S. Yamashita and S. Takahashi, Molecular Mechanisms of Natural Rubber Biosynthesis, Annu. Rev. Biochem, 2020.

P. Compagnon, T. Chapuset, P. Gener, J. Jacob, M. De-la-serve et al., Le Caoutchouc Naturel Biologie, p.595, 1986.

X. Men, F. Wang, G. Q. Chen, H. B. Zhang, and M. Xian, Biosynthesis of Natural Rubber: Current State and Perspectives, Int. J. Mol. Sci, vol.20, 2018.

C. Tang, M. Yang, Y. Fang, Y. Luo, S. Gao et al., The rubber tree genome reveals new insights into rubber production and species adaptation, Nat. Plants, vol.2, 2016.

J. Liu, C. Shi, C. C. Shi, W. Li, Q. J. Zhang et al., The Chromosome-Based Rubber Tree Genome Provides New Insights into Spurge Genome Evolution and Rubber Biosynthesis, Mol. Plant, vol.13, pp.336-350, 2020.

Z. Deng, J. Chen, J. Leclercq, Z. Zhou, C. Liu et al., Expression Profiles, Characterization and Function of HbTCTP in Rubber Tree (Hevea brasiliensis). Front, Plant Sci, vol.7, p.789, 2016.

P. Priya, P. Venkatachalam, and A. Thulaseedharan, Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell, Arg.). Plant Cell Rep, vol.26, pp.1833-1838, 2007.

J. L. Jacob, J. Auzac, J. C. Prevot, and J. B. Serier, Une usine à caoutchouc naturel: L'hévéa, vol.26, pp.538-545, 1995.

J. L. Jacob, E. Serres, J. C. Prévôt, R. Lacrotte, A. Vidal et al., Development of Hevea Latex Diagnosis, vol.12, pp.97-115, 1988.

J. Eschbach, D. Roussel, H. Van-de-sype, J. Jacob, and J. -l.;-d'auzac, Relationships between yield and clonal physiological characteristics of latex from Hevea brasiliensis, Physiol. Végétale, vol.22, pp.294-304, 1984.

S. Sreelatha, K. Mydin, S. Simon, J. Jacob, and R. Krishnakumar, Biochemical characterisation of RRII 400 series clones of Hevea brasiliensis, Nat. Rubber Res, vol.22, pp.36-42, 2009.

J. Prevot, J. Jacob, and A. Vidal, The redox potential of latex: Criterion of the physiological state of the laticiferous system, Proceedings of the Exploitation, pp.227-238, 1984.

Y. Zhang, J. Leclercq, and P. Montoro, Reactive oxygen species in Hevea brasiliensis latex and relevance to Tapping Panel Dryness, Tree Physiol, vol.37, pp.261-269, 2017.

R. Lacote, O. Gabla, S. Obouayeba, J. M. Eschbach, F. Rivano et al., Long-term effect of ethylene stimulation on the yield of rubber trees is linked to latex cell biochemistry, Field Crop. Res, vol.115, pp.94-98, 2010.

, Int. J. Mol. Sci, vol.2020, pp.4220-4238

H. Chrestin, Biochemical aspects of bark dryness induced by overstimulation of rubber trees with Ethrel. In Physiology of Rubber Tree Latex; d'Auzac, pp.432-439, 1989.

S. Q. Yang and X. W. Fan, Physiological response of PR107 to intensive tapping with stimulation at early exploitation stage, Chin. J. Trop. Crop. Res, vol.16, pp.17-28, 1995.

P. Piyatrakul, R. A. Putranto, F. Martin, M. Rio, F. Dessailly et al., Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis, BMC Plant Biol, vol.12, p.244, 2012.

N. S. Lau, Y. Makita, M. Kawashima, T. D. Taylor, S. Kondo et al., The rubber tree genome shows expansion of gene family associated with rubber biosynthesis

W. Pootakham, C. Sonthirod, C. Naktang, P. Ruang-areerate, T. Yoocha et al., De novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in Hevea species, Sci. Rep, vol.7, p.41457, 2017.

J. Leclercq, S. Wu, B. Farinas, S. Pointet, B. Favreau et al., Post-transcriptional regulation of several biological processes involved in latex production in Hevea brasiliensis

Y. Zhang, J. Leclercq, S. Wu, E. Ortega-abboud, S. Pointet et al., Genome-wide analysis in Hevea brasiliensis laticifers revealed species-specific post-transcriptional regulations of several redox-related genes, Sci. Rep, vol.9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02618920

L. Wei and X. Cao, The effect of transposable elements on phenotypic variation: Insights from plants to humans, Sci. China Life Sci, vol.59, pp.24-37, 2016.

L. Galindo-gonzalez, C. Mhiri, M. K. Deyholos, and M. A. Grandbastien, LTR-retrotransposons in plants: Engines of evolution, Gene, vol.626, pp.14-25, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607529

C. M. Vicient and J. M. Casacuberta, Impact of transposable elements on polyploid plant genomes, Ann. Bot, vol.120, pp.195-207, 2017.

T. Wicker, F. Sabot, A. Hua-van, J. L. Bennetzen, P. Capy et al., A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet, vol.8, pp.973-982, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169819

J. Du, Z. Tian, C. S. Hans, H. M. Laten, S. B. Cannon et al., Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: Insights from genome-wide analysis and multi-specific comparison, Plant J, vol.63, pp.584-598, 2010.

C. Llorens, R. Futami, L. Covelli, L. Dominguez-escriba, J. M. Viu et al., The Gypsy Database (GyDB) of mobile genetic elements: Release 2.0, Nucleic Acids Res, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02648997

D. S. Domingues, G. M. Cruz, C. J. Metcalfe, F. T. Nogueira, R. Vicentini et al., Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns, BMC Genom, vol.13, 2012.

Z. Xu, J. Liu, W. Ni, Z. Peng, Y. Guo et al., The first web-based database of transposable elements in cotton (Gossypium raimondii), Database J. Biol, 2017.

T. Beule, M. D. Agbessi, S. Dussert, E. Jaligot, and R. Guyot, Genome-wide analysis of LTR-retrotransposons in oil palm, BMC Genom, vol.16, 2015.

R. Ming, C. M. Wai, and R. Guyot, Pineapple Genome: A Reference for Monocots and CAM Photosynthesis, Trends Genet. TIG, vol.32, pp.690-696, 2016.

A. Kumar and J. L. Bennetzen, Plant retrotransposons, Annu. Rev. Genet, vol.33, pp.479-532, 1999.

P. Neumann, P. Novak, N. Hostakova, and J. Macas, Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification, Mob. DNA, vol.10, 2019.

N. G. Bologna and O. Voinnet, The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis, Annu. Rev. Plant Biol, vol.65, pp.473-503, 2014.

, Int. J. Mol. Sci, vol.2020, pp.4220-4239

V. Gébelin, X. Argout, W. Engchuan, B. Pitollat, C. Duan et al., Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets, BMC Plant Biol, vol.12, 2012.

V. Gébelin, J. Leclercq, S. Hu, C. Tang, and P. Montoro, Regulation of MIR genes in response to abiotic stress in Hevea brasiliensis, Int. J. Mol. Sci, vol.14, pp.19587-19604, 2013.

V. Gébelin, J. Leclercq, and . Kuswanhadi,

X. Argout, T. Chaidamsari, S. Hu, C. Tang, G. Sarah et al., The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness, Tree Physiol, vol.33, pp.1084-1098, 2013.

C. Duan, X. Argout, V. Gebelin, M. Summo, J. F. Dufayard et al., Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing

P. Montoro, S. Wu, B. Favreau, E. Herlinawati, C. Labrune et al., Transcriptome analysis in Hevea brasiliensis latex revealed changes in hormone signalling pathways during ethephon stimulation and consequent Tapping Panel Dryness, Sci. Rep, vol.8, p.8483, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02624945

J. Leclercq, L. Lardet, F. Martin, T. Chapuset, G. Oliver et al., The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Mull. Arg), Plant Cell Rep, vol.29, pp.513-522, 2010.

J. Leclercq, F. Martin, C. Sanier, A. Clement-vidal, D. Fabre et al., Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit, Plant Mol. Biol, vol.80, pp.255-272, 2012.

R. Lestari, M. Rio, F. Martin, J. Leclercq, N. Woraathasin et al., Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation, Plant Biotechnol. J, vol.16, pp.322-336, 2018.

F. Martin, V. Abati, A. Burel, A. Clement-vidal, C. Sanier et al., Overexpression of EcGSH1 induces glutathione production and alters somatic embryogenesis and plant development in Hevea brasiliensis, Ind. Crop. Prod, vol.112, pp.803-814, 2018.

P. Montoro, W. Rattana, V. Pujade-renaud, N. Michaux-ferriere, Y. Monkolsook et al., Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: Roles of calcium, Plant Cell Rep, vol.21, pp.1095-1102, 2003.

P. Montoro, N. Teinseree, W. Rattana, P. Kongsawadworakul, and N. Michaux-ferriere, Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli, Plant Cell Rep, vol.19, pp.851-855, 2000.

T. Flûtre, E. Duprat, C. Feuillet, and H. Quesneville, Considering transposable element diversification in de novo annotation approaches, PLoS ONE, vol.6, 2011.

T. K. Uthup, T. Saha, M. Ravindran, and K. Bini, Impact of an intragenic retrotransposon on the structural integrity and evolution of a major isoprenoid biosynthesis pathway gene in Hevea brasiliensis, Plant Physiol. Biochem, vol.73, pp.176-188, 2013.

A. H. Schulman, Retrotransposon replication in plants, Curr. Opin. Virol, vol.3, pp.604-614, 2013.

E. Sallet, J. Gouzy, and T. Schiex, EuGene: An Automated Integrative Gene Finder for Eukaryotes and Prokaryotes, Methods Mol. Biol, pp.97-120, 1962.
URL : https://hal.archives-ouvertes.fr/hal-02790731

M. Nielsen, R. Ard, X. Leng, M. Ivanov, P. Kindgren et al., Transcription-driven chromatin repression of Intragenic transcription start sites, PLoS Genet, vol.15, 2019.

L. M. Soares, P. C. He, Y. Chun, H. Suh, T. Kim et al., Determinants of Histone H3K4 Methylation Patterns, Mol. Cell, vol.68, pp.773-785, 2017.

S. A. Montgomery, Y. Tanizawa, B. Galik, N. Wang, T. Ito et al., Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin, 2020.

D. Bouyer, A. Kramdi, M. Kassam, M. Heese, A. Schnittger et al., DNA methylation dynamics during early plant life, Genome Biol, vol.18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02628112

, Int. J. Mol. Sci, vol.2020

C. E. Niederhuth and R. J. Schmitz, Putting DNA methylation in context: From genomes to gene expression in plants, Biochim. Et Biophys. Acta Gene Regul. Mech, vol.1860, pp.149-156, 2017.

A. J. Bewick, L. Ji, C. E. Niederhuth, E. M. Willing, B. T. Hofmeister et al., On the origin and evolutionary consequences of gene body DNA methylation, Proc. Natl. Acad. Sci, vol.113, pp.9111-9116, 2016.

S. Corem, A. Doron-faigenboim, O. Jouffroy, F. Maumus, T. Arazi et al., Redistribution of CHH Methylation and Small Interfering RNAs across the Genome of Tomato ddm1 Mutants, Plant Cell, vol.30, pp.1628-1644, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02628646

A. D. Mccue and R. K. Slotkin, Transposable element small RNAs as regulators of gene expression, Trends Genet. TIG, vol.28, pp.616-623, 2012.

J. Cho, Transposon-Derived Non-coding RNAs and Their Function in Plants. Front, Plant Sci, vol.9, p.600, 2018.

A. Zimin, D. Puiu, M. Luo, T. Zhu, S. Koren et al., Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm, Genome Res, vol.27, pp.787-792, 2017.

. Big-data-center and . Members, Database Resources of the BIG Data Center, Nucleic Acids Res, vol.46, 2018.

E. Permal, T. Flutre, and H. Quesneville, Roadmap for annotating transposable elements in eukaryote genomes, Methods Mol. Biol, vol.859, pp.53-68, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00956367

V. Jamilloux, J. Daron, F. Choulet, and H. Quesneville, De Novo Annotation of Transposable Elements: Tackling the Fat Genome Issue, Proc. IEEE 2017, vol.105, pp.474-481
URL : https://hal.archives-ouvertes.fr/hal-02622009

W. Bao, K. Kojima, and O. Kohany, Repbase Update, a database of repetitive elements in eukaryotic genomes, Mob. DNA, vol.6, 2015.

C. Hoede, S. Arnoux, M. Moisset, T. Chaumier, O. Inizan et al., PASTEC: An Automatic Transposable Element Classification Tool, PLoS ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639360

L. Fu, B. Niu, Z. Zhu, S. Wu, W. Li et al., Accelerated for clustering the next-generation sequencing data, Bioinformatics, vol.28, pp.3150-3152, 2012.

E. Mccarthy and J. Mcdonald, LTR_STRUC: A novel search and identification program for LTR retrotransposons, Bioinformatics, vol.19, pp.362-367, 2003.

S. Orozco-arias, J. Liu, R. Tabares-soto, D. Ceballos, D. Silva-domingues et al., Integrated and Parallel Analyzer and Classifier of LTR Retrotransposons and Its Application for Pineapple LTR Retrotransposons Diversity and Dynamics, Biology, vol.7, p.32, 2018.

R. Ge, G. Mai, R. Zhang, X. Wu, Q. Wu et al., MUSTv2: An Improved De Novo Detection Program for Recently Active Miniature Inverted Repeat Transposable Elements (MITEs), J. Integr. Bioinform, vol.14, 2017.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

T. Wenke, T. Dobel, T. R. Sorensen, H. Junghans, B. Weisshaar et al., Targeted Identification of Short Interspersed Nuclear Element Families Shows Their Widespread Existence and Extreme Heterogeneity in Plant Genomes, Plant Cell, vol.23, pp.3117-3128, 2011.

O. Kohany, A. J. Gentles, L. Hankus, and J. Jurka, Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor, BMC Bioinform, vol.7, p.474, 2006.

P. Sanmiguel, B. S. Gaut, A. Tikhonov, Y. Nakajima, and J. L. Bennetzen, The paleontology of intergene retrotransposons of maize, Nat. Genet, vol.20, pp.43-45, 1998.

C. Vitte, T. Ishii, F. Lamy, D. Brar, and O. Panaud, Genomic paleontology provides evidence for two distinct origins of Asian rice, Oryza sativa L.). Mol. Genet. Genom. MGG, vol.272, pp.504-511, 2004.

F. C. Baurens, S. Bocs, M. Rouard, T. Matsumoto, R. N. Miller et al., Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana), BMC Plant Biol, vol.10, p.149, 2010.

M. Lescot, P. Piffanelli, A. Y. Ciampi, M. Ruiz, G. Blanc et al., Insights into the Musa genome: Syntenic relationships to rice and between Musa species, BMC Genom, vol.9, 2008.

, Int. J. Mol. Sci, vol.2020, pp.4220-4241

J. Ma, K. M. Devos, and J. L. Bennetzen, Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice, Genome Res, vol.14, pp.860-869, 2004.

S. Kanjanawattanawong, S. Tangphatsornruang, K. Triwitayakorn, P. Ruang-areerate, D. Sangsrakru et al., Characterization of rubber tree microRNA in phytohormone response using large genomic DNA libraries, promoter sequence and gene expression analysis, Mol. Genet. Genom. MGG, vol.289, pp.921-933, 2014.

M. Lertpanyasampatha, L. Gao, P. Kongsawadworakul, U. Viboonjun, H. Chrestin et al., Genome-wide analysis of microRNAs in rubber tree (Hevea brasiliensis L.) using high-throughput sequencing, Planta, vol.236, pp.437-445, 2012.

W. J. Kent, BLAT-the BLAST-like alignment tool, Genome Res, vol.12, pp.656-664, 2002.

M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson et al., Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nat. Biotechnol, vol.29, pp.644-652, 2011.

R. M. Waterhouse, M. Seppey, F. A. Simao, M. Manni, P. Ioannidis et al., BUSCO applications from quality assessments to gene prediction and phylogenomics, Mol. Biol. Evol, 2017.

A. R. Quinlan, BEDTools: The Swiss-Army Tool for Genome Feature Analysis, Curr. Protoc. Bioinform, vol.47, pp.11-12, 2014.

A. R. Quinlan and I. M. Hall, BEDTools: A flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

W. Liu, S. Wu, Q. Lin, S. Gao, F. Ding et al., RGAAT: A Reference-based Genome Assembly and Annotation Tool for New Genomes and Upgrade of Known Genomes, Genom. Proteom. Bioinform, vol.16, pp.373-381, 2018.

J. Krumsiek, R. Arnold, and T. Rattei, Gepard: A rapid and sensitive tool for creating dotplots on genome scale, Bioinformatics, vol.23, pp.1026-1028, 2007.

T. Carver, N. Thomson, A. Bleasby, M. Berriman, J. Parkhill et al., Circular and linear interactive genome visualization, Bioinformatics, vol.25, pp.119-120, 2009.

M. Lescot, P. Dehais, G. Thijs, K. Marchal, Y. Moreau et al., PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucleic Acids Res, vol.30, pp.325-327, 2002.