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Abstract: This study assessed the Stryd running power meter validity at sub-maximal speeds (8 to
19 km/h). Six recreational runners performed an incremental indoor running test. Power output
(PO), ground contact time (GCT) and leg spring stiffness (LSS) were compared to reference measures
recorded by portable metabolic analyser, force platforms and motion capture system. A Bayesian
framework was conducted for systems validity and comparisons. We observed strong and positive
linear relationships between Stryd PO and oxygen consumption (R2 = 0.82, BF10 > 100), and between
Stryd PO and external mechanical power (R2 = 0.88, BF10 > 100). Stryd power meter underestimated
PO (BF10 > 100) whereas GCT and LSS values did not show any significant differences with the
reference measures (BF10 = 0.008, BF10 = 0.007, respectively). We conclude that the Stryd power
meter provides valid measures of GCT and LSS but underestimates the absolute values of PO.

Keywords: validity; running power meter; force platform; leg stiffness; Bayesian analysis

1. Introduction

The last decade was marked by technological improvements in wearable sport devices to
quantify the exercise features in ecological conditions. Endurance runners showed a large interest for
non-differential global positioning systems (GPS), stride sensors and heart rate monitors integrated
in sport watches. Such devices allow them to quantify their exercise and to program their training
protocols. Parameters of importance are volume and intensity, commonly estimated by physical
measures (e.g., distance covered, elevation, speed) and physiological markers (i.e. indexes mostly
assessed from exercise heart rate). In addition to its own sensations, all recorded data allow the runner
to adapt its pace in real time as well as being used to quantify the training loads [1]. Despite some
validity and reliability studies carried out in laboratory at sub-maximal speeds [2,3], GPS measures
are unsuitable in indoor conditions. Used outdoor, the GPS signal may be altered by atmospheric
conditions and local obstructions such as forest, sharp mountains or city buildings [4]. Besides,
low frequency, sharp turns, high speeds and direction changes that are found in running cause
measurement errors [5,6]. Compared to accelerometer measures, the energy expenditure estimate from
GPS watches seems to be low reliable [7] and its validity remains exercise intensity dependent [8].
Finally, without precise measures of elevation, hill running exercise challenges their usefulness to the
extent that speed estimate is no longer a suitable intensity training parameter as determinant of the
performance. In this context, power meters express their interest, reinforcing the use of heart rate
monitors and surpassing the limits of GPS measurements by providing an alternative and transversal
measure of exercise intensity.
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Appeared first in cycling [9], power meters using a strain gauge instrumented pedals system [10]
revolutionized training and performance assessment [11]. Such a measure enabled the cyclist to model
its own record power profile, as a performance signature [12] and to estimate useful physiological
parameters for training programming [13].

Running power meters, including inertial measurement unit (IMU), emerged the last five years as
foot pods or hip positioned IMU. Aiming to estimate metabolic demand, mechanical work, running
gait and stride characteristics, they could be useful in a performance optimization and in an injury
prevention context on all types of terrain [14,15]. However, as for the former devices, scientific
assessments of their reliability and validity are required. Otherwise, cautions should be taken when
interpreting the measurements.

The Stryd power meter (Boulder, Colorado, United States) is a pioneer in the field and provides
the following measures in real time: pace, running power output (PO),vertical oscillation, elevation,
distance, ground contact time (GCT) and leg spring stiffness (LSS). As a novelty among wearable
sensors, only a few recent studies assessed its validity and reliability. Contact time compared to
3D motion analysis is prone to loose accuracy with an increase of speed [16]. Pace (and derived
total number of steps) has been shown valid and reliable during hiking and trail running bouts [17].
Furthermore, PO was reliably measured on different surfaces at sub-maximal speed corresponding
to 85% of the individual lactate threshold [18]. The PO-velocity relationship was highly linear when
tested on a treadmill for a 8 km/h to 20 km/h velocity range [19]. However, as the algorithms used to
derive the metrics from the Stryd sensor are proprietary, the estimate of these metrics remains unclear.
To our knowledge, these aforementioned studies compared neither PO estimates, nor LSS estimates to
reference systems. Thus, their absolute and relative validity still has to be explored.

Through IMU technology and based on the previous findings, we hypothesised that the Stryd
system provides valid measures of stride parameters (PO, LSS and GCT). Accurate measures
would allow the runner to get real time precious information about exercise intensity and muscle
fatigue. Thereby, such measures could be requisites for a performance optimisation by programming
appropriate training sessions and by monitoring running performances over a season. Recreational
runners, practising for health, could also profit from these measures warning about stride impairments,
usually responsible for injuries and mostly influenced by running exposure weighted by individual
properties (e.g., body mass index, age etc.) [20].

The aim of our study was to assess the validity of the PO, LSS and GCT measures from the Stryd
footpod at different sub-maximal running speeds by comparing them to reference systems in ecological
conditions. To do so, validated and reference methods were used to calculate the external mechanical
power and the leg stiffness from accurate force platform measures [21,22].

2. Materials and Methods

2.1. Experimental Approach

To assess the validity of the Stryd power meter, we compared the recorded data with force plates,
motion analysis system and a portable metabolic analyser on a 200 m indoor running track.

2.2. Participants

Six recreational runners (four male age: 39 ± 3 years, V̇O2max : 53.85± 6.09 mlO2·min−1·kg−1

and two females age: 35, V̇O2max : 48.33± 6.75 mlO2 ·min−1·kg−1) voluntary participated in this
study. All participants validated the inclusion criteria: (i) older than 18 years; (ii) train 3 to 5 times a
week and on a treadmill at least once per week; (iii) not suffering from any injury impacting running
capacities for the last 6 months. The study was performed in agreement with the standards set by the
declaration of Helsinki (2013) involving human subjects. Following an explanation of all procedures,
risks and benefits associated with the experimental protocol, each participant gave his written informed
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consent prior to experimentation. The protocol was reviewed and approved by the local research
Ethics Committee (IRB-EM 1901-B, EuroMov, France). Informed written consent was obtained before
the experimental testing sessions.

2.3. Protocol

The study was conducted in April 2019 when participants were preparing themselves for a
long distance race (over 42 km). The test consisted of an incremental running trial around a 200 m
track (Figure 1). The initial speed was set at 10 km/h and 8 km/h for men and women, respectively.
Thereafter, the speed was increased by 0.5 km/h every minute. Cones were set at 20 m intervals along
the 200 m track (inside the first line). The running pace was dictated by audio signal and the runners
had to be within 2 m of the cones at each beep signal. When a runner was behind a cone for three
consecutive times, the test was stopped. Individual maximal aerobic speed (MAS) was determined as
the lowest speed at which V̇O2 max was attained [23]. MAS was reached between 12 and 20 min of
exercise in order to limit impairments caused by the accumulation of fatigue (allowing MAS values
to reach approximately 20 km/h at 20 min). The participants were rested before the start, the first
minutes of the test acting as a warm-up.

Figure 1. MAS test protocol on a 200 m indoor track. The symbol a represents the start line, b is a
photoelectric cell to reset the force platform records, both c are the two motion analysis sensor modules,
d is the control panel and e are the cones laid every 20 m and FP is the force platform recording area.

2.4. Materials

2.4.1. Power Meter

Each participant wore the Stryd power meter, a foot-mounted inertial sensor of 9.1 g reinforced
with carbon fiber, firmly attached on the shoe and according to manufacturer recommendations.
The device stores at 1 Hz sampling frequency the following variables: GCT, vertical oscillation,
running PO, distance, LSS, cadence. According to Stryd team information, the device is operational
out of the box and should not need any calibration, accepting a measurement error of 3 percent.
Participants filled in their body height and body mass prior its use, requisites for the PO estimation.
As a precautionary measure, the device was fully loaded and activated 20 min before the beginning of
the test. The firmware version used was the 1.1.9 (released on February 2019) and data were extracted
in flexible and interoperable data transfer (FIT) format from the Stryd application (http//www.stryd.
com/powercenter). To analyse data extracted from the Stryd power meter, we converted FIT files to
comma-separated values format by parsing files with Python (version 3.7, “fitparse” library).

http//www.stryd.com/powercenter
http//www.stryd.com/powercenter
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2.4.2. Gas Exchange Measures

Participants wore the Cosmed k4b2 portable metabolic system in order to record breath-by-breath
gas exchange measures. The device has been validated by several independent authors [24–26].
The device was checked and certified valid by the Cosmed company two months prior to the study.
Before each testing sessions, the metabolic analyser was powered on to warm up for 30 min and
then CO2 and O2 sensors were calibrated based on known gas tank concentrations and ambient air
measurements. Flow meter calibration was then completed using a 3.0 L syringe according to the
manufacturer recommendation. Calibration was done for each subject after 30 min warm-up activation.
To produce uniform sampling for subsequent numerical analysis, we linearly interpolated data on a
second-by-second basis. Due to a noisy signal provided by the portable metabolic system, data were
averaged with a fifth order moving average filter [27], corresponding to 5 s time bins [28].

2.4.3. Force Platforms

A track embedded force platforms system measured the ground reaction forces (GRFs) once per
lap (200m) during the incremental running test. The system consisted of three force platforms (one
Kistler, Switzerland and two AMTI, USA) of dimensions 90 cm * 90 cm connected in series and covered
with a tartan mat. Each platform was calibrated before the study. Sampling frequency was set at
500 Hz.

2.4.4. Motion Analysis

The entire runner stride measurements along the platform section were performed using the Coda
Motion 3-D movement analysis system (Charnwood Dynamics Ltd., United Kingdom). The system
was composed of marker devices, sensor modules and data analysis software. The marker devices
consist of infrared emission markers. The sensor module is made up of three optical sensors, which
capture 3-D position and orientation by tracking the markers in real-time. Two sensor modules were
placed on both sides of the platform area and two markers (CXS models) were firmly fixed to the heel
and on the fifth metatarsal bone of the runner. The system delivers reliable real-time 3D measurements
on the computer screen throughout the experiment with a 400 Hz sample frequency. The data were
processed with the Coda Motion Odin software platform.

2.5. Calculations

2.5.1. Ground Contact Time, Stride Time and Stride Frequency

Changes in vertical GRFs signal were used to detect foot strike and to estimate GCT (ms), defined
by the duration of the GRFs variation. GCT (ms) was defined as the duration of the vertical GRFs
signal. Flight time was estimated from the Z axis heel marker changes monitored by the Coda Motion
analysis system. Assuming that participants have an equal stride properties between lower limbs, the
stride time was approximated as following:

Ts =
C2 − C1

2
,

with Ts the stride time in seconds, C2 and C1 respectively the time instances (s) of the second and first
heel strikes recorded by the optical sensor located on the foot. Hence,

ω =
1
Ts

is the stride frequency (Hz).
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2.5.2. External Mechanical Power, Mechanical Cost of Running and Mechanical Efficiency

We calculated the external power and the mechanical cost of running following an external energy
summation approach. GRFs signals were computed in the anterior-posterior (x) and vertical (z) axis.
We omitted the lateral axis due to its negligible contribution when running on a track [21]. First,
the acceleration ~A (m/s2) is decomposed on both z and x axes, respectively defined as

Az =
(Fz−mg)

m
and

Ax =
Fx
m

,

where Fz and Fx are the components of the force recorded (N), m is the mass of the subject (kg) and
g = 9.80665 is the acceleration due to the gravity (m/s2). Consequently, the speed at time i denoted ~Si
(m/s) is

~Si =
∫ i

t=i−1
~At dt + ~Si−1 and

~Di =
∫ i

t=i−1
~St dt + ~Di−1,

with ~Di the distance (m) at time i and t the time measurement according to the sampling frequency
(2 ms). Potential, kinetic and total work (Wp, Wk and Wt) were calculated as

Wp = mg (max Dz −min Dz)

Wk =
1
2

m
(

max S2
x −min S2

x

)
Wt = Wp + Wk,

where z and x are the vertical and anterior-posterior axes, respectively. Finally, external mechanical
power (W) was calculated by

Ẇext = Wt ω.

The mechanical cost of running (Cm) in J·kg−1·m−1 was thus defined as

Cm = Ẇext S−1
x m−1. (1)

Metabolic power (Ẇmet, W) and net Mechanical Efficiency (ME, %) were estimated from V̇O2

measurements using energy equivalent of O2 as following

Ẇmet =
V̇O2 m

60
k

ME =
Ẇext

∆Ẇmet
100, (2)

with V̇O2 in mlO2·kg−1·min−1, k the energy equivalent for the consumption of 1 mlO2 for a value of
21.1 J [29,30] and ∆Ẇmet the variation of V̇O2 above resting.

2.5.3. Leg Stiffness

Stryd LSS metric was compared with the reference method [22] for assessing leg stiffness
(kleg, kN·m−1), using force platform measures and defined as

kleg = F̂z ∆L−1, (3)
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where F̂z denotes the maximal values of Fz and ∆L = ∆y + L(1− cos θ). In the latter, θ = sin(vTc/2L),
∆y is the vertical displacement of the center of mass, v is the forward velocity, Tc is the contact time
and L is the initial leg length standardized at 0.53 of the subject’s height.

2.5.4. Time Matching

The following procedure was used to match power meter and force platform measurements.
After checking the length of the track (200 m following the inner line), participants started to run
right after the force platforms set up, spreading out over 9 m (Figure 1). The recorded sequences were
matched by subtracting 9 m to each 200 m estimated by the power meter, assuming that the Stryd
device measures distance reliably [31]. To keep one value for each metric of interest, values were
averaged over this distance and over the three force platforms.

2.6. StatisticaL Analysis

Statistical modelling in a small data set context can lead to statistical power issues and may suffer
from biased parameters estimation. To tackle this issue, the modelling was conduced in a Bayesian
framework. We counterbalanced the lack of data (participants) by providing a priori information inside
the models, based on empirical knowledge and literature. The Hamilton Monte Carlo algorithm was
used to infer the parameters of models and caution has been taken to diagnose their convergence [32].
To figure out the relevance of variable inclusion in the models and to provide an alternative to
significant testing of the null hypothesis (H0), we computed Bayes Factors (BF10). Such a factor
represents a continuous measure of evidence for the alternative hypothesis (H1) over H0. Based on
theory of Jeffreys [33] and according to guidelines of Lee and Wagenmakers [34], we provided the
following classification for interpretation : BF10 > 100, 30–100, 10–30, 3–10, 1–3 correspond to an
extreme, very strong, strong, moderate and anecdotal evidence for H1, respectively. A BF10 of 1 means
there is no evidence of an hypothesis over the other. Below this value, the evidence is against H1 or for
H0 following the inverse of the mentioned scale.

2.6.1. Reference Measures

To ensure that reference measures were valid, a Linear Mixed Model (LMM) was computed to
evaluate the relationship between the Cm (Equation (1)) and speed calculated from force platform
measurements. Speed and participants were settled as fixed and random effects respectively, in order
to consider the variability of Cm among participants. Relationship between the portable metabolic
system-derived variables and the force platform-derived variables were also assessed by computing
a LMM where the mechanical power and participants corresponded to fixed and random effects,
respectively. For each LMM, an intraclass correlation coefficient (ICC) was reported to highlight
the fraction of the total variance in the data accounted for between-subject variation. It justifies the
inclusion of participants as random effects in the model. Finally, linear models were used to examine
the mean relationships between (i) GCT and running mechanics (running speed and frequency), (ii) leg
stiffness and running mechanics. For the sake of clarity, those models are detailed in supplementary
materials (Appendix A). Coefficient of determination and 95% credible intervals (CI) were reported in
order to quantify the degree of linear relationship.

2.6.2. Mechanical Power

To assess the linear relationship between the Stryd mechanical power and the metabolic energy
consumption during the MAS test, we defined the following model,

yi = β0 + β1Pmec + εi, (4)

with yi being the V̇O2, β0 denoting the intercept, β1 ∼ N (0, 10) being a weakly informative prior and
εi the error term.
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In addition to coefficient of determination and 95% CI, correlation between variables were
observed through pair-wise Bayesian correlation tests using non-informative Jeffrey’s priors [33]. A
similar linear model (Equation (4)) was computed to assess the relationship between PO measured by
the force platform and PO assessed from the power meter.

Thereafter, the effects of the system of measurement (force platform and Stryd power meter),
the speed and the participant were evaluated. Due to random measurement errors and technological
issues (e.g., mismatch between foot strikes and the force platform area), it has been required to deal
with missing data as well as different number of repeats between systems. Consequently, a LMM
was preferred to a repeated measures analysis of variance. Through a design-driven approach [35],
subject varying intercept and slopes were included in addition to fixed effects. This model allowed us
to consider the inter-subject and intra-subject variability (e.g., heterogeneous PO levels and individual
PO kinetics in response to speed and strides changes). Independent variables were standardised
prior modelling, easing the interpretation by allowing the direct comparisons of estimated parameters.
The model was defined as,

yijk = β0 + S0i + β1 devicek

+ (β2 + S1i) speedj

+ β3(speedj devicek) + εijk ,

(5)

with yijk being the response variable for a subject i, speed j and device respectively k. In this equation,
β0 denotes the fixed effect intercept, S0i is the offset term intercept which represents the deviation
from β0 for the subject i, βn are the parameters for each corresponding predictor, S1i is the random
slope for each subject and εijk is the observation-level error. Priors were chosen according to empirical
knowledge and literature. Because the relationship between devices (Stryd power meter and force
plateforms) remains unknown but presuming an underestimate of the Stryd power meter, a vague
prior was fixed such as β0 ∼ T (3, 0, 10) and β1 ∼ N (0, 1000). According to the well-known strong and
positive relationship between running speed and external mechanical power [36], a weakly but more
informative prior (i.e. with a lower variance) was fixed to the speed parameter with β2 ∼ N (0, 200).

2.6.3. Ground Contact Time

In the same way, effects of the MAS test parameters on GCT were assessed through the Bayesian
LMM (Equation (5)). Weakly informative priors were assigned to the parameters of the force platforms,
power meter and speed. This choice was motivated from empirical knowledge and previous findings
about changes in contact time with velocity [37]: β0 ∼ T (3, 0, 10), β1 ∼ N (0, 1), β2 ∼ N (0, 1).

2.6.4. Leg Stiffness

The last variable of interest was analysed following the same procedure (Equation (5)). Weakly
informative priors were chosen according to the trust in leg stiffness values [38] in order to estimate
the posterior distributions for each parameters as β0 ∼ T (3, 0, 10), β1 ∼ N (0, 10), β2 ∼ N (0, 1).

Bayesian models were computed in the probabilistic Stan programming language. Bayes factors
were estimated through a bridge sampling and using the R package “brms” [39]. Finally, agreement
between the power meter and force platforms measures was described by a Bland-Altman analysis for
each variable of interest [40]. All statistical analysis were computed with R software (version 3.5.3).
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3. Results

3.1. Reference Systems: Force Platforms, Portable Metabolic System and Motion Capture

3.1.1. Mechanical Cost of Running

Using the force platforms, we calculated the mechanical cost of running following the Equation (1).
Mean values of Cm were 2.36± 0.46 J·kg−1·m−1. By comparing the Cm with the increase of speed, we
observed a moderate negative linear relationship for all participants (R2 = 0.66, [0.60, 0.71] 95% CI).
Both speed (as a component of Cm calculation) and subject have shown an effect on the Cm measure
with an extreme evidence (BF10 > 100). In terms of explained variance by participant effect, ICC
reported a moderate correlation (ICC = 0.65, [0.34, 0.94] 95% CI)) supporting the individual differences
in Cm. Highest values of Cm were found at low speeds (up to 3 m/s).

3.1.2. Metabolic and External Mechanical Power Relationship

Consumed metabolic energy (V̇O2) and external mechanical power revealed a strong and positive
linear relationship for the 6 participants (R2 = 0.85, [0.76, 0.89] 95% CI). Results of the LMM (Table 1)
showed a significant effect of mechanical power over V̇O2 (β1 = 0.081, [0.035, 0.111] 95% CI). Bayes
factor supported the results with an extreme evidence of both external mechanical power and subject
effect (BF10 > 100). Large standard deviations of intercept parameter indicated heterogeneous levels
between participants. ICC supported the individual differences with a high correlation (ICC = 0.94,
[0.55, 1] 95% CI)). The net mechanical efficiency was calculated from the force platform measures
following Equation (2). Group mean value of ME was equal to 55± 3%.

Table 1. Linear mixed modelling of consumed metabolic energy and mechanical power relationship.

Parameter Estimate Est.Error CIlower CIupper Effects

Intercept −8.530 8.842 −27.898 7.197 Population-level effects
Mechanical power 0.081 0.018 0.035 0.111 Population-level effects

sd(Intercept) 15.234 7.535 3.123 32.769 Group-level effects
sd(mechanical power) 0.029 0.019 0.004 0.078 Group-level effects

cor(Intercept,mechanical power) −0.492 0.428 −0.949 0.658 Group-level effects
sigma 2.410 0.346 1.853 3.204 Family specific parameters

3.1.3. Ground Contact Time and Leg Stiffness

Force platform GCT and kleg values according to the method of McMahon and Cheng [22]
(Equation (3)) are represented in Figure 2. GCT showed a strong and negative linear relationship with
both speed (R2 = 0.96, [0.86, 0.98] 95% CI) and frequency (R2 = 0.93, [0.79, 0.96] 95% CI), recorded by
the force platform and the motion capture system, respectively. Bayes factors reported a moderate
evidence for the alternative hypothesis (BF10 = 3.07 and BF10 = 4.02). kleg showed a strong and
positive linear relationship with the stride frequency (R2 = 0.82, [0.42, 0.89] 95% CI, BF10 = 16.12).
In contrast, kleg did not significantly increase with speed (R2 = 0.40, [0, 0.64] 95% CI). The resulting
Bayes factor (BF10 = 0.22) indicated an anecdotal evidence in favour of the null hypothesis.
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(a) (b)

(c) (d)

Figure 2. Mechanical stride changes during the MAS test. The top plots (a,b) represent changes in GCT
over speed and stride frequency respectively. The bottom plots (c,d) represent changes in leg stiffness
(kleg) over speed and stride frequency according to McMahon and Cheng [22]. In each figures, dots
represent the group mean values, error bars the standard deviation in both x, y axes. The solid line is
the regression line from the Bayesian linear model, surrounded by the 95% credible intervals.

3.2. Stryd and Reference Measures Comparisons

3.2.1. Consumed Metabolic Energy and Power Output

Individual consumed metabolic energy and PO relationships are represented in Figure 3.
We truncated the first part of the signal in order to remove the habituation period, where PO increases
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instantly and V̇O2 is shortly delayed. A strong and positive linear relationship between V̇O2 and PO
for all participants was observed (R2 = 0.82, [0.81, 0.83] 95% CI, BF10 > 100). This results supported
a valid relative measure of the Stryd PO from low speeds until MAS. Bayesian pair-wise correlation
coefficient indicated a strong and positive correlation between both parameters for all participants
(r = 0.90, [0.89, 0.92] 95% CI, BF10 > 100).

Figure 3. Consumed metabolic energy (V̇O2) – Stryd power output (PO) relationship during the
incremental test. A strong and positive linear relationship was observed across participants. Lines
represent each individual linear regression between V̇O2 and PO.

3.2.2. Mechanical Power

A descriptive analysis of PO differences between both measurement systems indicated the
greatest differences at highest speeds, suggesting a proportional error (normalized PO differences
per participants varied from 38% to 60% between the two systems). By modelling the averaged
PO across participants, a strong and linear relationship was observed over the MAS test (Figure 4a,
R2 = 0.94, [0.91, 0.95] 95% CI, BF10 > 100). However, the two systems were different regarding their
absolute measures. To fix this issue, the linear model fitted on the averaged values of each participant
measures could provide a correction function. In this study the estimated function was of the form
f (x) = ax + b, with a = 173.837 and b = 1.569 (Figure 4b). In addition, the Bland-Altman analysis
provided a representation of such differences in absolute values and a proportional error which raised
with mechanical power increase, and so speed (Figure 5a).

In addition to averaged power comparisons, LMM mean posterior distributions and CI confirmed
the underestimate of the Stryd PO (β1 = −305, [−324,−286] 95% CI, BF10 > 100). Results are
reported in Table 2. In agreement with the relationship of mechanical power and speed, the posterior
distribution of the speed parameter also reported a positive effect on PO with a strong evidence
(BF10 = 15.38). Stryd measure and speed interaction reported a negative effect. It suggests that
the power meter measure is not homogeneous while speed raises (from 8 km/h to approximately
19 km/h). By comparing models with and without the interaction term, Bayes factor confirmed
this effect with an extreme evidence (BF10 > 100). The ICC revealed a high correlation (ICC = 0.79,
[0.55, 0.96] 95% CI, estimated error = 0.11). Such a correlation indicated an important variance explained
by the random intercept and slopes per subject, justifying the relevance of subject random terms in the
present modelling.
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(a) (b)

Figure 4. Comparison of PO estimated by the Stryd power meter and the force platform. The left plot
(a) represents the strong positive relationship between the Stryd and the reference measures. The right
plot (b) represents the averaged PO in response to speed, where the dotted line is the corrected Stryd
PO (see text for details).

3.2.3. Ground Contact Time

Results of the Bayesian LMM (Table 2) reported a negative although quasi-null posterior estimate
of the Stryd parameter (β1 = −0.005, [−0.009,−0.002] 95% CI). It suggested that a small but negative
effect of the Stryd device exists. However, Bayes factor reported an extreme evidence in favour of the
null hypothesis (BF10 = 0.008). Hence, no significant differences were found between the systems of
measurement. Posterior distribution of the speed parameter also reported a negative effect on GCT in
agreement with our precedent results (see Figure 2). Bayes factor supported the importance of this
effect with an extreme evidence (BF10 > 100). However, not any effect were observed for the Stryd
power meter and speed interaction. Bayes factor confirmed this result with an anecdotal evidence
against the alternative hypothesis (BF10 = 0.72). Thus, GCT seemed to be measured with consistency
across the whole range of speeds. In terms of by subject explained variance, the ICC reported a
moderate correlation (ICC = 0.55, [0.24, 0.89] 95% CI, estimated error = 0.18). Therefore, individual
differences in GCT were lower than PO differences.
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Table 2. Bayesian linear mixed models parameters estimates.

Parameter Estimate Est.Error CIlower CIupper BF10 Effects Measure

Intercept 568.401 38.163 490.765 644.830 Population-level effects Mechanical power
Stryd −304.952 9.817 −324.304 −285.993 >100 Population-level effects Mechanical power

Speed 65.486 12.914 42.022 93.125 15.38 Population-level effects Mechanical power
Stryd:speed interaction −23.782 9.884 −43.192 −4.554 >100 Population-level effects Mechanical power

sd(Intercept) 86.027 36.563 41.970 180.565 Group-level effects Mechanical power
sd(speed) 17.260 18.408 0.438 66.867 Group-level effects Mechanical power

cor(Intercept,speed) 0.349 0.516 −0.819 0.978 Group-level effects Mechanical power
sigma 52.325 3.651 45.751 59.970 Family specific parameters Mechanical power

Intercept 0.241 0.008 0.226 0.255 Population-level effects Contact time
Stryd −0.005 0.002 −0.009 −0.002 0.008 Population-level effects Contact time

Speed −0.034 0.012 −0.058 −0.011 >100 Population-level effects Contact time
Stryd:speed interaction 0.000 0.002 −0.003 0.004 0.72 Population-level effects Contact time

sd(Intercept) 0.016 0.009 0.007 0.039 Group-level effects Contact time
sd(speed) 0.025 0.015 0.009 0.063 Group-level effects Contact time

cor(Intercept,speed) −0.216 0.410 −0.862 0.647 Group-level effects Contact time
sigma 0.010 0.001 0.009 0.012 Family specific parameters Contact time

Intercept 8.574 0.980 6.680 10.571 Population-level effects Leg stiffness
Stryd −0.602 0.893 −2.334 1.154 0.007 Population-level effects Leg stiffness

Speed 0.394 0.240 −0.099 0.865 0.012 Population-level effects Leg stiffness
Stryd:lap interaction 0.063 0.244 −0.418 0.534 0.020 Population-level effects Leg stiffness

sd(Intercept) 1.427 0.959 0.119 3.830 Group-level effects Leg stiffness
sd(speed) 0.284 0.255 0.010 0.940 Group-level effects Leg stiffness

cor(Intercept,speed) −0.105 0.572 −0.953 0.927 Group-level effects Leg stiffness
sigma 0.972 0.063 0.857 1.106 Family specific parameters Leg stiffness
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(a) mechanical power (b) Ground contact time

(c) Leg stiffness

Figure 5. Bland–Altman plots for comparison of measurements between the force platforms (reference)
and the power meter. Mean bias (middle dashed line), lower and upper limits of agreement (dashed
lines) and their 95% confidence interval areas are represented.

3.2.4. Leg Spring Stiffness

For the last measure of interest, any difference were found between devices over the LSS
measurement (β1 = −0.602, [−2.334, 1.154] 95% CI) as reported in Table 2. An extreme evidence
against the alternative hypothesis supported this result (BF10 = 0.007). The speed did not appear
to impact the LSS measure which remained quite constant. Bayes factor supported this result with
a very strong evidence against the alternative hypothesis (BF10 => 0.012). Finally, the posterior
distribution of the LSS parameter indicated that LSS was measured with consistency across the range
of speed. A very strong evidence against the alternative hypothesis supported the negligible effect in
modelling (BF10 => 0.020). Nonetheless, by between subject variability showed a moderate correlation
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(ICC = 0.65, [0.34, 0.93] 95% CI, estimated error = 0.16) revealing differences in individual baseline
levels as well as responses to speed increment.

4. Discussion

The present study aimed to assess the validity of the Stryd power meter at sub-maximal speeds.
In the first part of the experiment, absolute values obtained from reference systems (portable metabolic
analyser, force platforms and motion capture) were compared to the literature. Then, comparisons
of mechanical variables were made between the Stryd power meter and the gold standard systems
of measurement.

4.1. Reference Measures

Mechanical cost values found for the six participants (reported in the first part of the results) were
in agreement with expected values when the total work is calculated by assuming no energy transfer
between potential and kinetic energies [41–44]. High values of Cm at low speeds reveal inefficient
running patterns, as described previously [41,44,45].

Oxygen uptake and work rate relationship were largely studied and well described by
Poole et al. [46], and Gaesser and Poole [47]. Our results agreed with the literature with a strong
and positive relationship between consumed metabolic energy and mechanical power across the MAS
test (Table 1). To end with metabolic and mechanical power measures, the net mechanical efficiency
(ME = 55± 3%) also confirmed suitable values for a running task, as stated in the literature [42,48,49].

Linear relationship (Figure 2) between both GCT, speed and stride frequency were in agreement
with the literature [38,45]. The leg stiffness calculated following McMahon’s method [22] also reported
consistent results with previous author findings [38,50,51]. Based on these results, we considered that
our reference measures were suitable for comparisons with the Stryd power meter.

4.2. Power Meter and Reference Measurements Comparisons

Consumed metabolic energy and PO estimated by the Stryd power meter indicated a satisfying
positive linear relationship for each participant. Individual regression slope and intercept differed
between participants, according to heterogeneous body characteristics included in PO calculation
(mainly body mass) and running performance level. To date, only three studies assessed the metabolic
demand and Stryd PO relationship [18,52,53]. The last found weak linear relationship between PO
and V̇O2 but suffered of methodological flaws, highlighted by Snyder et al. [54]. Our results appear
to be more consistent than Austin et al. [52] but we found lower correlations than Lara et al. [18] or
Stryd own researches [55]. It is important to point out the methodology employed when analysing
VO2 from Cosmed k4b2 and Stryd power data. In the present study, the first part of the running
exercise (less than one minute of exercise) was omitted due to a normal time delay for V̇O2 to increase
while PO increases instantaneously [56]. Moreover, as the portable metabolic analyser provides a
noisy signal [25], filtering the data appears to be essential prior any analysis. The fifth order moving
averaged filter allowed analysis on smoothed data but still sensitive to the exercise conditions. We
encourage such a process for VO2 analysis during incremental running test or at least to report details
about data processing.

Despite a strong linear relationship between the Stryd power meter and the mechanical power
calculated from the force platform (Figure 4a), absolute values have shown major differences. Results
found from the linear mixed model (Table 2) and the descriptive analysis of differences between the
Stryd power meter and the force platforms converged, suggesting a proportional error of the Stryd
PO estimate with the increase of speed (Figure 5a). The underestimate of the power meter measure
could be accounted for the apparent ME used in the power calculation. Apparent efficiency represents
the ratio between mechanical energy and metabolic energy and is modulated by elastic storage and
recoil from the eccentric to concentric phase. It has been measured during running, walking and
cycling [42,48,49,57,58]. Researchers found values up to 53% in running versus approximately 30%
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and 25% in walking and cycling respectively (we found similar values of 55%, as reported above).
Running power meters are concerned with ME assessment but the way it has been integrated in the
PO estimation could explain large differences in absolute PO values. Stryd team mentioned in their
white papers a gross ME equal to 25% that can be approached by elite runners [55]. This ME value is
about an half of the apparent ME values reported by aforementioned authors and the one we found.
Such a difference could explain the underestimate of PO from the Stryd power meter when compared
to the systems of reference. To tackle this absolute error, we proposed a linear correction function
adjusting the power value to the appropriate scale (Figure 4b). The provided function is estimated
from data of only 6 runners. Even though their heterogeneous aptitude and body mass varied, further
studies including more participants could provide a more accurate PO correction for a wide range
of runners.

According to García-Pinillos et al. [16], an underestimate and a poor reliability for the GCT
measure by comparing the power meter to an OptoGait system were found. No such results were
found in the present study although an underestimate but negligible GCT measure was observed
when compared to force platforms (Table 2, Figure 5b). A potential difference could be explained in
the Stryd vertical GRFs modelling itself where passive peak is missed [55]. Moreover, as discussed by
the authors, the relevance of the OptoGait system would not be as accurate as our system of reference
(force platform), which could explain divergent findings.

Finally, the LSS measures did not show any major differences between the Stryd power meter
and the force platforms (Table 2, Figure 5c). On the one hand, relationship found in the present study
between leg stiffness and stride frequency was in agreement with the literature [38]. In addition,
Morin et al. [59] found that 90% to 96% of changes in leg stiffness was accounted for by changes in
GCT, whereas step frequency indirectly influenced leg stiffness through its relationship with GCT.
On the other hand, the leg stiffness represents the lower-limb resistance to deformation and reflects in
some way the elastic energy storage and recoil. Thus, leg stiffness has been considered as a kinetic
factor related to running economy (RE) by authors [60,61]. RE is recognised to be one of the main
determinant of the endurance running performance [62]. Thereby, LSS could be a relevant training
parameter in which the runner should major it by mainly shortening the GCT (in addition to resistance
and specific training). However, further studies involving changes in GCT, stride frequency and
kinematic factors (e.g., angle of attack) for a given speed would assess whether the Stryd power meter
is sensitive enough to correctly estimate RE through the LSS.

4.3. Other Measures

Our protocol did not allow us to assess the validity of distance and pace. Participants wore their
own running watch and GPS signal or auto-calibration was not systematically turned off. By observing
the raw data through the FIT files, GPS signal recorded by the watch overwrote estimates of these
measures. Consequently, cautions should be taken using the Stryd power meter coupled with a sport
watch in practice. We recommend users to turn-off GPS signal and auto-calibration at the expense of
somehow useful GPS information (e.g., GPS traces in trail running).

5. Conclusions

In this paper, we focused on the Stryd ground contact time, power output and leg spring stiffness
validity compared to reference systems measures. The power meter provided acceptable measures of
GCT and LSS over the test but interrogations persist about absolute values of PO. Nonetheless,
Stryd power meter can be a useful tool to quantify the intensity during sub-maximal running.
By correcting absolute PO values of the Stryd power meter, it allows the runner to monitor training
loads (e.g., through the external work) and performances across sessions. Recreational runners
interested in health rather than performance can also profit of these measures by practising safely.
Further analyses remain necessary to assess the power meter validity at higher speeds (maximal and
supra-maximal), with direction changes, non linear accelerations and slope.
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Abbreviations

The following abbreviations are used in this manuscript:

Ax anterior-posterior acceleration of the centre of mass of the whole body
C foot impact given by optical sensors
Cm mechanical cost
~Di displacement at time i
F resultant of external forces
FIT flexible and interoperable data transfer
g acceleration due to gravity
GCT ground contact time
GPS global positioning system
GRFs ground reaction forces
ICC Intraclass correlation coefficient
IMU inertial measurement unit
Kleg leg stiffness
L initial leg length
LMM linear mixed model
LSS leg spring stiffness
m mass of a subject
MAS maximal aerobic speed
ME mechanical efficiency
PO power output
RE running economy
~Si speed at time i
Tc contact time
Ts stride time
V̇O2 oxygen consumption
V̇O2max maximal oxygen consumption
Ẇext external mechanical power
Wk kinetic work
Ẇmet metabolic power
Wp potential work
Wt total work
ω stride frequency

Appendix A. References Measures: Models

Mechanical cost of running and speed relationship was assessed by computing a linear
mixed model,

yij = β0 + S0i + β1speedj + εij
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with yij being a Cm value for a subject i, speedj. β0 denotes the fixed effect intercept, S0i is the offset
term intercept which represents the deviation from β0 for the subject i. β1 is the parameter for the
speed predictor in which a weakly informative prior β1 ∼ N (0, 10) was assigned and εijk is the
observation-level error.

Relationships between consumed metabolic energy and external mechanical power was evaluated
by computing a linear mixed model,

yij = β0 + S0i + (β1 + S1i) Ẇextj + εij ,

with yij being the V̇O2 for a subject i and Ẇextj. β0 denotes the fixed effect intercept, S0i is the offset
term intercept which represents the deviation from β0 for the subject i, β1 is the parameter for the
Ẇext predictor with a weakly informative prior β1 ∼ N (0, 10) assigned , S1i is the random slope for
each subject and εij is the observation-level error.

Relationships between GCT, LSS and stride mechanics (running speed and frequency) were
modelled through an univariate linear model as

yi = β0 + βnxi + εi,

with yi the variable response GCT or LSS for a subject i, β0 the intercept, βn the parameter for
the predictor x (running speed or frequency) and εi the error term. A wealky informative prior
βn ∼ N (0, 10) was assigned to both running speed and running frequency predictors.
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