
HAL Id: hal-02923636
https://hal.inrae.fr/hal-02923636v1

Submitted on 26 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Multivariate Time Series Embedding Clustering
via Attentive-Gated Autoencoder

Dino Ienco, Roberto Interdonato

To cite this version:
Dino Ienco, Roberto Interdonato. Deep Multivariate Time Series Embedding Clustering via Attentive-
Gated Autoencoder. PAKDD 2020 - 24th Pacific-Asia Conference on Knowledge Discovery and
Data Mining, May 2020, Singapour, Singapore. pp.318-329, �10.1007/978-3-030-47426-3_25�. �hal-
02923636�

https://hal.inrae.fr/hal-02923636v1
https://hal.archives-ouvertes.fr

Abstract. Nowadays, great quantities of data are produced by a large
and diverse family of sensors (e.g., remote sensors, biochemical sensors,
wearable devices), which typically measure multiple variables over time,
resulting in data streams that can be profitably organized as multivariate
time-series. In practical scenarios, the speed at which such information is
collected often makes the data labeling task uneasy and too expensive,
so that limit the use of supervised approaches. For this reason, unsu-
pervised and exploratory methods represent a fundamental tool to deal
with the analysis of multivariate time series. In this paper we propose
a deep-learning based framework for clustering multivariate time series
data with varying lengths. Our framework, namely DeTSEC (Deep Time
Series Embedding Clustering), includes two stages: firstly a recurrent
autoencoder exploits attention and gating mechanisms to produce a pre-
liminary embedding representation; then, a clustering refinement stage is
introduced to stretch the embedding manifold towards the corresponding
clusters. Experimental assessment on six real-world benchmarks coming
from different domains has highlighted the effectiveness of our proposal.

1 Introduction

Nowadays, huge amount of data is produced by a large and diverse family of
sensors (e.g., remote sensors, biochemical sensors, wearable devices). Modern
sensors typically measure multiple variables over time, resulting in streams of
data that can be profitably organized as multivariate time-series. While a major
part of recent literature about multivariate time-series focuses on tasks such as
forecasting [14,19,20] and classification [11,26] of such data objects, the study
of multivariate time-series clustering has often been neglected. The development
of effective unsupervised clustering techniques is crucial in practical scenarios,
where labeling enough data to deploy a supervised process may be too expensive
(i.e., in terms of both time and money). Moreover, clustering allows to discover
characteristics of multivariate time series data that go beyond the apriori knowl-
edge on a specific domain, serving as tool to support subsequent exploration and
analysis processes.

Deep Multivariate Time Series Embedding
Clustering via Attentive-Gated

Autoencoder

 Dino Ienco1 and Roberto Interdonato2

1 INRAE, UMR TETIS, LIRMM, Univ. Montpellier, Montpellier, France

 dino.ienco@irstea.fr
2 CIRAD, UMR TETIS, Montpellier, France

 roberto.interdonato@cirad.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_25&domain=pdf
http://orcid.org/0000-0002-8736-3132
http://orcid.org/0000-0002-0536-6277
https://doi.org/10.1007/978-3-030-47426-3_25

While several methods exist for the clustering of univariate time series [13],
the clustering of multivariate time series remains a challenging task. Early
approaches have been proposed which were generally based on adaptations
of standard clustering techniques to such data, e.g., density based meth-
ods [3], methods based on independent component analysis [25] and fuzzy
approaches [5,8]. Recently, Hallac et al. [9] proposed a method, namely TICC
(Toeplitz inverse covariance-based clustering), that segments multivariate time
series and, successively, clusters subsequences through a Markov Random fields
based approach. The algorithm leverages an (EM)-like strategy, based on alter-
nating minimization, that iteratively clusters the data and then updates the
cluster parameters. Unfortunately, this method does not produce a clustering
solution considering the original time series but a data partition where the unit
of analysis is the subsequence.

As regards deep learning based clustering, such methods have recent become
popular in the context of image and relational data [17,24], but their potential
has not yet been fully exploited in the context of the unsupervised analysis of
time series data. Tzirakis et al. [24] recently proposed a segmentation/clustering
framework based on agglomerative clustering which works on video data (time
series of RGB images). The approach firstly extracts a clustering assignment
via hierarchical clustering, then performs temporal segmentation and, finally,
extracts representation via Convolutional Neural Network (CNN). The clustering
assignment is used as pseudo-label information to extract the new representation
(training the CNN network) and to perform video segmentation. The proposed
approach is specific to RGB video segmentation/clustering and it is not well
suited for varying length information. All these factors limit its use to standard
multivariate time-series analysis. A method based on Recurrent Neural Networks
(RNNs) has also been recently proposed in [23]. The representation provided by
the RNN is clustered using a divergence-based clustering loss function in an
end-to-end manner. The loss function is designed to consider cluster separability
and compactness, cluster orthogonality and closeness of cluster memberships to
a simplex corner. The approach requires training and validation data to learn
parameters and choose hyperparameter setting, respectively. Finally, the frame-
work is evaluated on a test set indicating that the approach seems not completely
unsupervised and, for this reason, not directly exploitable in our scenario.

In this work, we propose a new deep-learning based framework, namely DeT-
SEC (Deep Time Series Embedding Clustering), to cope with multivariate time-
series clustering. Differently from previous approaches, our framework is enough
general to deal with time-series coming from different domains, providing a par-
tition at the time-series level as well as manage varying length information. The
DeTSEC has two stages: firstly a recurrent autoencoder exploits attention and
gating mechanisms to produce a preliminary embedding representation. Then,
a clustering refinement stage is introduced to stretch the embedding manifold
towards the corresponding clusters. We provide an experimental analysis which
includes comparison with five state of the art methods and ablations analysis of
the proposed framework on six real-world benchmarks from different domains.

The results of this analysis highlight the effectiveness of the proposed framework
as well as the added value of the new learnt representation.

The rest of the paper is structured as follows: in Sect. 2 we introduce the DeT-
SEC framework, in Sect. 3 we present our experimental evaluation, and Sect. 4
concludes the work.

2 DeTSEC: Deep Time Series Embedding Clustering

In this section we introduce DeTSEC (Deep Time Series Embedding Cluster-
ing via Attentive-Gated Autoencoder). Let X = {Xi}ni=1 be a multivariate
time-series dataset. Each Xi ∈ X is a time-series where Xij ∈ Rd is the multi-
dimensional vector of the time-series Xi at timestamp j, with 1 ≤ j ≤ T , d being
the dimensionality of Xij and T the maximum time-series length. We underline
that X can contain time-series with different lengths. The goal of DeTSEC is
to partition X in a given number of clusters, provided as an input parameter.
To this purpose, we propose to deal with the multivariate time-series clustering
task by means of recurrent neural networks [1] (RNN), in order to manage at the
same time (i) the sequential information exhibited by time-series data and (ii)
the multivariate (multi-dimensional) information that characterizes time-series
acquired by real-world sensors. Our approach exploits a Gated Recurrent Unit
(GRU) [4], a type of RNN, to model the time-series behavior and to encode
the original time-series in a new vector embedding representation. DeTSEC has
two different stages. In the first one, the GRU based autoencoder is exploited to
summarize the time-series information and to produce the new vector embed-
ding representation, obtained by forcing the network to reconstruct the original
signal, that integrates the temporal behavior and the multi-dimensional infor-
mation. Once the autoencoder network has been pretrained, the second stage of
our framework refines such representation by taking into account a twofold task,
i.e., the reconstruction one and another one devoted to stretch the embedding
manifold towards clustering centroids. Such centroids can be derived by applying
any centroid-based clustering algorithm (i.e. K-means) on the new data repre-
sentation. The final clustering assignment is derived by applying the K-means
clustering algorithm on the embeddings produced by DeTSEC.

Figure 1 visually depicts the encoder/decoder structure of DeTSEC, consist-
ing of three different components in our network architecture: i) an encoder, ii)
a backward decoder and iii) a forward decoder. The encoder is composed by two
GRU units that process the multivariate time series: the first one (in red) pro-
cesses the time-series in reverse order (backward) while the second one (in green)
processes the input time-series in the original order (forward). Successively, for
each GRU unit, an attention mechanism [2] is applied to combine together the
information coming from different timestamps. Attention mechanisms are widely
used in automatic signal processing [2] (1D signal or Natural Language Process-
ing) as they allow to merge together the information extracted by the RNN
model at different timestamps via a convex combination of the input sources.
The attention formulation we used is the following one:

x̂1 x̂2 x̂3 x̂··· x̂T−2 x̂T−1 x̂T

x̂1x̂2x̂3x̂···x̂T−2x̂T x̂T−1

FC FC FC FC FC FC FC

FC FC FC FC FC FC FC

xTxT−1xT−2x···x1 x2 x3

xT xT−1 xT−2 x··· x1x2x3 Embedding

Forward GRU

Backward GRU

GRU Network

Attention
Mechanism FC

Fully
Connected

Representation
from Attention

and Gating

Gating
Mechanism

Encoder

Backward
Decoder

Forward
Decoder

Fig. 1. Encoder/Decoder structure of DeTSEC. The network has three main compo-
nents: i) an encoder, ii) a forward decoder and iii) a backward decoder. The encoder
includes forward/backward GRU networks. For each network an attention mechanism
is employed to combine the sequential information. Subsequently, the gating mechanism
combines the forward/backward information to produce the embedding representation.
The two decoder networks have similar structure: the forward decoder reconstructs the
original signal considering its original order (forward - green color) while the backward
decoder reconstructs the same signal but in inverse order (backward - red color). (Color
figure online)

va = tanh(H · Wa + ba) (1)
λ = SoftMax(va � ua) (2)

hatt =
T∑

j=1

λj · htj (3)

where H ∈ R
T,l is a matrix obtained by vertically stacking all feature vectors

htj ∈ R
l learned at T different timestamps by the GRU and l is the hidden state

size of the GRU network. Matrix Wa ∈ R
l,l and vectors ba, ua ∈ R

l are parame-
ters learned during the process. The � symbol indicates element-wise multiplica-
tion. The purpose of this procedure is to learn a set of weights (λt1 , . . . , λtT) that
allows to combine the contribution of each timestamp htj . The SoftMax func-
tion is used to normalize weights λ so that their sum is equal to 1. The results of
the attention mechanism for the backward (hatt

back) and for the forward (hatt
forw)

GRU units are depicted with red and green boxes, respectively, in Fig. 1. Finally,
the two sets of features are combined by means of a gating mechanism [18] as
follows:

embedding = gate(hatt
back) � hatt

back + gate(hatt
forw) � hatt

forw (4)

gate(x) = sigmoid(W
′ · x + b) (5)

where the gating function gate(·) performs a non linear transformation of the
input via a sigmoid activation function and a set of parameters (W

′
and b)

that are learnt at training time. The result of the gate(·) function is a vector of
elements ranging in the interval [0, 1] that is successively used to modulate the
information derived by the attention operation. The gating mechanism adds a
further decision level in the fusion between the hatt

forw and hatt
back information since

it has the ability to select (or retain a part of) the helpful features to support
the task at hand [27].

The forward and backward decoder networks are fed with the representation
(embedding) generated by the encoder. They deal with the reconstruction of
the original signal considering the same order (resp. the reverse order) for the
forward (resp. backward) decoder. This means that the autoencoder copes with
the sum of two reconstruction tasks (i.e., forward and backward) where each
reconstruction task tries to minimize the Mean Squared Error between the orig-
inal data and the reconstructed one. Formally, the loss function implemented by
the autoencoder network is defined as follows:

Lae =
1

|X|
|X|∑

i=1

||Xi − dec(enc(Xi, Θ1), Θ2)||22 (6)

+
1

|X|
|X|∑

i=1

||rev(Xi) − decback(enc(Xi, Θ1), Θ3)||22

where ||||22 is the squared L2 distance, dec (resp. decback) is the forward (resp.
backward) decoder network, enc is the encoder network and rev(xi) is the time-
series xi in reverse order. Θ1 are the parameters associated to the encoder while
Θ2 (resp. Θ3) are the parameters associated to the forward (resp. backward)
decoder.

Algorithm 1 depicts the whole procedure implemented by DeTSEC. It takes
as input the dataset X, the number of epochs N EPOCHS and the number of
expected clusters nClust. The output of the algorithm is the new representation
derived by the GRU based attentive-gated autoencoder, named embeddings. The
first stage of the framework (lines 2–6) trains the autoencoder reported in Fig. 1
for a total of 50 epochs. Successively, the second stage of the framework (lines
8–14) performs a loop considering the remaining number of epochs in which,
at each epoch, the current representation is extracted, a K-Means algorithm is
executed to obtain the current cluster assignment and the corresponding cen-
troids. Successively, the autoencoder parameters are optimized considering the
reconstruction loss Lae plus a third term that has the objective to stretch the
data embeddings closer to the corresponding cluster centroids:

1
|X|

|X|∑

i=1

nClust∑

l=1

δil||Centroidsl − enc(Xi, Θ1)||22 (7)

where δil is a function that is equal to 1 if the data embedding of the time-series
xi belongs to cluster l and 0 elsewhere. Centroidsl is the centroid of cluster l.

Finally, the new data representation (embeddings) is extracted (line 15) and
returned by the procedure. The final partition is obtained by applying the K-
Means clustering algorithm on the new data representation.

Algorithm 1. DeTSEC Optimization
Require: X, N EPOCHS, nClust.
Ensure: embeddings.
1: i = 0
2: while i < 50 do
3: Update Θ1, Θ2 and Θ3 by descending the gradient:
4: ∇Θ1,Θ2,Θ3

1
|X|

∑|X|
i=1 ||Xi − dec(enc(Xi, Θ1), Θ2)||22 + 1

|X|
∑

xi∈X ||rev(Xi) −
decback(enc(Xi, Θ1), Θ3)||22

5: i = i + 1
6: end while
7: i = 0
8: while i < (N EPOCHS - 50) do
9: embeddings = extractEmbedding(Θ1, X)

10: δ, Centroids = runKMeans(embeddings, nClust)
11: Update Θ1, Θ2 and Θ3 by descending the gradient:
12: ∇Θ1,Θ2,Θ3

1
|X|

∑|X|
i=1 ||Xi − dec(enc(Xi, Θ1), Θ2)||22 + 1

|X|
∑

xi∈X ||rev(Xi) −
decback(enc(Xi, Θ1), Θ3)||22 + 1

|X|
∑|X|

i=1

∑nClust
j=1 δij ||Centroidsj − enc(Xi, Θ1)||22

13: i = i + 1
14: end while
15: embeddings = extractEmbedding(Θ1, X)
16: return embeddings

3 Experimental Evaluation

In this section we assess the behavior of DeTSEC considering six real world
multivariate time series benchmarks. To evaluate the performance of our pro-
posal, we compare it with several competing and baselines approaches by means
of standard clustering evaluation metrics. In addition, we perform a qualitative
analysis based on a visual inspection of the embedding representations learnt by
our framework and by competing approaches.

3.1 Competitors and Method Ablations

For the comparative study, we consider the following competitors:

– The classic K-means algorithm [21] based on euclidean distance.
– The spectral clustering algorithm [15] (SC). This approach leverages spectral

graph theory to extract a new representation of the original data. K-means
method is then applied to obtain the final data partition.

– The Deep Embedding Clustering algorithm [28] (DEC) that performs parti-
tional clustering through deep learning. Similarly to K-means, also this app-
roach is suited for data with fixed length. Also in this case we perform zero
padding to fit all the time-series lengths to the size of the longest one.

– The Dynamic Time Warping measures [7] (DTW) coupled with K-means
algorithm. Such distance measure is especially tailored for time-series data
with variable length-size.

– The Soft Dynamic Time Warping measures introduced in [6] (SOFTDTW).
This measure is a differentiable distance measure recently introduced to
manage dissimilarity evaluation between multivariate time-series of variable
length. We couple such measure with the K-means algorithm.

Note that when using K-means and SC, due to the fact that multivariate
time series can have different lengths, we perform zero padding to fit all the
time-series lengths to the longest one. For the DEC method, we use the KERAS
implementation1. For the DTW and SOFTDTW measures we use their publicly
available implementations [22]. With the aim to understand the interplay among
the different components of DeTSEC, we also propose an ablation study by
taking into account the following variants of our framework:

– A variant of our approach that does not involve the gating mechanism.
The information coming from the forward and backward encoder are
summed directly without any weighting schema. We name such ablation
DeTSECnoGate.

– A variant of our approach that only involves the forward encoder/decoder
GRU networks disregarding the use of the multivariate time series in reverse
order. We name such ablation DeTSECnoBack.

3.2 Data and Experimental Settings

Our comparative evaluation has been carried out by performing experiments
on six benchmarks characterized by different characteristics in terms of num-
ber of samples, number of attributes (dimensions) and time length: AUSLAN,
JapVowel, ArabicDigits, RemSensing, BasicM and ECG. All datasets, except
RemSensing – which was obtained contacting the authors of [10] – are available
online2. The characteristics of the six datasets are reported in Table 1.

Clustering performances were evaluated by using two evaluation measures:
the Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) [21].
The NMI measure varies in the range [0, 1] while the ARI measure varies in the
range [−1, 1]. These measures take their maximum value when the clustering
partition completely matches the original one, i.e., the partition induced by the
available class labels. Due to the non deterministic nature of all the clustering
1 https://github.com/XifengGuo/DEC-keras.
2 AUSLAN, JapVowel, ArabicDigits and ECG are available at http://www.

mustafabaydogan.com/files/viewcategory/20-data-sets.html; BasicM is available at
http://www.timeseriesclassification.com/dataset.php.

https://github.com/XifengGuo/DEC-keras
http://www.mustafabaydogan.com/files/viewcategory/20-data-sets.html
http://www.mustafabaydogan.com/files/viewcategory/20-data-sets.html
http://www.timeseriesclassification.com/dataset.php

Table 1. Dataset characteristics

Dataset # Samples # Dims Min/Max length Avg. length # Classes

AUSLAN 2 565 22 45/136 57 95

JapVowel 640 12 7/29 15 9

ArabicDigits 8 800 13 4/93 39 10

RemSensing 1 673 16 37/37 37 7

BasicM 80 6 100/100 100 4

ECG 200 2 39/152 89 2

algorithms involved in the evaluation, we run the clustering process 30 times
for each configuration, and we report average and standard deviation for each
method, benchmark and measure.

DeTSEC is implemented via the Tensorflow python library. For the com-
parison, we set the size of the hidden units in each of the GRU networks (for-
ward/backward - encoder/decoder) to 64 for BasicM, ECG benchmarks and 512
for AUSLAN, JapVowel, ArabicDigits, RemSensing benchmarks. This difference
is due to the fact that the former group includes datasets with limited number of
samples that cannot be employed to efficiently learn recurrent neural networks
with too many parameters. To train the model, we set the batch size equal to
16, the learning rate to 10−4 and we use the ADAM optimizer [12] to learn
the parameters of the model. The model are trained for 300 epochs: in the first
50 epochs the autoencoder is pre-trained while in the remaining 250 epochs the
model is refined via clustering loss. Experiments are carried out on a workstation
equipped with an Intel(R) Xeon(R) E5-2667 v4@3.20 GHz CPU, with 256 GB of
RAM and one TITAN X GPU.

3.3 Quantitative Results

Table 2 reports on the performances of DeTSEC and the competing methods in
terms of NMI and ARI. We can observe that DeTSEC outperforms all the other
methods on five datasets over six. The highest gains in performance are achieved
on speech and activity recognition datasetes (i.e., JapVowel, ArabicDigits, AUS-
LAN and BasicM). On such benchmarks, DeTSEC outperforms the best com-
petitors of at least 8 points (AUSLAN) with a maximum gap of 45 points on
ArabicDigits. Regarding the EGC dataset, we can note that best performances
are obtained by K-Means and DEC. However, it should be noted that also in
this case DeTSEC outperforms the competitors specifically tailored to manage
multivariate time-series data (i.e., DTW and SOFTDTW).

Table 3 reports on the comparison between DeTSEC and its ablations. It can
be noted how there is not a clear winner resulting from this analysis. DeTSEC
obtains the best performance (in terms of NMI and ARI) on two benchmarks
(ArabicDigits and BasicM), while DeTSECnoGate and DeTSECnoBack appear
to be more suitable for other benchmarks (even if the performances of DeTSEC

remain always comparable to the best ones). For instance, we can observe that
DeTSECnoGate achieves the best performances on ECG. This is probably due to
the fact that this ablation requires a lower number of parameters to learn, and
this can be beneficial for processing datasets with a limited number of samples,
timestamps and dimensions.

Table 2. Results in terms of Normalized Mutual Information and Adjusted Rand
Index of the different competing methods on the six considered multivariate time series
benchmarks.

AUSLAN JapVowel ArabDigits RemSens BasicM ECG

NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

K-means 0.35 0.23 0.16 0.11 0.14 0.06 0.39 0.43 0.25 0.11 0.16 0.25

SC 0.29 0.00 0.31 0.08 0.09 0.03 0.51 0.34 0.76 0.59 0.23 0.08

DEC 0.47 0.07 0.23 0.11 0.19 0.09 0.48 0.33 0.38 0.20 0.16 0.25

DTW 0.71 0.33 0.81 0.71 0.17 0.03 0.60 0.47 0.67 0.43 0.06 0.06

SOFTDTW 0.72 0.34 0.75 0.62 0.13 0.05 0.56 0.41 0.14 0.18 0.10 0.05

DeTSEC 0.80 0.47 0.96 0.89 0.64 0.53 0.61 0.45 0.80 0.62 0.12 0.19

Table 3. Results in terms of Normalized Mutual Information and Adjusted Rand Index
of the different ablations of the proposed method on the six considered multivariate
time series benchmarks.

AUSLAN JapVowel ArabDigits RemSens BasicM ECG

NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

DeTSECnoGate 0.83 0.52 0.96 0.95 0.63 0.52 0.61 0.46 0.79 0.61 0.16 0.25

DeTSECnoBack 0.79 0.46 0.96 0.96 0.60 0.49 0.61 0.50 0.79 0.61 0.05 0.1

DeTSEC 0.80 0.47 0.96 0.89 0.64 0.53 0.61 0.45 0.80 0.62 0.12 0.19

3.4 Visual Inspection

To proceed further in the analysis, we visually inspect the new data representa-
tion produced by DeTSEC and the best two competing methods (i.e., SC and
DTW) by using BasicM as illustrative example. We choose this benchmark since
it includes a limited number of samples (i.e., to ease the visualization and avoid
possible visual cluttering) and it is characterized by timeseries of fixed length
that avoid zero padding transformation. The BasicM benchmark includes exam-
ples belonging to four different classes that, in Fig. 2, are depicted with four
different colors: red, blue, green and black. Figure 2(a), (b), (c) and (d) show
the two-dimensional projections of the original data versus the DTW and SC
approaches on such dataset. The two dimensional representation is obtained via
the t-distributed stochastic neighbor embedding (TSNE) approach [16].

In this evaluation, we clearly observe that DeTSEC recovers the underlying
data structure better than the competing approaches. The original data rep-
resentation (Fig. 2(a)) drastically fails to capture data separability. The DTW
method (Fig. 2(b)) retrieves the cluster involving the blue points, on the left side
of the figure, but it can be noted how all the other classes still remain mixed
up. SC produces a better representation than the previous two cases but it still
exhibits some issue to recover the four cluster structure: the green and black
examples are slightly separated but some confusion is still present while the red
and blue examples lie in a very close region (a fact that negatively impacts the
discrimination between these two classes). Conversely, DeTSEC is able to stretch
the data manifold producing embeddings that visually fit the underlying data
distribution better than the competing approaches, and distinctly organize the
samples according to their inner cluster structure.

(a) ORIG (b) DTW

(c) SC (d) DeTSEC

Fig. 2. Visual projection of the original data (a), the distance matrix induced by
Dynamic Time Warping measure (b), the representation generated via the Spectral
Clustering method (c) and the embeddings learnt by DeTSEC (d) on the BasicM
benchmark. (Color figure online)

To sum up, we can underline that explicitly managing the temporal auto-
correlation leads to better performances regarding the clustering of multivariate

time-series of variable length. Considering the benchmarks involved in this work,
DeTSEC exhibits a general better behavior with respect to the competitors when
the benchmark contains enough data to learn the model parameters. This is
particularly evident when speech or activity recognition tasks are considered. In
addition, the visual inspection of the generated embedding representation is in
line with the quantitative results and it underlines the quality of the proposed
framework.

4 Conclusions

In this paper we have presented DeTSEC, a deep learning based approach to
cluster multivariate time series data of variable length. DeTSEC is a two stages
framework in which firstly an attentive-gated RNN-based autoencoder is learnt
with the aim to reconstruct the original data and, successively, the reconstruction
task is complemented with a clustering refinement loss devoted to further stretch-
ing the embedding representations towards the corresponding cluster structure.

The evaluation on six real-world time-series benchmarks has demonstrated
the effectiveness of DeTSEC and its flexibility on data coming from different
application domains. We also showed, through a visual inspection, how the
embedding representations generated by DeTSEC highly improve data sepa-
rability. As future work, we plan to extend the proposed framework considering
a semi-supervised and/or constrained clustering setting.

References

1. Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: a review and
new perspectives. IEEE TPAMI 35(8), 1798–1828 (2013)

2. Britz, D., Guan, M.Y., Luong, M.: Efficient attention using a fixed-size memory
representation. In: EMNLP, pp. 392–400 (2017)

3. Chandrakala, S., Sekhar, C.C.: A density based method for multivariate time
series clustering in kernel feature space. In: Proceedings of the International Joint
Conference on Neural Networks, IJCNN 2008, Part of the IEEE WCCI 2008,
Hong Kong, China, 1–6 June 2008, pp. 1885–1890 (2008)

4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP, pp. 1724–1734 (2014)

5. Coppi, R., D’Urso, P., Giordani, P.: A fuzzy clustering model for multivariate
spatial time series. J. Classif. 27(1), 54–88 (2010). https://doi.org/10.1007/s00357-
010-9043-y

6. Cuturi, M., Blondel, M.: Soft-DTW: a differentiable loss function for time-series.
In: ICML, pp. 894–903 (2017)

7. Dau, H.A., et al.: Optimizing dynamic time warping’s window width for time
series data mining applications. Data Min. Knowl. Discov. 32(4), 1074–1120 (2018).
https://doi.org/10.1007/s10618-018-0565-y

8. D’Urso, P., Maharaj, E.A.: Wavelets-based clustering of multivariate time series.
Fuzzy Sets Syst. 193, 33–61 (2012)

9. Hallac, D., Vare, S., Boyd, S.P., Leskovec, J.: Toeplitz inverse covariance-based
clustering of multivariate time series data. In: KDD, pp. 215–223 (2017)

https://doi.org/10.1007/s00357-010-9043-y
https://doi.org/10.1007/s00357-010-9043-y
https://doi.org/10.1007/s10618-018-0565-y

10. Interdonato, R., Ienco, D., Gaetano, R., Ose, K.: DuPLO: a dual view point deep
learning architecture for time series classification. ISPRS J. Photogramm. Remote
Sens. 149, 91–104 (2019)

11. Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNs for
time series classification. Neural Netw. 116, 237–245 (2019)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

13. Liao, T.W.: Clustering of time series data - a survey. Pattern Recogn. 38(11),
1857–1874 (2005)

14. Liu, F., Cai, M., Wang, L., Lu, Y.: An ensemble model based on adaptive noise
reducer and over-fitting prevention LSTM for multivariate time series forecasting.
IEEE Access 7, 26102–26115 (2019)

15. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007). https://doi.org/10.1007/s11222-007-9033-z

16. van der Maaten, L., Hinton, G.: Visualizing data Using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

17. Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering
with deep learning: from the perspective of network architecture. IEEE Access 6,
39501–39514 (2018)

18. Ravanelli, M., Brakel, P., Omologo, M., Bengio, Y.: Improving speech recognition
by revising gated recurrent units. In: Interspeech, pp. 1308–1312 (2017)

19. Shih, S.-Y., Sun, F.-K., Lee, H.Y.: Temporal pattern attention for multivariate
time series forecasting. Mach. Learn. 1421–1441 (2019). https://doi.org/10.1007/
s10994-019-05815-0

20. Talavera-Llames, R.L., Pérez-Chacón, R., Troncoso, A., Mart́ınez-Álvarez, F.: MV-
KWNN: a novel multivariate and multi-output weighted nearest neighbours algo-
rithm for big data time series forecasting. Neurocomputing 353, 56–73 (2019)

21. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn.
Addison-Wesley Longman Publishing Co. Inc., Boston (2005)

22. Tavenard, R.: tslearn: a machine learning toolkit dedicated to time-series data
(2017). https://github.com/rtavenar/tslearn

23. Trosten, D.J., Strauman, A.S., Kampffmeyer, M., Jenssen, R.: Recurrent deep
divergence-based clustering for simultaneous feature learning and clustering of vari-
able length time series. In: ICASSP, pp. 3257–3261 (2019)

24. Tzirakis, P., Nicolaou, M.A., Schuller, B.W., Zafeiriou, S.: Time-series clustering
with jointly learning deep representations, clusters and temporal boundaries. In:
ICAFGR, pp. 1–5 (2019)

25. Wu, E.H.C., Yu, P.L.H.: Independent component analysis for clustering multivari-
ate time series data. In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS
(LNAI), vol. 3584, pp. 474–482. Springer, Heidelberg (2005). https://doi.org/10.
1007/11527503 57

26. Wu, G., Zhang, H., He, Y., Bao, X., Li, L., Hu, X.: Learning Kullback-Leibler
divergence-based gaussian model for multivariate time series classification. IEEE
Access 7, 139580–139591 (2019)

27. Xiao, L., Zhang, H., Chen, W.: Gated multi-task network for text classification.
In: NAACL-HLT, pp. 726–731 (2018)

28. Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: ICML, pp. 478–487 (2016)

https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s10994-019-05815-0
https://doi.org/10.1007/s10994-019-05815-0
https://github.com/rtavenar/tslearn
https://doi.org/10.1007/11527503_57
https://doi.org/10.1007/11527503_57

	Deep Multivariate Time Series Embedding Clustering via Attentive-Gated Autoencoder
	1 Introduction
	2 DeTSEC: Deep Time Series Embedding Clustering
	3 Experimental Evaluation
	3.1 Competitors and Method Ablations
	3.2 Data and Experimental Settings
	3.3 Quantitative Results
	3.4 Visual Inspection

	4 Conclusions
	References

