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1 | INTRODUCTION

| Manuel Gonzalez-Fuente

| Laurent Deslandes | Nemo Peeters

Abstract

The type lll secretion system with its delivered type Il effectors (T3Es) is one of
the main virulence determinants of Ralstonia solanacearum, a worldwide devastating
plant pathogenic bacterium affecting many crop species. The pan-effectome of the
R. solanacearum species complex has been exhaustively identified and is composed of
more than 100 different T3Es. Among the reported strains, their content ranges from
45 to 76 T3Es. This considerably large and varied effectome could be considered
one of the factors contributing to the wide host range of R. solanacearum. In order to
understand how R. solanacearum uses its T3Es to subvert the host cellular processes,
many functional studies have been conducted over the last three decades. It has
been shown that R. solanacearum effectors, as those from other plant pathogens, can
suppress plant defence mechanisms, modulate the host metabolism, or avoid bac-
terial recognition through a wide variety of molecular mechanisms. R. solanacearum
T3Es can also be perceived by the plant and trigger immune responses. To date, the
molecular mechanisms employed by R. solanacearum T3Es to modulate these host
processes have been described for a growing number of T3Es, although they remain
unknown for the majority of them. In this microreview, we summarize and discuss

the current knowledge on the characterized R. solanacearum species complex T3Es.
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geographical distribution, and long-lasting persistence on the soil,
Ralstonia ranks among the most devastating plant pathogenic bacte-

Bacteria from the Ralstonia solanacearum species complex (RSSC)
are soilborne plant pathogens responsible for bacterial wilt on
more than 250 species, moko and blood diseases of banana, brown
rot of potato, and Sumatra disease on clove trees (Peeters et al.,

2013a). Due to its aggressiveness, broad host range, widespread

ria (Mansfield et al., 2012). For a successful infection, RSSC bacteria
rely on different virulence determinants, including the production
of exopolysaccharides and phytohormones, secretion of cell wall-
degrading enzymes, detoxification, and nutrient-scavenging systems

and motility (Genin and Denny, 2012). However, the main virulence
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determinant of RSSC bacteria is the type Ill secretion system (T3SS),
a “molecular syringe” that allows the translocation of several type
Il effector proteins (T3Es) directly into the host cell (Coll and Valls,
2013). These T3Es, referred to as Ralstonia injected proteins (Rips),
are able to subvert the defences and modify the metabolism of the

host to promote virulence.

2 | THE RSSC TYPE Il EFFECTOME, A
LARGE AND VARIED ARSENAL

Since the first RSSC T3E genes were cloned in the 1990s (Carney and
Denny, 1990; Arlat et al., 1994; Guéneron et al., 2000), different ap-
proaches have been conducted to systematically identify at the ge-
nome scale the full T3E repertoire of several RSSC strains. Two main
strategies were undertaken: (a) sequence-based approaches, search-
ing for sequence homology with previously described effector genes
and/or for the presence of certain 25-nucleotide cis elements in their
promoters, the hrp, box or the plant-inducible promoter (PIP) box
motifs (Salanoubat et al., 2002; Cunnac et al., 2004a; Gabriel et al.,
2006; Peeters et al., 2013b; Sabbagh et al., 2019), and (b) regulation-
based strategies, exploiting that T3E gene expression is controlled by
HrpB, an AraC family member of transcriptional regulators (Genin
etal., 1992; Cunnac et al., 2004a). Regulation-based strategies include
gene expression studies (Cunnac et al., 2004b; Occhialini et al., 2005)
and genetic screens using random transposon-insertion mutagenesis
(Mukaihara et al., 2004). Verification of the T3SS-dependency of the
secretion or translocation is typically required to confirm the bona
fide T3E status of in silico predicted or candidate T3Es (Lonjon et al.,
2018). Most translocation analyses exploit the adenylate cyclase (Cya)
reporter system (Cunnac et al., 2004b; Mukaihara and Tamura, 2009;
Mukaihara et al., 2010). T3SS-dependent secretion analyses compare
the secreted proteins, detected by immunoblotting or mass spectrom-
etry, of wild-type compared to hrp mutant strains (Tamura et al., 2005;
Solé et al., 2012; Lonjon et al., 2016; Sabbagh et al., 2019).

A recent genomic study on 140 RSSC strains identified the
pan-effectome of the species complex, consisting of 102 T3E and
16 hypothetical T3E genes (Sabbagh et al., 2019). RSSC strains carry
on average 64 T3E genes (minimum 45 in R. syzygii subsp. syzygii
strain R24 and maximum 76 in R. pseudosolanacearum strain Rs-10-
244). This contrasts with other plant pathogenic bacteria such as
Pseudomonas syringae and Xanthomonas campestris, with an average
of 31 (min. 3, max. 53) and 23 (min. 12, max. 28) T3E genes, respec-
tively (Roux et al., 2015; Dillon et al., 2019). The existence of several
paralog families, such as the RipG (former GALA), RipS (SKWP), RipA
(AWR), RipH (HLK), or RipP (PopP) families, can be considered as a re-
markable feature of the RSSC. Not a single known RSSC strain does
not carry multiple copies of these paralog T3E families. This contrib-
utes to the large size of the RSSC pan-effectome. The T3E reper-
toires of different RSSC strains are quite diverse, with only 16 core
T3Es (i.e., T3Es present in at least 95% of sequenced strains), which
represents 13.6% of the RSSC pan-effectome (Sabbagh et al., 2019).

This core-effectome is larger than in P. syringae (four core T3Es, 5.7%

of its pan-effectome) or X. campestris (three core T3Es, 8.6% of its
pan-effectome) (Roux et al., 2015; Dillon et al., 2019). Several stud-
ies have tried to connect the T3E diversity to the host specificity of
RSSC strains (Ailloud et al., 2015; Cho et al., 2019; Sabbagh et al.,
2019). Although some host specificity determinants could be identi-
fied, the power of such studies has usually been largely limited by the
lack of exhaustive strain host range empirical data.

3 | MANY T3ES, BUT FOR WHAT
PURPOSE?

As model root and vascular plant pathogens, RSSC bacteria are among
the pathogens with a larger number of functionally characterized T3Es.
Some effectome-scale experiments have tried to shed light on the func-
tion of RSSC T3Es through systematic determination of their ability to
induce a hypersensitive response (HR; Wroblewski et al., 2009), inhibit
plant defences (Nakano and Mukaihara, 2019a), or identify their plant
targets (Gonzalez-Fuente et al., 2020). However, most of our current
knowledge on effector function comes from smaller-scale experiments
in which often one or a few T3Es are studied. To date, we have counted
more than 50 different RSSC T3Es that have been characterized with
varying degrees of detail (Figure 1 and Table 1). One of the main fac-
tors complicating this task is the observed genetic redundancy among
different RSSC T3Es (Angot et al., 2006; Solé et al., 2012; Chen et al.,
2014). This redundancy is likely to ensure a more robust virulence strat-
egy for the bacteria (Ghosh and O’Connor, 2017), although it makes the
functional dissection of single effectors more complicated, particularly
for the paralog families. Nevertheless, some members of these families
can still have specific and nonredundant functions (Angot et al., 2006;
Turner et al., 2009; Wang et al., 2016).

Similar to other pathogens, RSSC T3Es collectively contribute to
the pathogen fitness in the plant through different and not always
well-characterized mechanisms (Torufo et al., 2016). These include
the interference with the plant basal defence responses, alteration
of the plant metabolism, and avoidance of the specific recognition
of other T3Es. However, some RSSC T3Es can also be recognized by
specific plant genotypes and induce strong immune responses.

3.1 | Interference with plant basal immunity

The subversion of basal defences is one of the most studied func-
tions of pathogen effectors. Several RSSC T3Es are known to inter-
fere with different host cellular processes involved in these basal
defence responses. RipP2 (former PopP2) relies on its acetyltrans-
ferase activity to acetylate the WRKY domain of the plant homony-
mous transcription factors, which prevents their association with
DNA and subsequent expression of defence-related genes (Le Roux
et al., 2015). RipAY is selectively activated by eukaryotic thioredox-
ins to degrade the host glutathione, which plays an important role in
plant immunity (Fujiwara et al., 2016 , 2020; Mukaihara et al., 2016;
Sang et al., 2018). RipAR and RipAW rely on their E3 ubiquitin ligase
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FIGURE 1 Ralstonia solanacearum species complex (RSSC) bacteria deploy an arsenal of type Il effectors (T3Es) to alter the plant
metabolism and interfere with plant immune responses. During the infection process, conserved bacterial molecules are recognized by plant
pattern recognition receptors (PRRs) at the surface of the host cell. They activate basal defence responses to prevent pathogen proliferation.
However, RSSC bacteria translocate T3Es into the plant cell to subvert the plant defences and accommodate the bacterial needs. T3Es act
on different host pathways. RipAY and RipN alter the glutathione level and NADH/NAD" ratio, respectively. RipAY, RipR, RipAL, RipG1, and
RipG3 target the hormone synthesis and signalling level. Different RipG family members, RipAR and RipAW, interfere with ubiquitination
processes. The metabolism is also manipulated by RSSC T3Es. RipA5, RipTPS, and RipTAL are able to modulate certain metabolic pathways.
RipTAL binds to the plant DNA, activating the expression of shorter and more efficiently translated transcripts of arginine decarboxylase
(ADC) genes, key enzymes in the biosynthesis of polyamines. This boost in the polyamine level could prevent the proliferation of Ralstonia
niche competitors. RipP2 relies on its acetyltransferase activity to acetylate defensive WRKY transcription factors, inhibiting their DNA-
binding activities and preventing subsequent expression of defence-related genes. The nuclear T3E RipAB inhibits the expression of Ca?*-
related defence genes. In addition to these functionally characterized RSSC T3Es, other effectors involved in dampening of basal defence
through as yet unknown mechanisms have been identified: RipAR, RipAW, RipG family, RipAB, RipA5, RipAD, RipAF1, RipD, RipE1, Ripl,
RipQ, RipAC, RipAP, RipAU, RipH1, RipM, RipS1, RipAN, and RipB. RSSC T3Es can also be perceived in planta by intracellular immune-Nod-
like receptors (NLRs), leading to the activation of specific defence mechanisms, often associated with an HR. RipE1, RipAA, RipP1, RipX,
RipP2, RipAT, RipAV, RipA1-A5, RipTPS, RipAX2, RipAB, RipB, RipBN, and Ripl also induce HR on several hosts. Some T3Es can modulate the
activity of others and prevent their recognition by the plant surveillance system. Indeed, peroxisome-localized RipAK suppresses effector-
triggered HR by inhibiting host catalase activities (CATs). RipAY and RipAC inhibit RipE1-mediated HR

activity to inhibit plant defence responses (Nakano et al., 2017). lipase domain required for the induction of jasmonic acid (JA) pro-

Also linked to ubiquitination, the RipG (former GALA) family of
T3Es presents a eukaryotic F-box domain required for the interac-
tion with Arabidopsis components of the Skp, Cullin, F-box contain-
ing (SCF) complex contributing to Ralstonia virulence (Angot et al.,
2006; Remigi et al., 2011). RipAL is a chloroplastic effector with a

duction and suppression of salicylic acid (SA) signalling (Nakano and
Mukaihara, 2018). The inhibition of SA-mediated defences seems
also to be the role of RipR (former PopS) and RipG1 and RipG3, al-
though the molecular mechanisms behind this inhibition still remain
unknown (Jacobs et al., 2013; Medina-Puche et al., 2019). RipAB
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(former PopB) down-regulates the calcium signalling pathway and
inhibits the plant basal defences (Zheng et al., 2019). Finally, RipN
contains a Nudix hydrolase domain required to alter the NADH/
NAD* ratio in planta and to inhibit the plant defence responses (Sun
etal., 2019).

In addition to these functionally characterized RSSC TS3Es,
other basal defence inhibiting T3Es have been identified in large-
scale screenings. Sixteen additional RSSC T3Es have been reported
as suppressors of the flg22-induced reactive oxygen species (ROS)
production, a marker typically associated with pathogen-associated
molecular pattern (PAMP)-triggered immunity (Sang and Macho,
2017): RipA5 (former AWRS5), RipAD, RipAF1, RipD, RipE1, Ripl,
RipQ, RipAC (former PopC), RipAL, RipAP, and RipAU; and to a lesser
extent RipH1 (former HLK1), RipM, RipS1 (former SKWP1), RipAN,
and RipB (Nakano and Mukaihara, 2019a; Jeon et al., 2020).

3.2 | Targeting plant metabolism

Plant pathogenic bacterial T3Es can also interfere with different host
metabolic processes to promote the bacterial survival, release nutri-
ents, and facilitate the infection (Macho, 2016). RSSC bacteria thrive
in the xylem, manipulating the composition of the xylem sap (Lowe-
Power et al., 2018). This manipulation can occur through different
mechanisms, including the T3SS, as RSSC bacteria are able to inject
T3Es into living cells surrounding the vasculature (Vasse et al., 2000;
Henry et al., 2017). Indeed, some RSSC T3Es display different ac-
tivities that could modulate the plant metabolism. One of the better
characterized examples is RipTAL (former Brg11), which presents ho-
mology with Xanthomonas spp. transcription activator-like (TAL) ef-
fectors (de Lange et al., 2013). RipTAL induces the expression of plant
genes involved in the synthesis of polyamines, evading their native
translational regulation mechanisms (Wu et al., 2019). It is hypoth-
esized that this RipTAL-induced boost of the plant polyamine levels
prevents the proliferation of possible Ralstonia competitors (Wu et al.,
2019). RipA5 acts as an inhibitor of the conserved target of rapamycin
(TOR) pathway in yeast and plant cells (Popa et al., 2016). As a key reg-
ulator of the switch between growth and stress responses (Dobrenel
et al., 2016), RipA5-mediated inhibition of the plant TOR pathway
leads to reduced nitrate reductase activity (Popa et al., 2016). Lastly,
RipTPS possesses trehalose-6-phosphate synthase activity in yeast
(Poueymiro et al., 2014). As trehalose-6-phosphate is a key regula-
tory molecule in plant metabolism (Baena-Gonzalez and Lunn, 2020),
RipTPS could potentially interfere with this regulation but so far this

activity has not been shown in planta.

3.3 | Contribution to virulence through (as of yet)
unknown mechanisms

In addition to the beforementioned RSSC T3Es for which functional
roles could be assigned, other T3E genes have been also identified

as contributors to bacterial virulence on different hosts. These

additional T3E genes have been identified through pathogenicity
or competitive index assays with single or multiple gene mutants.
These tests allow us to pinpoint the involvement in virulence but
do not provide further information about the underlying molecular
mechanisms. This is the case for RipA2 and RipD, which contribute to
virulence in tomato (Cunnac et al., 2004b), or RipAA and RipG7, im-
portant in the early and late stages of infection of the model legume
species Medicago truncatula, respectively (Turner et al., 2009; Wang
etal., 2016). RipAC, RipAF1, RipAK, RipAV, RipAY, RipD, RipP2, RipR,
RipS4, RipY, and RipTAL contribute to bacterial fitness in eggplant
(Macho et al., 2010). For RipD and RipP2, this contribution to fit-
ness was also demonstrated in tomato and bean, and in the case of
RipAA, exclusively in tomato (Macho et al., 2010). The RipA family
members contribute collectively to virulence in both eggplant and
tomato (Solé et al., 2012), and the RipH family members also con-
tribute to virulence in tomato (Chen et al., 2014). RipAM, RipAN, and
RipBH contribute significantly to virulence in potato (Zheng et al.,
2019), and RipAC acts similarly in tomato (Yu et al., 2020).

3.4 | Effectors triggering plant immune responses

Through evolution, plants have evolved mechanisms to recognize
specific RSSC T3Es and induce a strong defence response often as-
sociated with a hypersensitive response (HR) (Balint-Kurti, 2019).
This is precisely what was observed on petunia with RipX (former
PopA), the first RSSC T3E to have been characterized (Arlat et al.,
1994). This same phenotype was later observed in tobacco (Belbahri
et al., 2002; Racapé et al., 2005), and could be explained by a RipX-
mediated inhibition of the gene expression of the ATP synthase
F1 subunit o (Sun et al., 2020). RipAA and RipP1 (former AvrA and
PopP1, respectively) trigger strong HRs in diverse Nicotiana spp.
(Carney and Denny, 1990; Robertson et al., 2004; Poueymiro et al.,
2009; Chen et al., 2018). Additionally, RipP1 also triggers anHR on
petunia St40 line (Lavie et al., 2002), and RipAA, in pepper CW300
and RNaKy accessions (Wroblewski et al., 2009). RipP2 was the
first RSSC T3E for which the corresponding immune receptor was
identified in Arabidopsis: Recognition of R. solanacearum 1 (RRS1)
(Deslandes et al., 1998, Deslandes et al., 2003). It was later shown
that this recognition also involves the Resistance to Pseudomonas sy-
ringae 4 (RPS4) immune receptor (Gassmann et al., 1999; Narusaka
et al., 2009; Williams et al., 2014). The RPS4/RRS1-dependent im-
munity is activated by RipP2 acetylation of RRS1 C-terminal WRKY
domain representing an integrated decoy that mimics RipP2 viru-
lence targets (Tasset et al., 2010; Le Roux et al., 2015; Sarris et al.,
2015). RipAT and RipAV induce HR-like phenotypes when expressed
in most lettuce and certain pepper and tomato cultivars (Wroblewski
et al., 2009). RipA1, RipA2, RipA3, and RipA5 trigger HRs with var-
ying intensities on different Nicotiana spp. (Solé et al., 2012; Jeon
et al., 2020). RipTPS produces an HR specifically on N. tabacum
independently of its enzymatic activity (Poueymiro et al., 2014).
RipAX2 (former Rip36) elicits immunity on wild and cultivated egg-
plants in a Zn-finger domain-dependent (Nahar et al., 2014) and
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independent (Morel et al., 2018) manner, respectively. RipAB trig-
gers an HR in N. benthamiana but only when localized in the nucleus
(Zheng et al., 2019). RipB induces chlorosis in different Nicotiana
spp. in a Recognition of XopQ1 (Roql)-dependent manner (Nakano
and Mukaihara, 2019b). RipBN triggers resistance in tomato in a
Pseudomonas tomato race 1 (Ptr1)-dependent manner (Mazo-Molina
et al., 2019). RipE1 triggers immune responses mediated by both SA
and JA in N. benthamiana and Arabidopsis (Sang et al., 2020). RipE1
also triggers an HR in N. tabacum and N. benthamiana in a Suppressor
of G2 allele of skp1 (SGT1)-dependent manner for the latter (Jeon
et al., 2020). Last, Ripl triggers immune responses in tomato and cell
death in yeast and N. benthamiana, the latter through interaction
with the plant basic helix-loop-helix 93 (bHLH93) transcription fac-
tor (Deng et al., 2016; Zhuo et al., 2020).

3.5 | Effectors preventing other effectors to be
recognized in planta

The recognition of RSSC T3Es and subsequent strong immune re-
sponses can also be counteracted through the action of other T3Es,
sometimes referred as “meta-effectors” (Kubori et al., 2010). This could
allow the bacteria to conserve effectors with potent virulence func-
tions for which a given host has already developed specific recognition
capabilities. This is the case for RipAY, which can inhibit the previously
mentioned RipE1-triggered immunity (Sang et al., 2020). RipAY inhib-
its RipE1-mediated activation of the SA signalling pathway probably
through degradation of the plant cellular glutathione (Mukaihara et al.,
2016; Sang et al., 2018 , 2020). It has also been proposed that RipAC
suppresses RipEl-triggered immunity, inhibiting in this case SGT1-
mediated MAPK activation (Yu et al., 2020). RipAK is able to prevent
Ralstonia-induced HR in N. tabacum by inhibiting plant catalase activity
(Sun et al., 2017). Whether this HR is induced by RipAA, RipB, and/or
RipP1, responsible for RSSC incompatibility in N. tabacum (Poueymiro
et al., 2009; Nakano and Mukaihara, 2019b), is still unknown.

4 | CONCLUSIONS AND PERSPECTIVES

In this microreview, we have summarized the current knowledge
about RSSC T3Es. Despite being one of the largest and most stud-
ied bacterial plant pathogen effectomes, a majority of RSSC T3Es
remain poorly characterized to date. This will undoubtedly change
in the near future as more and more RSSC T3Es are currently being
characterized by several research groups worldwide. Nevertheless,
from what is currently known, we can already see that the large RSSC
effectome is highly diversified in terms of molecular functions, sub-
cellular localizations, and host-targeted processes. RSSC T3Es act in
the host plasma membrane, cytoplasm, nucleus, chloroplasts, or per-
oxisomes, and interfere with the plant gene expression regulation at
the transcriptional and translational level, metabolism, ubiquitination,
phytohormone production and signalling, redox homeostasis, and

calcium signalling. This functional repertoire, coupled with genetic
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and functional redundancy, confers RSSC bacteria with a strong, var-
ied, and robust set of weaponry against their hosts. It is thus tempting
to hypothesize that this T3E diversity contributes to the adaptability
of Ralstonia as a species complex to a wide range of plant hosts. It
should also be noted that this large cornucopia of T3Es could be a key
factor in the appearance of RSSC strains adapted to new host plants,
like the recently identified strains virulent on cucurbitaceous crops
(Wicker et al., 2007), coffee plant (Lopes et al., 2015), fig tree (Jiang
et al., 2016), African daisy (Weibel et al., 2016), and roses (Tjou-Tam-
Sin et al., 2017). Future work will help to elucidate whether the so far
uncharacterized T3Es target similar processes to those previously de-
scribed or if, on the contrary, they interfere with completely different
plant processes. This is key to understanding whether the strength
of RSSC effectomes comes from its high diversity (i.e., RSSC bacte-
ria target simultaneously many different plant processes) or from its
redundancy (i.e., RSSC bacteria target a few key plant processes with
redundant T3Es). The characterization of new T3Es will also allow
the plant processes that RSSC bacteria specifically target to be de-
termined to establish a successful infection. Interestingly, 9 out the
16 RSSC core T3Es have been shown to contribute to virulence in
different hosts: RipA2, RipAB, RipAM, RipAN, RipAY, RipG5, RipGé,
RipH2, and RipR. From these nine T3Es, functional information is
only available for five of them: RipG5 and RipGé interact with com-
ponents of the E3 ubiquitin ligase complex (Angot et al., 2006; Remigi
et al., 2011), RipR inhibits SA-mediated defence responses (Jacobs
et al., 2013), RipAY degrades plant glutathione (Fujiwara et al., 2016
, 2020; Mukaihara et al., 2016; Sang et al., 2018), and RipAB down-
regulates the calcium signalling pathway (Zheng et al., 2019). These
different processes, together with the unknown ones targeted by the
other core T3Es, could represent the minimum plant processes that
Ralstonia needs to modulate. This “basal arsenal” could be comple-
mented with accessory T3Es that could have additive effects, target-
ing the same or different processes. However, this characterization
might prove quite complex as these plant processes, and their modu-
lation by Ralstonia T3Es, might vary substantially among different or-
gans and host species. The diverse, and sometimes large, host range
of RSSC strains and the functional diversity and redundancy of its
effectome are therefore some of the causes of RSSC adaptability and
aggressiveness, but also some of the major factors complicating its
systematic and exhaustive study. A valuable tool that will open a wide
variety of possibilities in the decipherment of RSSC T3E functions is
the generation of a strain devoid of all its effectors, as has been per-
formed on the P. syringae strain DC3000 (Cunnac et al., 2011). This
should be completed soon on the RSSC strain OE1-1 (K. Onishi, Kochi
University, Japan, personal communication). The fact that RSSC bac-
teria can infect both model and agronomically important crop species
confers a practical perspective to this information gathered over the
last decades. This should certainly contribute to the design of effec-
tive and sustainable control measures against the devastating RSSC.
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