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1  | INTRODUC TION

In organisms with sexual reproduction, the interbreeding of indi-
viduals from genetically differentiated but incompletely isolated 
lineages can result in the inclusion of new alleles in an ancestral 
gene pool through the backcrossing of hybrid individuals, sometimes 
leading to the formation of new admixed lineages made up of alleles 
from both ancestral gene pools (Dannemann, Andrés, & Kelso, 2016; 
De Carvalho et  al.,  2010; Ellstrand, Prentice, & Hancock,  1999; 
Hedrick, 2013; Kolbe et al., 2007; Mallet, 2007; Simonti et al., 2016). 

Introgression and admixture are so widespread that taking these 
phenomena into account in empirical studies is needed to recon-
struct the evolutionary history of populations or understand the 
evolution of reproductive isolation and speciation (Barton,  1989; 
Coyne & Orr, 2004; Hewitt, 2001; Miraldo, Faria, Hewitt, Paulo, & 
Emerson,  2013; Nielsen, Hansen, Ruzzante, Meldrup, & Grønkjær, 
2003; Trigo et al., 2008).

Introgression and admixture also have ecological and evolu-
tionary consequences per se: the genetic impact of introgression 
from non-native lineages may be a major risk for many organisms 
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Abstract
The interbreeding of individuals coming from genetically differentiated but incom-
pletely isolated populations can lead to the formation of admixed populations, having 
important implications in ecology and evolution. In this simulation study, we evaluate 
how individual admixture proportions estimated by the software structure are quan-
titatively affected by different factors. Using various scenarios of admixture between 
two diverging populations, we found that unbalanced sampling from parental pop-
ulations may seriously bias the inferred admixture proportions; moreover, propor-
tionally large samples from the admixed population can also decrease the accuracy 
and precision of the inferences. As expected, weak differentiation between parental 
populations and drift after the admixture event strongly increase the biases caused 
by uneven sampling. We also show that admixture proportions are generally more 
biased when parental populations unequally contributed to the admixed population. 
Finally, with few exceptions, using a large number of markers reduces those biases, 
but using alternative priors for individual ancestry or the uncorrelated allele model 
only marginally affect the inference of admixture in most situations. We conclude 
that unbalanced sampling may cause important biases in the admixture proportions 
estimated by structure, especially when a small number of markers are used, and 
those biases can be worsened by the effect of drift and unequal genetic contribution 
of parental populations. Empirical studies should thus be careful with their sampling 
design and consider historical characteristics when using this software to estimate 
the ancestry of individuals from admixed populations.
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of conservation concern (Vilà, Weber, & Antonio,  2000; Vilaca 
et al., 2012; Wolf, Takebayashi, & Rieseberg, 2001), while the con-
cept of adaptive introgression is gaining strength in the context of 
present and future consequences of climate change (Hamilton & 
Miller, 2016; Hedrick, 2013; von Holdt, Brzeski, Wilcove, & Rutledge, 
2018). In these empirical contexts, an accurate determination of ad-
mixture proportions at the population or individual level is crucial 
(Aldrich et al., 2008; Tang, Peng, Wang, & Risch, 2005).

The individual admixture proportion, usually referred to as Q, 
represents the fraction of an individual's alleles coming from a given 
population. Individuals are classified as pure (Q  =  0 or 1), hybrids 
(Q = 0.5, first = F1 or second = F2 generations), first-generation back-
cross (Q  =  0.25) or, more generally, partially introgressed (in theory 
any Q-value between 0 and 1). Many empirical studies use admixture 
proportions to fit genetic models related to hybrid zones and intro-
gression patterns (Cornille et al., 2015; Gagnaire et al., 2009; Schaefer, 
Duvernell, & Campbell, 2016; Zohren et al., 2016). In all these situa-
tions, the relevance of biological conclusions strongly depends on the 
quality of the estimation of individual admixture proportions.

Several methods and software have been developed to estimate 
admixture proportions (see Padhukasahasram,  2014 for a review). 
Among these, structure (Pritchard, Stephens, & Donnelly,  2000) 
is the most commonly used for quantifying admixture levels or 
identifying hybrid individuals (e.g. Burgarella et  al.,  2009; Cornille 
et  al.,  2015; Hermansen et  al.,  2014; Nielsen et  al.,  2003; Porras-
Hurtado et al., 2013). To this end, structure uses an unsupervised 
clustering method implemented in a Bayesian framework to assign 
individuals to homogeneous genetic groups (often named clusters) 
that maximize Hardy–Weinberg and linkage equilibrium (Pritchard 
et al., 2000). Besides hybrid detection and admixture quantification, 
structure was originally designed to infer the population structure 
(i.e. homogeneous genetic groups) in a genetic sample and assign 
individuals to populations (Pritchard et al., 2000). As expected, its 
performance in identifying the true population structure depends 
on the quantity of information present in the data set (e.g. number 
of loci and individuals, differentiation level) but also on relative sam-
ple sizes: when the samples from different populations are highly 
unbalanced in size, structure tends to merge individuals from pop-
ulations with small samples into a single cluster (Kalinowski, 2011; 
Puechmaille, 2016). However, Wang (2017) recently demonstrated 
how using an alternative ancestry prior instead of the default one 
for structure solved most problems caused by uneven sampling in 
the estimation of population structure.

Several studies have also tested structure’s performance in de-
tecting hybridization and introgression. structure has been shown to 
perform well in terms of precision (i.e. how variable are the results) 
and accuracy (i.e. how far are the results from the expected val-
ues) in the detection of F1 hybrids (Bohling, Adams, & Waits, 2013; 
Larcombe, Vaillancourt, Jones, & Potts,  2014; Sanz, Araguas, 
Fernández, Vera, & García-Marín, 2009; Vähä & Primmer,  2006). 
However, the detection of backcrossed individuals seems more 
difficult (Marie, Bernatchez, & Garant,  2011; Sanz et  al.,  2009). 
For example, Vähä and Primmer (2006) found that backcrossed 

individuals could be erroneously classified as purebreds when using 
low threshold Q-values, suggesting that structure did not estimate 
individual Q-values with accuracy in those situations. As expected, 
better results are obtained when the level of differentiation be-
tween parental populations is high and when a large number of loci 
are used. Studies with low differentiation levels between parental 
populations thus necessitate large numbers of loci to obtain precise 
results (Kalinowski, 2011; Sanz et al., 2009; Vähä & Primmer, 2006). 
Last, sampling scheme also seems to affect the ability of structure 
to detect hybrid and pure individuals: Marie et al. (2011) and Vähä 
and Primmer (2006) found that a greater accuracy of detection is 
reached when the sample includes a larger number of hybrids (see 
also Neophytou, 2014).

Although not specifically investigated in previous studies, the 
age of the admixture event should also affect how well admixture is 
inferred. If it is recent, implying limited drift in all populations after 
admixture, it will be easier for structure to identify alleles coming 
from parental populations in the admixed population and to assign 
them to one of the parental clusters. In contrast, if the admixture 
event is old, drift will modify allelic frequencies in the parental 
and admixed populations and will reduce the ability of structure to 
quantify admixture proportions, as previously shown by Kalinowski 
(2011).

Clearly, the sampling scheme, the degree of differentiation be-
tween parental populations, the age of the admixture event and the 
choice of ancestry priors may all have important effects on struc-
ture's ability to accurately estimate admixture proportions. Given 
the importance of their accurate estimation in empirical studies, it is 
surprising that, to the best of our knowledge, no previous study has 
evaluated how admixture proportion estimates provided by struc-
ture are affected by these factors.

In this work, we assessed by simulations how individual admix-
ture proportions inferred by structure are affected by different 
patterns of unbalanced sampling, differentiation between parental 
populations and the amount of drift after the admixture event. To 
this end, we simulated SNP data under various scenarios where two 
divergent populations give rise to a third admixed population and 
then evolve independently until sampling time. We used various 
combinations of sample sizes from those three populations and an-
alysed them using structure to infer admixture proportions in the 
admixed sample. We also evaluated the effects of the number of 
markers used, the initial admixture rate (the proportion of individu-
als from each parental population during the admixture event) and 
the choice of the ancestry prior on the estimation of individual ad-
mixture proportions.

2  | MATERIAL S AND METHODS

2.1 | Simulation settings

Data were simulated under a demographic scenario of divergence 
and admixture in which two populations (defined as the “parental” 
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populations P1 and P2) diverged from an ancestral panmictic popu-
lation TD generations ago (time of divergence); later, TA (time of ad-
mixture, TA < TD) generations in the past, a third population PA, the 
admixed population, was created by mixing a proportion padx of indi-
viduals from P1 and a proportion (1 − padx) from P2 (Figure 1a). Note 
that, for ease of reading, all times are expressed backward in time 
since sampling, and in generations, and effective population sizes 
are expressed in number of diploid individuals, whereas all simula-
tions were run with the program ms (Hudson, 2002), which considers 
scaled parameters (i.e. times in T/4N and relative population sizes).

Polymorphism was generated with the single mutation SNP gen-
erating option -s 1 (see Appendix S1 for a detailed ms command line 
example). Effective diploid population sizes were fixed to Ne = 1,000 
for P1, P2 and PA and to 1,000,000 for the ancestral population 
(equalling 1,000 times the size of P1 or P2). This very large ancestral 
population size ensured that the single mutation added on each ge-
nealogy (option -s 1) most likely occurred in the ancestral population 
and not after the divergence event (the branch where the mutation 
occurred being chosen with a probability proportional to its length 
relative to the total gene tree length). No migration was allowed be-
tween populations. The admixture rate (padx) was set at 0.5 (admixed 
population made of 50% of individuals from P1 and 50% from P2) 
for most scenarios but we also explored the influence of asymmetric 
admixture rates (padx = 0.1, 0.3) on a subset of situations.

Three different divergence times (TD  =  250, 500 and 1,000 
generations; or equivalently 0.0625, 0.125 and 0.25 for TD/4Ne) 
and two different admixture times (TA = 10 and 100 generations; 
0.0025 and 0.025 for TA/4Ne) were considered. Given the size of 
the admixed and parental populations, TA = 10 is sufficiently low to 
minimize the effects of drift and mimic empirical situations where 
admixture is very recent or ongoing (“weak drift” hereafter), whereas 
TA = 100 represents relatively strong drift in all three populations 
after the admixture event and mimics empirical situations where ad-
mixture is more ancient and allelic frequencies for any given locus 
have diverged from the frequency observed just after admixture 
(“strong drift” hereafter).

Two hundred and fifty (250) independent SNP loci were sim-
ulated for all scenarios, assuming complete linkage equilibrium 
between markers. We chose to simulate only 250 SNP loci, a rel-
atively low number given the current sequencing capacities, as a 
baseline in our study for at least three reasons: (a) to allow reason-
able computation times, (b) to focus on situations where structure 
might have reduced performances and (c) to approximate the level 
of genetic information carried by a few tens of microsatellite loci 
(Brumfield, Beerli, Nickerson, & Edwards, 2003; Morin et al., 2012; 
Morin, Luikart, Wayne, & the SNP workshop group, 2004; Narum 
et al., 2008) as many studies using structure were based on micro-
satellite markers. This number of SNPs is also typical of many empir-
ical situations: in a recent review, Janes et al. (2017) found that the 
majority of SNP studies used less than 100 loci. Many current-day 
RADseq studies are based on much larger numbers of loci, however, 
so we also generated data sets with 2,500 loci to check the effect of 
using a larger number of loci on a subset of situations. Pairwise FST's 

between the two parental populations at sampling time were calcu-
lated using the approach of Weir and Cockerham (1984) to quantify 
their level of differentiation.

2.2 | Sampling schemes

The different sampling schemes we explored were organized in “sce-
narios” and “cases” (Table 1 and Figure 1b). Each scenario represents 

F I G U R E  1   Stages of the study. (a) Simulations of populations. 
This first section shows a schematic representation of the simulated 
demographic scenario. TD = time of divergence; TA = time of 
admixture; P0 = ancestral population; P1 and P2 = parental 
populations; PA = admixed population; padx = gene flow from P1, 
that is initial proportion of individuals of PA coming from P1 at 
t = TA. At this stage, TA, TD, padx and the number of SNPs used 
are selected. (b) Sampling. At this stage, the sampling of the three 
populations is performed according to different scenarios and cases 
(see Table 1) which will define the sample sizes for each population 
(here represented as circles of different size). (c) structure analyses. 
Each sampling case, represented by 100 data sets, is analysed using 
structure. At this stage, the prior of individual ancestry is selected. 
See main text for details

(a)

(b)

(c)
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a general situation regarding the way in which sample sizes can vary 
and each case corresponds to a particular combination of sample 
sizes for P1, P2 and PA. Each scenario thus contains six cases in-
vestigating the effect of gradual changes in the amplitude of sample 
size imbalance (see Appendix S1). These different cases allowed us 
to assess the effect of systematic changes in the sampling scheme 
within a given general scenario. We explored five scenarios giving a 
total of 27 different cases (some scenarios share identical cases; see 
Table 1). For each case, 100 data sets were simulated with ms and 
analysed with structure. From here on to refer to particular sampling 
cases, we will use an expression of the form “SxCy,” followed by the 
sample sizes of P1, P2 and Pa (e.g. scenario 4–case 3 will be denoted 
as “S4C3 (50-100-100)”).

2.3 | structure analyses

For each case, four independent analyses of STRUCTURE were run 
on each of the 100 simulated data sets for a number of clusters K = 2 
using models with admixture, correlated allele frequencies and using 
the default value of the ancestry prior (single common parameter, 
ALPHA, in the Dirichlet distribution for priors on the contribu-
tion of each cluster to the total allelic pool, and initial alpha value 
ALPHA = 1), as done in most empirical studies and as recommended 
in the structure manual, except for asymmetric admixture (see 
below for the use of alternative ancestry priors and other K values). 
Each chain of a structure run consisted in a fixed burn-in of 10,000 

iterations followed by 1,000 iterations. This value is quite small com-
pared to the number of iterations used on empirical studies, but we 
chose it in order to keep the duration of the study more manage-
able. However, we made sure this methodological choice did not af-
fect our results by (a) performing preliminary tests under different 
scenarios that showed that, once the chain had reached equilibrium 
after a sufficiently long burn-in, 1,000 iterations were sufficient to 
obtain consistent estimates of Q-values among runs for a given data 
set, (b) carefully checking that runs had converged (see Appendix S1) 
and increasing the burn-in from 10,000 to 100,000 iterations when 
it was not the case and (c) performing several runs for each data set 
and making sure results were consistent between runs. The run with 
the highest probability from the four performed ones was retained 
for further analyses.

In this study, the estimated individual admixture proportions (Q-
value) always refer to the proportion of an individual genome coming 
from P1. The mean Q-value of a data set refers to the average of all 
individual Q-values from PA within the data set and the mean Q-
value of a case to the average of all individual Q-values for that case 
(or equivalently the average of the mean Q-value across all data sets 
for that case). For each case, the standard deviation of the mean Q-
values among data sets is reported (SD of the 100 mean Q-values), 
as well as the average of the variances of each data set's Q-values 
(average of the 100 between-individuals within-data sets variance 
values, see also legend of Figure 2).

Although it is true that longer drift times could make K  =  3 
the most adequate option for some of our cases (see below), from 

Scenario Population

Case

1 2 3 4 5 6

1 P1 100 100 100 100 100 100

P2 100 100 100 100 100 100

PA 10 33 50 100 200 300

2 P1 10 33 50 100 200 300

P2 10 33 50 100 200 300

PA 100 100 100 100 100 100

3 P1 10 33 50 100 200 300

P2 100 100 100 100 100 100

PA 100 100 100 100 100 100

4 P1 10 33 50 100 200 300

P2 20 66 100 200 400 600

PA 100 100 100 100 100 100

5 P1 10 33 50 100 200 300

P2 20 66 100 200 400 600

PA 10 10 10 10 10 10

TA B L E  1   Sampling scheme. 
Combinations of sample sizes organized in 
five scenarios, each containing six cases. 
P1 and P2 represent the sample sizes of 
parental populations, and PA represents 
that of the admixed population

F I G U R E  2   Influence of sampling schemes in the mean admixture proportions estimated by structure for TD = 250 and TA = 10. The 
results for 100 data sets are shown per case represented by grey circles. Black dots and solid lines represent the mean and standard 
deviation for each case, respectively, and the horizontal dashed line represents the expected Q = 0.5. (a–e) correspond to scenarios 1–5, 
respectively. Next to the figure of each scenario is a table showing sampling scheme and average values of admixture proportions, their 
standard deviations (SD) and the average of the within-data set variances of Q-values of individuals from PA
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(a)

(b)

(c)

(d)

(e)
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now on we will refer to any deviation from the expected value of 
0.5 in the estimated average admixture proportions as a bias, as 
our study is focused on the estimation of admixture proportions 
when considering K = 2, as it is usually done in empirical uses of 
structure.

2.4 | “Best-K” estimation

In empirical situations where the history and structure of the sam-
pled populations are unknown, structure is routinely used to assess 
how many populations have been sampled and if any originates from 
admixture events. To do so, the program infers the “best-K,” that is 
the most likely number of homogeneous genetic clusters present 
in the data, using the differences in probabilities among runs with 
different K values, or with more sophisticated technics like the ΔK 
method of Evanno, Regnaut, and Goudet (2005). In our simulations, 
the “best-K” value recovered by structure may vary depending on 
the history of the populations. The inferred “best-K” value may be 2 
if the admixed population is detected as admixed, and both parental 
populations are identified as different clusters, or 3 if the admixed 
population is identified as a third independent cluster. For example, 
contrary to situations with weak drift, strong drift implies that allelic 
frequencies at sampling in the admixed and parental populations do 
not reflect allelic frequencies from the admixed and parental popula-
tions at admixture time. It is thus expected that, in such situations, 
structure may consider the parental and admixed populations as 
three independent genetic clusters. If so, “forcing” structure to use 
a model with two genetic clusters (K = 2), as is often done when ad-
mixture is suspected, may lead to inaccurate results. In such cases, 
structure may cluster individuals more or less arbitrarily for K = 2, 
for example (a) grouping the two parental samples together and the 
admixed sample aside, or (b) grouping one parental population with 
PA, and the other parental population aside, both cases resulting in 
estimates close to Q = 1 or Q = 0 for all admixed individuals. We 
will refer to such behaviour as the “forcing K = 2 with three genetic 
clusters” case.

We thus analysed all data sets with K  =  2 as described previ-
ously to infer admixture proportions but also looked for the “best-K” 
value inferred by structure with the ΔK method, exploring possible 
values of K from 1 to 5. This allowed us to examine how reliable is 
the inference of the “best-K” in the situations we explored, and how 
they relate to the estimation of admixture proportions under K = 2. 
We used the ΔK method because preliminary simulations showed 
that (a) it was easier to implement than considering the probability of 
the data lnPr(X|K) for different K values because of higher variances 
and/or the presence of a plateau for the probabilities with K values 
larger or equal to 2; and (b) in our case, the results were concor-
dant with those obtained by visual inspection of the probabilities of 
the data. We did not use the new method proposed by Verity and 
Nichols (2016) to find the “best-K,” because this was not our main 
goal and, according to the authors, this method is computationally 
demanding.

2.5 | Effect of the number of markers, admixture 
rates and alternative ancestry priors

To assess the effect of the number of markers on the estimation 
of admixture proportions, we simulated data sets of 2,500 SNPs 
for three cases that showed different types of biases in our re-
sults: a case where parental populations had equal sample sizes 
and PA was represented by a small sample (S1C1 [100-100-10]), 
a case where the sample sizes of the parental populations were 
equal and the sample size of PA was substantially larger (S2C1 [10-
10-100]), and a case where the sample sizes of the parental popu-
lations were unequal and the sample size of PA was relatively large 
(S3C1 [10-100-100]). These cases were tested using TD = 250 and 
TA = 10 and 100 to assess the influence of weak and strong drift, 
respectively.

We also ran simulations with different initial admixture rates 
(padx) to assess how structure estimates admixture proportions dif-
ferent from 0.5 in various situations. Values of 0.1 and 0.3 were both 
tested on scenarios 1 and 3 with TA = 10 and TD = 500. Since im-
portant biases were observed under these conditions, we selected 
the cases with the strongest biases (for padx = 0.3, S3C1 [10-100-
100]; for padx  =  0.1, S1C6 [100-100-300], S3C1 [10-100-100] and 
S3C6 [300-100-100]) and repeated the simulations increasing the 
number of markers to 2,500. Fifty data sets were analysed for each 
of the repeated cases. This allowed us to explore whether increasing 
the number of markers would correct the combined effects of sam-
pling schemes and asymmetric rates of admixture.

Wang (2017) recently highlighted that most studies assessing 
the performance of structure, or using structure in empirical situa-
tions, used the default ancestry prior option. With this default op-
tion, structure assumes that each allele has its ancestry originating 
from each of the K populations with an equal probability of 1/K. 
He showed how using an alternative prior, which allows structure 
to model K different probabilities for each cluster, increased the 
accuracy of the “best-K” inference and individual assignments in 
cases of unbalanced sampling. We thus compared the accuracy of 
structure’s results when using the default and alternative ancestry 
priors in the three scenarios with unbalanced sampling (scenarios 
3, 4 and 5). These tests were performed for TD = 500 and TA = 10 
and 100 (weak and strong drift). We also tested the effect of the 
alternative prior for asymmetric admixture rates (i.e. padx = 0.1, 0.3) 
as it may be especially adapted for such situations (Pritchard, Wen, 
& Falush, 2010). Additionally, Wang (2017) also showed that when 
sampling is unbalanced and many ancestral populations are included, 
the use of the uncorrelated allele frequency model (default =  cor-
related allele frequency model) and a lower value for ALPHA (the 
initial value of the Dirichlet prior parameters used to calculate an 
individual's ancestry) of approximately 1/K (default  =  1) improved 
the performance of structure. Although our study only considered 
two parental populations, we tested the influence of using the alter-
native prior together with the uncorrelated allele frequency model 
and ALPHA = 0.5 on scenarios 3, 4 and 5 with TD = 500 and TA = 10 
and 100.
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3  | RESULTS

3.1 | Effect of unbalanced sampling

In this section, we will comment on results from simulations with a 
short drift time (TA = 10) to assess the effect of different sampling 
schemes alone. Average FST estimates between P1 and P2 among 
scenarios in our simulations were of 0.09 (range  =  0.066–0.117) 
for TD  =  250, 0.16 (range  =  0.126–0.199) for TD  =  500 and 0.28 
(range = 0.225–0.336) for TD = 1,000.

Cases with large and equal sample sizes of P1 and P2 and vary-
ing sample sizes of PA (scenario 1) showed very accurate results, 
but the precision slightly decreased with smaller sample sizes of 
PA (Figure 2a). Cases with large sample sizes of PA and variable but 
even sample sizes of P1 and P2 (scenario 2) also showed accurate 
results. No clear pattern for changes in precision was observed 
(Figure 2b).

Cases where P1 and P2 samples had unequal sizes but the PA 
had the same large sample size as P2 (scenario 3) showed the most 
biased results. S3C1 (10-100-100) was particularly bad; however, es-
timates of admixture proportions gained accuracy as the sample size 
of P1 became closer to the one of P2 and PA. Then, the accuracy 
decreased again but to a lesser extent when the sample size of P1 
got larger than P2's and PA's. Hence, average admixture proportions 
were never fully accurate except in case 4, where the three popu-
lations had equal sample sizes. The bias always overestimated the 
contribution of the population with the smaller sample (Figure 2c).

In cases with unequal sample sizes of pure and admixed popu-
lations with a constant large PA sample (scenario 4, Figure 2d), the 
accuracy depended on the proportional differences between the 
sample sizes of P1 and P2 and the sample size of PA. As the sample 
size of P2 was never more than twice the size of P1, the bias was not 
as strong as in S3C1. Again, the contribution of the population with 
the smaller sample size was overestimated.

Finally, cases with unequal sample sizes of pure and admixed 
populations with a constant small PA sample (scenario 5) showed 
slightly more accurate results compared to scenario 4 (which also 
had cases with unequal sample sizes of pure and admixed popula-
tions but a constant large PA sample), but the precision was lower 
than in all other scenarios (Figure 2e). Reducing the sample size of 
PA globally increased accuracy when parental samples were unequal 
but, as expected, also reduced precision.

In summary, we found that (a) the accuracy of admixture propor-
tion estimates can be seriously affected by unbalanced sampling of 
the parental populations, especially when the sample size is small 
for one of them, and (b) estimated admixture proportions always 
overestimate the contribution of the parental population with the 
smaller sample size. Sample sizes of PA that differed from the pa-
rental populations did not affect the accuracy much in cases where 
parental populations had equal sample sizes (i.e. scenarios 1 and 2), 
but a small sample size of PA relative to the parental populations 
increased the accuracy and lowered the precision when sample sizes 
of parental populations were unequal (i.e. scenarios 4 and 5).

The results showed the same patterns for all TDs but as ex-
pected, a longer TD clearly increased the accuracy and precision 
of the results, reducing the biasing effect of unbalanced sampling 
(Figures S1 and S2).

3.2 | Effect of strong drift

Admixture proportions estimated by structure under strong drift 
(TA  =  100, Figure  3) were more variable, and the effects of un-
even sampling were often stronger. When differentiation between 
the parental populations was the lowest (TD = 250, Figure 3) and 
they showed equal sample sizes (scenarios 1 and 2), the average ad-
mixture proportions were highly variable around the value of 0.5. 
Moreover, in the cases where the sample size of PA was equal to or 
larger than that of P1 and P2, we also obtained admixture propor-
tions close to 0 and 1 (e.g. Figure 3, S1C4–6, S2C1–4), illustrating the 
behaviour of “forcing K = 2 with three genetic clusters.” To better 
understand the origin of these results, we looked at particular data 
sets in some cases showing admixture proportions close to 0 and 1 
(S1C5 [100-100-200] and S2C1 [10-10-100], Figure 4) and confirmed 
three different patterns: (a) P1 and P2 assigned to two separate clus-
ters and PA showing admixture proportions close to 0.5 (Figure 4a, 
d); (b) PA and one of the parental populations assigned to a single 
cluster and the other parental population assigned to another clus-
ter, giving admixture proportions close to 0 or 1 (Figure 4b, e); and (c) 
PA assigned to its own cluster, while the parental populations were 
clustered together (Figure 4c, f). This last configuration always gave 
admixture proportions close to 0, biasing the average admixture pro-
portions of the whole case towards 0. This case is more common 
when the sample size of PA is substantially larger than for P1 and P2 
(e.g. S1C6 [100-100-300] and S2C1 [10-10-100]).

When the sample sizes of pure populations were unequal (sce-
narios 3–5), the patterns of admixture proportions were generally 
similar to those observed under weak drift (TA = 10), but a higher 
variability of the results made the trends less clear and the “forcing 
K = 2 with three genetic clusters” behaviour led to more estimates of 
Q close to 1 or 0. As with even sampling, proportionally larger sam-
ple sizes of PA tended to cause PA individuals to be assigned to their 
own cluster, or PA to be clustered with one of the pure populations 
because of the “forcing K = 2 with three genetic clusters” behaviour 
(e.g. S4C1 [10-20-100], Figure 3d). Finally, as observed with TA = 10 
(Figure  2, Figures S1 and S2), increasing TD from 250 to 500 and 
1,000 increased the accuracy and precision of the results, although 
biases were still present (Figure 3, Figures S3 and S4).

To sum up, the long periods of drift greatly affected the results, 
but did not globally modify the way different sampling schemes biased 
the results. Scenarios 1 and 2, for which the sample sizes of pure pop-
ulations were equal, remained more accurate, while scenarios 3, 4 and 
5, with unequal sample sizes of parental populations, always showed 
stronger biases. By strengthening the effect of the “forcing K = 2 with 
three genetic clusters” behaviour, proportionally larger samples of PA 
always increased the biases caused by uneven sampling of the pure 
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F I G U R E  3   Influence of sampling schemes in the admixture proportions estimated by structure for TD = 250 and TA = 100. See legend in 
Figure 2 for details

(a)

(b)

(c)

(d)

(e)
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populations and, contrary to situations with weak drift, even generated 
important biases in cases of even sampling of the pure populations.

3.3 | “Best-K” inference

Our analysed cases only showed “best-K” values of either 2 or 3. 
When drift was low (TA = 10), “best-K” values of 2 were obtained for 
the great majority of simulations in all scenarios and cases, most of 
them reaching occurrences of 100% (Table 2). The different levels 
of differentiation between parental populations had the expected 
effect: shorter TDs decreased the proportion of simulations for 
which the inferred “best-K” value was 2, indicating that P1, P2 and 
PA were identified as three different clusters in more data sets than 
for higher differentiation levels.

The effect of the sampling scheme on the “best-K” inferences 
was much stronger when drift was strong (TA  =  100) and a clear 
pattern was apparent: whenever the sample size of PA was propor-
tionally large compared to that of the parental populations, a lower 
percentage of “best-K”=2 was obtained (Table 2).

However, higher percentages of “best-K”=2 did not guarantee 
that the two parental populations were correctly identified. For 

example, for S2C1 (10-10-100) with TD = 250 65% of the inferences 
resulted in “best-K”=2 (Table 2); however, our calculated admixture 
proportions in that particular case show an average admixture pro-
portion close to 0 when forcing K = 2 (Figure 3b), suggesting that PA 
was often being recognized as a cluster on its own, or being merged 
with P2. Similar patterns are observed when sampling is uneven; 
for example, S3C1 (10-100-100) with TD  =  250 shows 100% of 
“best-K” = 2 inferences (Table 2), but our previous results evidence 
how that particular case shows average admixture proportions close 
to 1 (Figure 3c).

3.4 | Effect of the number of SNPs

We selected three cases (S1C1 [100-100-10], S2C1 [10-10-100] 
and S3C1 [10-100-100]) for both admixture times (TA  =  10, 100) 
and TD = 250 to explore the effect of the number of markers (250 
vs. 2,500) on the accuracy and precision of the inferred admixture 
proportions.

Under a short drift time (TA = 10), S1C1 already showed accurate 
results when using 250 SNPs (Figures 2a and 5a), but using 2,500 
SNPs improved the precision (Figure  5b), as expected. S2C1 also 

F I G U R E  4   Clustering and individual admixture proportions in particular data sets. Three different patterns of admixture and clustering 
were found for S1C5 (a–c) and S2C1 (d–f). Each individual bar represents one individual. Different colours represent affinity with a given 
cluster (K = 2). P1 and P2 = parental populations; PA = admixed population. (a and d) show the expected pattern of admixture for PA (~0.5), 
(b and e) show cases where PA is clustered with one of the parental populations, (c and f) show cases where individuals from PA are assigned 
to their own cluster, while individuals from the parental populations are assigned to a different cluster together

(a) (b) (c)

(d) (e) (f)
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TA B L E  2   Percentages of data sets with inferred “best-K” = 2

TD Scenarios

Cases

TA = 10 TA = 100

1 2 3 4 5 6 1 2 3 4 5 6

250 1 100 99 100 99 99 96 100 85 79 58 13 5

2 81 98 99 100 100 100 65 15 18 49 76 89

3 99 100 100 99 99 99 100 68 38 50 58 60

4 92 98 100 100 100 100 83 64 34 56 88 94

5 95 100 100 100 100 100 87 100 98 100 100 100

500 1 100 100 100 100 99 98 98 99 95 91 69 63

2 89 100 100 100 100 100 42 61 73 90 96 99

3 88 100 99 100 100 100 100 62 80 89 95 97

4 98 99 100 100 100 100 72 67 81 90 94 97

5 100 100 100 100 100 100 99 100 100 100 100 100

1,000 1 100 100 100 100 100 100 100 100 97 93 91 88

2 99 100 100 100 100 100 78 89 91 95 100 98

3 100 100 100 100 100 100 86 96 94 94 98 99

4 100 99 100 100 100 100 84 90 92 97 98 99

5 100 100 100 100 100 100 99 100 100 100 100 100

Note: Values represent percentages of data sets for which “best-K” = 2 is inferred across all different scenarios and cases, for all TDs and TAs. Values 
of “best-K” were inferred with the method of Evanno et al. (2005).

F I G U R E  5   The effect of the number of SNPs on estimated admixture proportions. Each row corresponds to the indicated case. Number 
of SNPs used and TA values are shown on top of each column. TD = 250. The vertical dashed line indicates the expected average value of 
Q = 0.5

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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showed accurate and precise results using 250 SNPs (Figures 2b and 
5e) and remained so when using 2,500 SNPs (Figure 5f). S3C1 was 
strongly biased when using 250 SNPs (Figures 2c and 5i) but became 
more accurate and precise with 2,500 markers, although a small bias 
was still present (Figure 5j).

Under a long drift time (TA = 100), the effect of increasing the 
number of markers was weak for cases with an initial bias. S1C1 
showed accurate results with 250 SNPs (Figures 3a and 5c) but in-
creasing the number to 2,500 increased the precision (Figure  5d). 
S2C1 showed strongly biased results when using 250 SNPs 
(Figures 3b and 5g), and increasing the number of markers did not 
correct this bias (Figure  5h). S3C1 showed strongly biased results 

with 250 SNPs (Figures 3c and 5k), and using 2,500 SNPs did not 
make the results accurate (Figure 5l).

3.5 | Comparisons between different priors for 
individual ancestry

In the situation of weak drift and moderate population divergence 
(TA = 10 and TD = 500), the alternative ancestry prior improved the 
accuracy of admixture estimation for scenario 3, especially in case 1 
where the sample size of P1 was very small compared to that of P2 
and PA (Figure 6a,b). However, this case still showed a bias towards 

F I G U R E  6   Admixture proportions obtained with different priors of individual ancestry. Grey circles indicate average admixture 
proportions found for each data set. Black dots and solid lines indicate means and standard deviations for the admixture proportions in 
each case, respectively, and the horizontal dashed line represents the expected Q = 0.5. Each panel represents different combinations of 
scenarios and parameters as indicated in the figure. TA = 10 and TD = 500 were used

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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P1 in the inferred admixture proportion, as with the default an-
cestry prior option. The use of the uncorrelated allele frequency 
model and an initial ALPHA = 0.5 did not improve the results even 
compared to the default prior (Figure 6c). For scenario 4, using the 
alternative prior did not improve accuracy (Figure 6d,e) but actually 
decreased the precision of the results for case 1, where the sample 
sizes of pure populations were the smallest. No improvement in ac-
curacy was observed when using the uncorrelated allele frequency 
model and an initial ALPHA = 0.5, but the first case became particu-
larly imprecise (Figure 6f). For scenario 5, no differences in accu-
racy were observed between default and alternative priors, or even 
when changing the allele frequency model and the initial ALPHA 
value (Figure 6g–i).

When the effect of drift was strong (TA = 100), no improvement 
in accuracy was observed in any of the three scenarios as the same 
biases obtained using the default prior were still present (Figure S5).

To sum up, the use of the uncorrelated allele frequency model 
and an initial ALPHA = 0.5 did not improve the inferences in any of 
the scenarios and cases. The effect of the alternative prior of individ-
ual ancestry was limited, as it only improved the accuracy of the case 
with the most unbalanced sampling (S3C1 [10-100-100]).

3.6 | Effect of asymmetric admixture

structure did not perform well when admixture was asymmetric 
even in scenarios where it was found to give good estimates under 
symmetric admixture. In general, the performance of the inferences 
decreased as the asymmetry of admixture increased, admixture 

proportions being almost always biased towards the population that 
contributed the most.

For cases with large and equal sample sizes of P1 and P2 and 
varying sample sizes of PA (scenario 1), when padx = 0.5, structure 
gave good estimates (Figure 7a). An intermediate degree of asym-
metry (padx = 0.3) still produced accurate results (Figure 7c). When 
the asymmetry was strong (padx = 0.1), the smaller admixture pro-
portions were underestimated and this bias increased as the propor-
tional sample size of PA increased (Figure 7e). In cases where P1 and 
P2 samples have unequal sizes but the PA has the same large sample 
size as P2 (scenario 3), when results where poor for padx = 0.5 due 
to the sampling scheme (case 1, Figure 7b), an intermediate degree 
of asymmetry (padx  =  0.3) actually improved the results as only a 
slight bias caused by the sampling scheme is noticed (Figure 7d). A 
stronger asymmetry (padx=0.1) resulted in stronger underestimation 
of the smaller contribution, the bias increasing with the sample size 
of P1 (Figure 7f).

We repeated the analysis of the cases with the most biased re-
sults, increasing the number of SNPs to 2,500. All results became 
more accurate, with inferred admixture proportions closer to the 
expected values (S3C1 [10-100-100], padx  =  0.3, mean  =  0.312; 
S3C1 [10-100-100], padx  =  0.1, mean  =  0.102; S3C6 [300-100-
100], padx  =  0.1, mean  =  0.094; S1C6 [100-100-300], padx  =  0.1, 
mean = 0.086).

We used the alternative prior of individual ancestry with 250 
SNPs to test whether it could solve the problems associated with 
asymmetric padx on scenarios with unbalanced sampling of paren-
tal populations and a small number of markers, as suggested in the 
structure manual. Using the alternative prior did not eliminate the 

F I G U R E  7   The effect of asymmetric 
admixture rates padx. Black dots and solid 
lines represent the mean and standard 
deviation for each case, respectively, and 
the horizontal dashed line represents the 
expected Q-value. Each panel represents 
different combinations of scenarios and 
padx values as indicated in the figure. 
Results from individual data sets are 
represented by grey circles. TA = 10 and 
TD = 500 were used

(a) (b)

(c) (d)

(e) (f)
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underestimation found for padx = 0.1 and 0.3 (Figure S6). Similarly, 
as with the default prior, the underestimation was stronger for 
padx = 0.1 (Figure S6a–c). More accurate results were obtained using 
the alternative prior for padx = 0.3, but small biases could still be ob-
served (e.g. S4C1 [10-20-100], Figure S6e).

4  | DISCUSSION

As shown by numerous theoretical and empirical studies, structure 
accurately estimates admixture proportions in a large range of his-
torical scenarios and parameter values. However, structure's perfor-
mance is sensitive to the time elapsed since admixture (as expected 
given prior works on the subject) and, perhaps less intuitively, to the 
sampling scheme and the level of asymmetry in the admixture rates. 
The effects of drift following admixture are not alleviated by increas-
ing the number of markers, but the effects of sampling scheme and 
asymmetry of admixture are mainly restricted to data sets employ-
ing a moderate number of markers. These limits are apparently not 
well known to empirical users of the software. Although some ef-
fects of sampling scheme have been previously documented (e.g. 
Kalinowski, 2011; Meirmans, 2019; Puechmaille, 2016), our study is, 
to the best of our knowledge, the first to document how the propor-
tion of pure and admixed individuals in a sample affects structure’s 
abilities to estimate admixture proportions.

4.1 | Effect of drift and sampling scheme on the 
“Best-K” inference

“Ancient” admixture is a recurrent subject in hybridization and speci-
ation studies (Good et al., 2008; Miller et al., 2012). Our results show 
that ancient admixture can be difficult to identify when the empiri-
cal test to distinguish it from a scenario of pure population diver-
gence is based on finding the “best-K” value. If a sampled population 
originates from past admixture between two sampled populations, a 
correct interpretation of structure results in terms of admixture will 
only be straightforward if structure infers that K = 2 and that the 
admixed population is indeed admixed. However, in cases of long 
drift relative to divergence times, we have shown that structure may 
often identify the admixed population as an independent cluster 
(K = 3) when using a low number of markers, indicating that drift had 
enough time to alter the information used by structure to infer the 
past admixture history of the population. While K = 3 can be seen 
as the correct population structure when admixture is ancient, this 
result shows that using the best-K to distinguish between a scenario 
of pure vicariance and a scenario of past admixture is not valid if 
admixture is not very recent (see also Janes et al., 2017, Cullingham 
et al., 2020 for other issues related to the “best-K” estimation).

Besides, even under a situation with a short drift time, the sam-
pling scheme can affect structure's ability to infer the correct pop-
ulation structure. When drift was weak (TA = 10), structure inferred 
a K = 2 for most data sets (>95%) but in some cases of unbalanced 

sampling where the sample size of PA is much larger than for P1 and 
P2, the “best-K” can be estimated to be 3 (Table 2). In empirical sit-
uations, even recent admixture events can thus be “missed” in cases 
of unbalanced sampling if structure is the only test of admixture. 
Moreover, admixture time and sampling scheme interact strongly to 
affect the probability of finding K  =  2 (Table  2). Finally, structure 
can infer a flawed population structure even when the correct K is 
inferred, failing to delimit correctly the parental and admixed popu-
lations (see below). The best way to maximize the chances to identify 
past admixture may thus be (a) to oversample the candidate paren-
tal populations or to subsample the candidate admixed population 
when hypotheses on population history exist, as situations where 
the sample of PA is small compared to the parental samples always 
gave better results in our simulation settings and (b) always check 
different K values in structure analyses since several K values, and 
not a single “best-K” value, can be biologically informative and reveal 
the various effects of sampling and drift on structure results.

4.2 | Effect of sampling schemes, divergence and 
drift on admixture proportions

Our results showed that, as expected, the amount of differentiation 
between parental populations and the drift experienced by the ad-
mixed population had positive and negative effects on structure's 
accuracy, respectively (see also Kalinowski,  2011). Strong differ-
entiation of parental populations and recent admixture events can 
decrease the effect of unbalanced sampling. On the contrary, low 
differentiation before admixture and/or large amount of drift after 
admixture often caused extreme biases when assuming K = 2, even 
in cases of balanced sampling (e.g. Figure 3) independently of the 
number of markers (Figure 5g,h).

Besides the influence of divergence and drift, sampling schemes 
had two main effects on the inference of admixture proportions, 
especially when using a moderate number of markers. First, when 
the sampling of pure populations was uneven, average admixture 
proportions were always biased towards the pure population with 
the smaller sample size, overestimating its contribution to the ad-
mixed population. This pattern was observed for both recent and 
ancient admixture events. Second, the performance of structure was 
sometimes poor when the sample size of the admixed population 
was proportionally large compared to the parental ones, even when 
the sample sizes of parental populations were equal and especially 
for ancient admixture events. In such situations, structure often con-
sidered the admixed population, or a combination of the admixed 
and one parental population, as a single cluster (Figure 4), resulting 
in estimated admixture proportions close to 0 or 1 and greatly af-
fecting the inferences.

Intuitively, researchers often aim to have large samples in order 
to obtain better resolution in statistical analyses, without neces-
sarily considering proportionality. Previous studies suggested that 
structure should not be affected by the proportion of hybrids in the 
sample (Marie et al., 2011, but see Vähä & Primmer, 2006). Based 
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on our results, this is not always the case, since a relatively large 
proportion of admixed individuals relative to pure individuals biased 
the estimated admixture proportions even in cases where pure pop-
ulations were balanced (e.g. S2C1 [10-10-100]).

4.3 | Effect of asymmetric rates of admixture

structure's accuracy and precision in estimating admixture propor-
tions is greatly affected by the contribution levels of parental popu-
lations to the admixed one (asymmetric admixture rates). When 
using a moderate number of markers, the proportion of the genome 
inferred as coming from the parental population with the smaller 
contribution will be underestimated, this underestimation increasing 
with the asymmetry in the admixture rates. Using a high number of 
markers alleviates this underestimation when drift is low, but for an-
cient admixture events this bias could remain strong independently 
of the number of markers used. Most simulation studies have as-
sumed equal admixture rates between parental populations in their 
experimental designs, making this pattern impossible to detect. This 
pattern poses a problem for empirical studies as highly asymmetric 
admixture events are common in natural and domestic populations 
(Elmer, Recknagel, Thompson, & Meyer,  2012; Muranishi, Tamaki, 
Setsuko, & Tomaru, 2013; Papa & Gepts, 2003). structure’s admix-
ture proportions are often used as a hybrid index to build clines in 
hybrid zone analyses (Arntzen et al., 2016; Dufresnes et al., 2018; 
Wielstra et al., 2017). Clearly, underestimating low admixture pro-
portions will result in modelling steeper clines and narrower hybrid 
zones than in reality so studies of hybrid zones should use a large 
number of markers.

4.4 | Effect of the number of SNPs and different 
priors for individual ancestry

Our results showed that increasing the number of markers increased 
the accuracy and precision of the estimation of admixture propor-
tions by structure, as expected. Although the benefits of increas-
ing the number of markers have been previously reported (e.g. Vähä 
& Primmer, 2006), we showed that biases caused by uneven sam-
pling can still persist for extremely unbalanced sampling schemes 
and when drift has been strong enough after the admixture event 
(Figure 5k,l).

Since Wang (2017) showed how the use of different prior pa-
rameters over default ones in structure improved the inference of 
the number of clusters as well as individual assignment to each clus-
ter under an island model of population structure (see “Section 2”), 
we also tested the effect of different prior parameters for individual 
ancestry on the estimation of admixture proportions using a small 
number of markers. Our results showed only a moderate improve-
ment in a single case of recent admixture with highly unbalanced 
sampling between parental populations (i.e. S3C1 [10-100-100]). 
This suggests that the use of this alternative prior may sometimes 

alleviate biases in cases of high unbalance in sampling schemes, 
but that the effect of this unbalance cannot be entirely corrected. 
Interestingly, no improvement was observed for cases of highly 
asymmetric rates of admixture (i.e. padx = 0.1) in spite of this being 
the type of situations for which the use of this alternative prior is 
suggested (Pritchard et al., 2010).

4.5 | Recommendations for empirical studies

Our simulation study differs in its complexity from situations found 
in nature. For example, we considered a single, isolated event of ad-
mixture before allowing drift to act on the three simulated popula-
tions instead of having continuous admixture through time. These 
settings, however, allowed us to observe more clearly the effects of 
other parameters found in empirical studies (e.g. low levels of dif-
ferentiation between populations; Sarno et al., 2017).

This being said, our simulations clearly suggest that structure's 
estimates of individual admixture proportions must be interpreted 
cautiously, especially when the number of markers is moderate. 
Regarding sampling schemes for simple demographic scenarios of 
admixture similar to ours, we suggest avoiding strongly unequal 
sample sizes of parental populations and avoiding oversampling 
populations believed to be admixed. However, it is obviously diffi-
cult to ensure balanced sampling of populations belonging to dif-
ferent genetic groups as the boundaries of such groups are, many 
times, not known a priori (e.g. Baker, Daugherty, Colbourne, & 
McLennan, 1995; Carriconde et al., 2008; Rueness et al., 2003). This 
means that if perfectly balanced sampling cannot be guaranteed, the 
possibility of some bias must always be kept in mind. This can be es-
pecially relevant for detection of admixture, since thresholds based 
on admixture proportions are often used as boundaries between 
pure and admixed individuals (Marie et  al.,  2011; Randi,  2008), or 
estimation of variable admixture rates as in most studies of hybrid 
zones. In general, we recommend keeping balanced sample sizes of 
pure parental populations and relatively smaller sample sizes of ad-
mixed populations, although this proportion should not be too low 
(see Vähä & Primmer,  2006) and test the robustness of structure 
analyses towards unbalanced sampling schemes by running multiple 
analyses with different subsampling schemes.

If possible, the evolutionary history of the populations should also 
be considered. First, populations that experienced long drift periods 
after admixture and/or coming from weakly differentiated parental 
populations are expected to show stronger biases when analysed 
with structure. We thus recommend using structure cautiously when 
divergence between parental populations is low and/or admixture 
is not recent. Note, however, that this is not specific to structure, 
and in these empirical situations, correctly identifying the pattern 
of admixture and estimating individual admixture proportions will 
always be more challenging than for recent admixture events be-
tween well-differentiated populations. Second, populations coming 
from asymmetric admixture events are also likely to show strong bi-
ases in their admixture proportion estimates. Although the use of 
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the alternative prior of individual ancestry is recommended to deal 
with cases of asymmetric admixture (Pritchard et al., 2010), no real 
improvements were observed in our results on this type of situations 
(Figure S6). However, we recommend its use over the default one, as 
it was shown to be useful for the most biased cases of unbalanced 
sampling. Notice, however, that its power seems to be limited to 
cases with low drift, as it could not alleviate the biases observed with 
long drift times. We do not recommend the use of the alternative 
prior together with the uncorrelated allele model and a lower value 
of ALPHA suggested by Wang (2017) as it did not improve the results 
obtained by using the alternative prior alone and it showed worse re-
sults in some cases. However, we acknowledge that this may be due 
to the fact that under our divergence model, allelic frequencies are 
clearly correlated, and that this divergence with admixture model 
fits relatively well with the F-model of correlated allele frequencies 
implemented in structure (Falush, Stephens, & Pritchard, 2003).

Finally, using more markers usually improves the estimation of 
individual admixture proportions (and we suggest doing so as far 
as possible) although we noticed that in some of our simulations in-
creasing the number of markers did not entirely solve the problems 
produced by strong drift and unbalanced sampling. In conclusion, we 
suggest not to use structure alone to infer admixture, but to com-
pare/contrast its results with those from other approaches (e.g. PCA). 
When parental populations are known, the hybrid index inferred by 
genomic cline approaches (Gompert & Buerkle, 2011, 2012) could 
also be used. When they can be applied, population-level tests of 
admixture (such as proposed by Patterson et al., 2012) provide an-
other way of assessing the reliability of individual-level estimates. 
Last, Lawson, van Dorp, and Falush (2018) developed a novel struc-
ture-like clustering method that works well with genomic haplotypic 
data (i.e. using linkage disequilibrium information), but is less precise 
with unlinked markers and remains to be tested on small numbers of 
unlinked markers, which constitute the most frequently used type of 
data in many empirical studies.
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