www.ams.org/mathscinet-getitem?mr=2064386
http://www.ams.org/mathscinet-getitem?mr=2662357
http://www.ams.org/mathscinet-getitem?mr=0044058
http://www.ams.org/mathscinet-getitem?mr=1456646
http://www.ams.org/mathscinet-getitem?mr=2135927
http://www.ams.org/mathscinet-getitem?mr=2884921
http://www.ams.org/mathscinet-getitem?mr=3544289
https://arxiv.org/abs/arXiv:1512.04499
http://www.ams.org/mathscinet-getitem?mr=3688697

	Introduction
	Gaussian mixture model
	Gaussian mixture copula model

	Gaussian mixture model
	The likelihood ratio test
	The covariance test
	The higher criticism test and the extremes test
	Numerical experiments

	Gaussian mixture copula model
	The covariance rank test
	The higher criticism rank test
	Numerical experiments

	Discussion
	Acknowledgements
	References

