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Abstract Empirical predictions of discharge rates for
dry non-cohesive grains are commonly based on the
Beverloo law (1961). The present work extends this
practical configuration to submerged and cohesive cases
to investigate the flow behavior of granular media with
applications in the geophysical process of sinkhole for-
mation. The analysis of the hydrostatic collapse of soil
in the presence of underground conduits is performed
with a 2D GPU-parallelized simulation coupling the
lattice Boltzmann method (LBM) and the discrete ele-
ment method (DEM) to describe the fluid and the solid
phases, respectively. The discharge rate of a large sub-
merged granular sample is analyzed by varying orifice
sizes and inter-particle cohesion strengths. For the sub-
merged cohesionless case, we first study the revisited
Beverloo relationship that includes the terminal veloc-
ity of a single falling particle in the fluid, proposed in
the experimental work of Wilson et al. (2014). We con-
sistently take into account the interstitial fluid with an
effective orifice size smaller than in the dry case. Then,
the additional contribution of grain cohesion is exam-
ined. Our main finding is that the empirical prediction
remains valid provided that the orifice cutoff increases
with cohesion. Finally, the evolution of fluid pressure
during the discharge, at the vicinity of the orifice, is
studied and favorably compared with the recent exper-
imental study of Guo et al. (2017). By considering the
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pressure drop around the orifice as a driven-term, we
succeed in predicting the solid flow rate with a similar
Beverloo approach.

Keywords Granular flow - cohesive soil - solid
discharge rate - DEM-LBM - hydro-mechanical
modeling - sinkhole

1 Introduction

The gravitational flow of granular media through an
aperture has been the subject of many studies for hop-
per and hourglass problems [1,2], but much less with
regard to geophysical processes such as soil subsidence
and subsequent sinkhole formations related to the phe-
nomenon of soil erosion [4,5]. The effects of climate
change will probably drastically increase the occurrence
of floods, but our knowledge of the hydro-mechanical in-
stabilities of soil responsible for sinkhole occurrences is
still poor and therefore insufficient to perform efficient
risk assessments. In this paper, we focus on the collapse
of cohesive soil layers above existing underground karst
conduits in saturated situations after a flood. Since the
underground process remains invisible from the surface,
we here propose a simplified model that numerically
simulates a submerged assembly of cohesive particles
flowing through an orifice under the sole action of grav-
ity.

Accurate prediction of discharge rates is crucial to
address this issue. Depending on the orifice size and
considering dry and cohesionless materials, three regimes
of granular discharge are generally observed: a continu-
ous flow, an intermittent flow, and the complete block-
age of the flow due to arching. In the continuous flow
regime, the mass flow rate M, with a circular orifice can
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be predicted empirically by the widely adopted Bever-
loo law (1961) [1]:

M, = Cpu/g(D — kd)P™1/ M

where p; is the solid density, g the acceleration of grav-
ity, D the orifice size and d the grain diameter, while C'
and k are empirical coefficients for the two-dimensional
case Dim = 2 and for the three-dimensional case Dim =
3, respectively. This relationship can be understood by
considering two physical phenomena. First, it is as-
sumed that the mechanism underlying the evacuation
of grains is associated with the rupture of arches formed
above the orifice [7]. Thus, the flow is calculated from
the terminal free fall velocity of a particle in the air
over a height D, defined by /gD, and the orifice sec-
tion D?. Then, the term D — kd is used to define an
apparent orifice size that accounts for the influence of
a layer of grains close to the orifice edges where there
is little or no motion. Values of k are found empirically
and depend on grain shapes and size dispersion as well
as inter-granular friction coefficients. For instance, the
usual value for spherical particles is k = 1.5 [8], for sand
it is k = 2.9 [1], while for air bubbles k£ = 0.66 has been
reported [9]. Coefficient C' is also slightly dependent on
the coefficient of friction between grains and found to
be in the range of 0.55 < C' < 0.95 [10]. The dry dis-
charge rate through an orifice has been found to follow
the Beverloo law for D/d > 6 [2,11,12]. Below this crit-
ical value, the flow is intermittent, causing jamming to
occur [13].

Although the Beverloo law is supported by a consid-
erable number of numerical and experimental works in-
cluding [3,10-12,14,15], it has nevertheless been called
into question since the experimental study of Janda et
al. (2012) [16]. The classical interpretation in terms of
apparent orifice appears to contradict the highlighting
of self-similarity for the density and velocity profiles in
the flow of particles through an aperture [16,18,17]. In
the present work, we will however remain within the
framework of the Beverloo law, which is mainly stud-
ied for dry non-cohesive granular material and mostly
ignores the influence of the ambient fluid.

Relatively little research has been dedicated to sub-
merged granular flows. Among the key experimental
works, Wilson et al. [8] proposed a revision of the Bev-
erloo law by describing the discharge rate with the ter-
minal falling velocity of an individual grain in the fluid
vz, such that:

M, = Cpgvy(D — kd)P™~1 (2)

The main finding of these experiments was the increase
of the coefficient k in the apparent orifice size due to the
presence of the interstitial fluid. Further investigations
focused, experimentally and numerically, on fluid-grain
coupling [19,20]. The authors notably observed a sur-
prising surge in the flow rate at the end of the hopper
emptying process due to a non-constant pressure gradi-
ent. They pointed out the importance of examining the
fluid pressure and velocity fields. Recently, Guo et al.
[21] investigated water-submerged granular materials
experimentally through a long efflux tube, by monitor-
ing pressure variations with transducers. Their results
were well-predicted by the forced solid flow model pro-
posed by [2,22], that includes the following fluid pres-
sure driven-term:

P _P1d2

S

M, = Cy¢ [D/d — k)Pt (3)

where P, and P; are the pressures above and below the
orifice respectively, and ¢ is the solid fraction.

On the other hand, numerous studies account for
cohesion in granular flows, with applications in various
industries ranging from food, pharmaceuticals, agricul-
ture and mining, linked to fields of research such as
powder aggregation [23,24], soil rheology [25] and rock
mechanics [26]. Returning to our initial motivation to
model cohesive soil destabilization, we are interested in
internal attractive forces between particles that must
be distinguished from macroscopic cohesion defined in
a failure criterion of the Mohr-Coulomb type. We can
roughly distinguish two types of inter-particle bonds,
either formed by solid bridges (irreversibility) or liquid
capillary-like bridges (reversibility). In this work in re-
lation to erosion processes, we aim to model cohesive
materials such as cemented calcareous sands for which
different local models are proposed in terms of a contact
law and a failure criterion [27,28].

This paper deals with submerged and cohesive gran-
ular flows through an aperture in connection with the
phenomenon of the hydrostatic collapse of soil layers
over underground cavity networks [4,5]. The DEM-LBM
2D-coupled numerical method is first introduced in Sec-
tion 2. Then, simulation results for a parametric study
(orifice size and cohesion strengths) of the solid dis-
charge rate are presented in Section 3 with a thorough
examination of the fluid flow (velocity and pressure)
generated by the granular discharge. The conclusion
and outlook for future work are finally presented in Sec-
tion 4.



O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

DEM-LBM numerical modeling of submerged cohesive granular discharges 3

2 Numerical model

Compared with experimental studies, numerical simu-
lations provide a more versatile and efficient way of in-
vestigating a wider range of variables. Such variables
can be easily controlled, contrary to experiments in
which some of them are barely measurable, such as
the soil microstructural quantities and hydrodynamic
parameters inside the system. Over the last decade,
an increasing number of schemes that couple compu-
tational fluid dynamics (CFD) and the discrete ele-
ment method (DEM) have been developed for treating
the fluid-grain interactions involved in many complex
geomechanical phenomena [29-34]. Relying on previ-
ous works, LBM-DEM that combines the lattice Boltz-
mann method for describing the fluid phase and the
discrete element method for the solid phase, appears to
be a highly efficient strategy for studying erosion pro-
cesses, giving direct access to internal physical mecha-
nisms [31]. The lattice Boltzmann method (LBM) in-
deed is an efficient alternative to classical CFD meth-
ods for simulating solid-fluid flows due to its intrin-
sic parallelism and capability of dealing with complex
boundary conditions [35]. Furthermore, the discrete el-
ement method (DEM) has become a common approach
for studying granular flows such as discharges through
apertures [17,10,20] and through slit dams [36]. An in-
creasing number of DEM models include inter-particle
cohesive forces in the contact equation to describe cohe-
sive granular materials [27,37,38]. This section is dedi-
cated to a brief description of the DEM-LBM coupling
method and is completed in the appendices.

2.1 Lattice Boltzmann Method for the fluid phase

The LBM is based on the Boltzmann equation [39] and
derived from lattice gas cellular automata models. Gen-
erally, the computational domain in LBM is discretized
by a number of nodes on a regular lattice and the fluid
phase is assumed to be a group of fluid particles located
at each lattice node. The state of the fluid particles is
described by a distribution function f;(x,t) which indi-
cates, at time ¢, the probability of fluid particles moving
with velocity e; along the ith direction of the node lo-
cated at position x.

For the present study, we employ the widely used
and classical D2Q9 scheme that represents nine discrete
velocities in a two-dimensional square lattice, as shown
in Fig.1. The discrete velocities in the D2Q9 model are
given by:

(0,0)
w(i—1)
2

V2¢(cos ﬂ(2i47 9 ,sin m(2i - 9)) (i=5,...8)

e; = { c(cos

in which ¢ stands for the lattice speed defined as:

c=hJ/At (5)

where h is the lattice spacing and At is the time step.

Fig. 1: Discrete velocity in the D2Q9 model

The time evolution of the density distribution func-
tion f;(x,t) in LBM is obtained by solving the following
discrete form of the Boltzmann equation:

filx +eit, t + At) — fi(x,t) = 2:(f) (6)

which involves two successive sub-steps, namely colli-
sion and propagation steps

fiG,t7) = fi(x, ) + $2:(f) (7)

filx +eit, t + At) = fi(x,t") (8)

where f;(x,t*) is called post-collision term and ¢* is an
intermediate time in the range ¢t < t* < ¢ + At. 2;(f)
denotes the corresponding collision operator. The most
widely used and simplest collision operator is the lin-
earized Bhatnagar-Gross-Krook operator (called BGK)
introduced by Bhatnagar et al. [40]. In this model, the
density distribution function f;(x,t) tends to evolve to-
wards equilibrium with a single relaxation time 7:



O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Jianhua Fan et al.

1
QPer = ——(filx ) = [ (x.1)) 9)
where the equilibrium distribution function f°? reads:

. 3 9
fi(x,t) = wipf(1+c_29i'u+_(ei'u)2

5ot u) (10)

A
in which the weighting factors w; depend on the model.
For the D2Q9 model, wy = %, W1,2,3 ,4 = %, and

W56 57 18 = %-

The macroscopic hydrodynamic variables at each
lattice node, such as density py and velocity u, can
be evaluated from the particle distribution function as
follows:

=3 ()
i=0
18

u=— Z fie; (12)

The fluid pressure p is directly determined by the fol-
lowing state equation:

p=cp (13)
where ¢, is the sound speed, defined as ¢s = i?’

Finally, the kinematic viscosity v is related to the
lattice velocity ¢, the dimensionless relaxation time 7
and the lattice spacing h through the following expres-
sion:

v 1
T= + 5

Tch 2 (14

Since it has been proved that the macroscopic vari-
ables converge to the solution of Navier-Stokes equa-
tions through Chapman-Enskog expansion [41], the eval-
uation of incompressibility can be addressed by using
the Mach number, defined by:

My = Umaa/c (15)
with U4, being the maximum simulated velocity in the
flow. As the fluid in the LBM is assumed to be slightly
compressible, M, should keep a low value M, < 1 dur-
ing the simulations to recover an incompressible flow.
A lattice speed c sufficiently higher than maximum ve-
locity is required to ensure a reasonable solution. In
practice, the low Mach number limit M, < 0.1 should
be satisfied.

However, the BGK model is based on a single re-
laxation time 7 and therefore all the dynamic variables
are dependent on the same dimensionless parameter.
This deficiency probably leads to numerical instability
problems when the relaxation time 7 is close to 1/2. To
overcome this problem, there are several alternative col-
lision models in the literature, such as two-relaxation-
time (TRT) and multiple-relaxation-time (MRT) oper-
ators. In this work, we employ the TRT model to re-
lax the density distribution function, which avoids the
numerical instabilities caused by the single-relaxation-
time (SRT) model, and has the advantage of simplicity
in comparison to the MRT method [42]. More specif-
ically, the density distribution function is now decom-
posed into symmetric and antisymmetric parts:

fi:f;r—Ffi_ (16)
where f;L and f; are:
£ = fi‘;f—i, = fi_2f—i (17)

with —i being the notation for the vector e_; that
points in the opposite direction of e; (e_; = —e;). The
same process can be applied for the equilibrium particle
distribution function resulting in:

eq eq
feam = fi =1
1

2

f_eq+ — fiqurfiZ
3 2 b

(18)
In the TRT model, the evolution of the collision oper-
ator becomes

1 oy Lo e
OFFT = (fF - [ - (T - 1) (9)

where 77 and 7~ are the symmetric and antisymmet-
ric relaxation times. 77 controls the kinematic viscosity
%(T"_ — $)he, while 77 is a free parameter of-
ten determined by a so-called magic parameter A that
characterizes the stability properties of the TRT frame-
work [43]: A = (77 — 3) (77 — ). An optimal value of
A= 411 is provided to ensure stable simulations. Note
that the BGK model [40] can be recovered from TRT
when 7t =77 =17.

via v =

For the fluid-grain boundary condition, the partially
saturated method (PSM) is implemented in the LBM
algorithm. It deals with fluid-grain interaction by us-
ing a term that depends on the percentage of the cell
saturated with fluid. More details are presented in Ap-
pendix A.
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2.2 Discrete Element Method for the solid phase

DEM is an effective numerical method used to solve
complex problems in solid mechanics, initially devel-
oped by Cundall and Strack in the 1970s [44]. The
material is considered as an assembly of separate, dis-
crete particles that interact through contact forces. The
two force components, normal and tangential, are given
by a viscoelastic Kelvin-Voigt model and a viscous-
regularized Coulomb law, respectively. We also imple-
ment an interaction moment M, defined by the tan-
gential force with the particles’ radii as lever arms. A
detailed description of the contact model is given in
Appendix B.

For the analysis of the inter-granular cohesion, all
the grains initially in contact are assumed to be bonded
by a set of solid bridges with an elastic rheology charac-
terized by normal and shear bond stiffness. Two mod-
els, proposed by Delenne et al. [27] and Silvani et al.
[28], respectively, are combined to define the rheology
of the cohesive zone. The first model is an elastoplas-
tic model with a paraboloid yield surface in the space
of the contact forces and torque. This model supplies
the contact rheology, controlled by the relevant bond
parameters (i.e. Kelvin-Voigt model) as long as the in-
teraction forces remain within the yield volume. Once
the yield value is reached, the contact is lost and the
cohesive bond is definitively broken. As a result, the
contact becomes purely frictional. The second model
is a damage model that conveniently defines a damage
zone within the yield volume, which involves a progres-
sive degradation of the cohesive bond subjected to sub-
critical stresses. Finally, the combination of yield and
damage surfaces provides the limits of the interaction
force region. The rupture of the cohesive bond occurs
instantaneously outside the yield domain while there
is no bond degradation within the damage domain. In
this model, for the sake of simplicity, the normal, shear
and bending yield thresholds are assumed to depend on
a unique force F.,, which represents the mean inter-
particle bond strength. More details about this DEM
cohesion model are given elsewhere [33].

2.3 Coupled LBM-DEM for fluid-solid interaction

The coupling between LBM and DEM is based on the
sub-cycling time integration technique. Two time steps,
At for fluid and Atpgys for particles, are used in the
coupled procedure. In practice, the time step for fluid
computation is larger than that for particle dynamics.
Thus At} 4, is chosen according to the following equa-
tion:

1 |7

7 : Particle radius (DEM calculation)
7h: Hydraulic radius (LBM calculation)
o Fluid gap

Fig. 2: Illustration of the hydraulic radius for the LBM
and the grain radius for the DEM.

Ay = 2 (20)
Ns
where n is an integer greater than or equal to
At/Atpgy. Tt is important to note that the reduced
DEM time step here should be smaller than the critical
time step (see Appendix B). Thus, one computational
step of LBM includes ns substeps of DEM time inte-
gration. Since the hydrodynamic forces and torques ob-
tained with LBM remain unchanged during DEM sub-
cycles, ng should be selected as a small value for up-
dating particle information. In the present model, n,
is restricted to 1 for each LBM step without altering
DEM-LBM coupling, as discussed in Lominé et al. [29].
In 2D modeling, the solid disks in contact with each
other can cause the unphysical situation where no fluid
flows through the granular sample. In order to avoid
this problem, a hydraulic radius approach is implemented
in the LBM algorithm, where the solid grains are as-
sumed to have a reduced radius 7, in the LBM calcula-
tion, while keeping the real grain radius r in the DEM
loop (see Fig.2). A reasonable value of the ratio rp, /7 is
chosen equal to 0.8, as recommended by Cui et al. [45].
Consequently, we obtain a non-zero permeability in a
2D granular configuration.

3 Simulations of granular flows through an
orifice

3.1 Numerical model setup

The evacuation of submerged grains through an aper-
ture is simulated by the 2D DEM-LBM modeling de-
scribed in the previous section. We use an adapted
version of in-house codes previously developed by our
research team and validated by two classical bench-
mark problems for micromechanical fluid-solid inter-
action, namely the drag coefficient of a single settling
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particle and the sedimentation trajectories of a pair of
grains [31,33]. All the simulation parameters for fluid
and solid particles are listed in Table 1.

The computational domain consists of a fully satu-
rated granular assembly at the bottom of which an ori-
fice allows the grains to escape through an underground
conduit, as presented in Fig.3. We implemented two dif-
ferent granular samples composed of 14857 and 15422
grains, whose mean diameter is d = 4 mm and d = 2
mm, respectively. As presented in the introduction, one
key parameter of our study is the terminal velocity v,
notably involved in Eq. 2, which v; depends on the fluid
and grain properties. It scales with the grain diameter
as d? for the viscous (or Stokes) flow regime (low Re)
and as d'/? for the fully inertial and turbulent regime
(high Re) [8,46]. We determined v; from separate DEM-
LBM simulations of an isolated grain falling into a fluid,
with the same grain and fluid parameters (Table 2). The
flow regime is given by the particle Reynolds number
defined as Re = %d, where v = 10~% m?/s is the fluid
kinematic viscosity. We choose here a viscosity substan-
tially higher than that of water in order to limit the
magnitude of the fluid velocity. Indeed, our LBM code
is valid for incompressible flows (low Mach numbers,
see Eq. (15)). Consequently, we were restricted to the
laminar regime with low Reynolds numbers and with

low Stokes numbers, defined as St = i?;i\/(p;—_pdm,
PV s
] (

belonging to the so-called viscous regime [46,47] (Table
2).

The inter-particle cohesion of the sample is char-
acterized by a dimensionless Cohesion number (at the
particle scale) defined as the ratio of the bond strength
F.on to the particle’s own buoyant weight:

Fcoh

Coh= ——MM—
(ps — [)f)gS

(21)
where (ps —py) represents the submerged apparent den-
sity and S is the particle’s area (2D model). The grav-
itational flow is obtained in hydrostatic conditions, by
setting the pressure at the surface and at the outlet of
the conduit to zero. The grains within one diameter to
the lateral and bottom walls are fixed and the bound-
ary conditions are thus rough enough to prevent grain
sliding. We propose a parametric study by varying (i)
the size of the orifice D, from 10 to 90 times the diam-
eter of the grain d, and (ii) the Cohesion number Coh,
from 0 to 300.

Generally, the number of grains considerably affects
the simulation time. In particular, a system composed
of around 15000 grains requires a fairly high computa-
tional cost to simulate the entire flow process. There-
fore, graphic processor units (GPU) are used with a

parallelized version of our LBM-DEM code [33]. Thus,
the current code makes it possible to simulate 1 second
granular discharge using 45 minutes calculation time.

Table 1: Parameters of the DEM-LBM simulations

Solid phase value unit
Friction coefficient, 0.2

Rolling friction coefficient, p,, 0.1

Bond strength, F..n 0-56 N
Grain density, p, 2.5x107%  kg/m?
Normal stiffness, ki, 1.1 x 10° N/m
Tangential stiffness, k; 1.1 x 10° N/m
Rolling stiffness, k, 1.1 x 10* N/m
Coefficient of restitution, e, 0.2

Fluid phase

Nb of horizontal nodes, I 1118

Nb of vertical nodes, [, 1600

Fluid density, py 103 kg/m3
Kinematic viscosity, v 1074 m? /s

Table 2: Granular sample characteristics: grain diame-
ter d, sample height H, sample length L, terminal veloc-
ity v, particle Reynolds number Re, and Stokes number
St.

d(em) H(em) L (em) v (m/s) Re St
0.2 25.5 22.4 0.07 1.45 0.21
0.4 50.0 44.5 0.16 6.40 0.60

3.2 Phenomenology

Fig. 3 shows snapshots of a typical simulation of a sub-
merged granular discharge process for the cohesionless
case. The submerged grains start to flow under the ac-
tion of gravity and involve interstitial fluid entrainment.
We observe a symmetrical concave profile at the surface
of the grain sample packing. The fluid velocity field re-
veals an acceleration at the outlet, consistent with the
conservation of the fluid flow rate through a significant
section reduction. At the end of the discharge, dead
zones are formed in the two bottom corners.
Regarding the cohesive submerged grains presented
in Fig.4, we show the evolution of the intergranular
bonds during the discharge process for three increas-
ing Cohesion numbers, namely C'oh=100, 150, and 300.
Note that the single particles (after the rupture of all
the bonds) are no longer visible in this kind of visu-
alization that focuses on the occurrence of fractures.
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t=0

0 05

t=0.6s

t=1.6s

-
2 25 (mfs)

Fig. 3: Submerged granular discharge flow for a sample with 14857 cohesionless grains of mean diameter d = 4
mm, with L = 44.5 cm, H = 50 cm and D/d = 40. The color scale indicates the fluid velocity.

The bonds of the grains located at the lateral sides
and at the orifice are much more easily broken than
in the bulk, where the frictional influence of the wall
is lower. Consequently, the granular top surface is no
longer concave but remains almost horizontal because
the grains at the surface are still bonded. The clusters
formed above the outlet get larger with increasing co-
hesion. The second aspect displayed here is the kinetics
of the discharge given by the time indication. As ex-
pected, cohesion progressively slows down the discharge
rate. Finally, when further increasing inter-particle co-
hesion, we can observe the formation of a stable cavity
resulting from the jamming of the granular flows. This
is a significant example of arching built on the orifice
edges, recalling the so-called intermittent discharge and
complete blockage in the classical dry hopper problem
[13].

3.3 Analysis of discharge rate
3.8.1 Methodology

Fig.5 presents the way we study the granular discharge
quantitatively and parametrically, by counting the num-
ber of grains Nb escaping from the orifice as a function
of time for different Cohesion numbers Coh and ori-
fice sizes D. For the sake of readability, we display only
certain representative cases. For all the curves, we ob-
serve that the number of eroded grains first increases
monotonously. The larger the orifice, the higher the
slope. Then, the rate gradually slows down to reach
asymptotic behavior, corresponding to complete emp-
tying. When adding cohesion, the same global evolution
is displayed. Fluctuations occur as cohesion increases.

This is probably related to the existence around the
outlet of aggregates whose size seems to enhance with
Coh, as depicted in Fig.4. Another general reason for
fluctuations could be the occurrence of transient jam-
ming that results from dynamic arching effect in the
granular matter. Typically, the inset in Fig.5b shows
the discharge curve corresponding to such an intermit-
tent regime for Coh=300. We can distinguish successive
flow phases. In a future work, we intend to properly and
quantitatively characterize the size distribution of the
aggregates within the granular sample during erosion,
and its dependency on cohesion and orifice size.

Fig.6 presents the typical temporal evolution of the
instantaneous solid flow rate, obtained by numerical dif-
ferentiation of the eroded grains number Nb. The dif-
ferent curves exhibit a maximum flow rate that is more
or less marked. The latter is lower for d=4 mm than
for d=2 mm. Other works have already reported this
dependency on particle size linked to a drag force effect
[20]. To characterize the process duration, we define ¢;
and to as the limits of the temporal domain where the
solide discharge @ is larger than 10% of its maximal
value, as sketched in Fig. 6. In the following analysis, we
perform two different quantifications of the discharge
rate. First, we consider the maximum value reached,
denoted by Q7'. And secondly, we determine the aver-
age discharge rate between ¢; and ty, denoted by Q.
The maximum discharge rate Q7' as a function of the
average discharge rate Q, is plotted in the inset of Fig.6
and highlights a quite linear correlation Q™ = 1.5Qs,
showing that the two approaches are consistent.
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Fig. 4: Typical simulations for submerged cohesive granular discharge (a) Coh = 100 and D/d = 40, (b) Coh = 150
and D/d = 40, (b) Coh = 300 and D/d = 70. Visualization of the link between the centers of bonded particle
pairs. The color scales indicate the fluid velocity and the inter-particle normal force.

3.3.2 Parametric study

The analysis of the granular flow that we propose is
based on the Beverloo law presented in the introduc-
tion. For the classical dry case, it is assumed that the
relationship given in Eq. (1) could explain the empty-
ing of a hopper through successive ruptures of arches
formed above the orifice [13]. Thus, the discharge rate is
calculated according to the characteristic free-fall speed
of a grain in air, defined by \/gD. For the submerged
granular flow, we have to introduce the interstitial fluid
effect. To this end, an experimental work by Wilson et
al. [8] proposed a modified Beverloo law that predicts
the discharge rate from the terminal falling velocity of
an individual grain in the fluid v;, given in Eq. (2).

The main finding of this experimental study was the
increase of the coefficient k in the apparent orifice size
due to the fluid-grain interaction.

For the present numerical model, we propose to trans-
pose this adapted law from 3D (Dim=3) to 2D (Dim=2)

by considering the solid mass flow rate M, (in kg.s~'.m™1),

as follows:

- 2D

M, = C'psve|D — kd] = C'psvid[D/d — k] (22)

Knowing that MSQD = Qs(ps’%z) with the solid flow
rate Q, = dNb/dt (in s71), we can write:

Q.= ',

— (23)

[D/d — K]
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Fig. 5: Number of grains flowing through the orifice as
a function of time for various Cohesion numbers Coh
(for the granular sample with d=4 mm) (a) D/d = 20
and (b) D/d = 70.

For all the simulations, Fig.7a presents the maxi-

4v
mum discharge rate Q7" normalized by L versus the

orifice size D normalized by the grain digmeter d. The
error bars come from an estimate of 90% confidence
interval. Linear fits agree well with numerical data for
both granular samples and for the different granular
cohesion states. Without cohesion, the slope denoted
by C’ according to Eq. (23), is higher for the sample
of d=2 mm (C’ = 11.4 + 0.2) than d= 4 mm (C' =
7.4+0.2). Nevertheless, the Beverloo cutoff is the same,
k = 5.47+0.03. As expected, this value is higher than
the dry case, k = 1 in 2D-DEM simulations [15]. Adding
the effect of an interstitial fluid indeed decreases the ap-
parent orifice, as interpreted by Wilson et al. [8]. To re-
inforce this finding, we performed simulations with a di-
mensionless orifice diameter D/d=>5 lower than the fit-
ted value of k. For both granular samples, the expected

—<4— Coh=0 D/d=40 d=2 mm
1.5%10% L -¥— Coh=0 D/d=40 d=4 mm i
. @ Coh=100 D/d=40 d=4 mm
x10*
_ 3 o
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e & 3 ]
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’ B Co250 ||
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5000 H ; 0 - o150, |4
:‘ 0 100 2x10° |
(] Qs 1
N OO ..
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Fig. 6: Instantaneous discharge rate dNb/d¢ wversus
time. ¢; and to represent the start and end time of the
discharge. Inset: Q7 versus Q (for the granular sample
with d=4 mm). The dotted line stands for Q7 = 1.5Q,

jamming occurred, thus ensuring consistency with the
physical meaning of the Beverloo cutoff.

When adding cohesion, we still obtain satisfactory
linear fits when fixing the same coefficient C” than the
one fitted for the cohesionless case. It is noteworthy that
there is no data for small D when Coh is high. In these
conditions, the granular media does not necessarily jam
but is subject to significant intermittent flows. This be-
havior distorts the present estimation of 7" and there-
fore prevents data acquisition. Fig.7b shows the regular
increase of k as a function of granular cohesion Coh.
This trend is quite consistent with the numerical study
of Anand et al. [37] who demonstrated, using DEM sim-
ulations of grains connected by capillary bridges, that &
increases with the Bond number Bo, defined as the ra-
tio of liquid surface tension to gravitational force acting
on the particle, equivalent to Coh. Therefore, in addi-
tion to the interstitial fluid effect, the existence of bonds
between the grains decreases the apparent orifice size
even more. However, we remark that for a same Coh, k
is lower when d is smaller. Further studies are needed
to rationalize this outcome. Finally, the same analysis
with @, instead of QT gives similar k values and evolu-
tion but with a systematic shift downwards, as shown
in Fig.7b.

From the present simulations, we can also analyze
the characteristic duration of the discharge process given
by the time lag between t; and t3: tp = t3 — t1. The
inset in Fig.8 shows typical plots of ¢tp as a function
of D/d. As commented earlier, the larger the orifice
size and/or the smaller the inter-particle cohesion, the
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Fig. 7: (a) Maximum discharge rate Q7" scaled by
(4v¢/(wd)) as a function of the dimensionless size of
the orifice D/d for the two granular samples and for
different Cohesion numbers Coh. Dashed lines indicate
linear fits of Eq. (23) giving ¢’ = 11.4 £ 0.2 for d=2
mm, and C' = 7.4+ 0.2 for d=4 mm. (b) Coefficient k
obtained from QT, Q, and tp analyzed as a function
of Cohesion numbers Coh.

slower the discharge. Drawn from the previous scaling
given by Eq. (23), we empirically found a good corre-
lation between tp and D/d when considering the fol-
lowing power-law relation tp o (D/d — k)~*/3. The
corresponding prefactor is found to be the same for all
granular samples (for a given diameter d and different
cohesion numbers Coh). With the k values obtained
from the latter fit, we plot tBB/ * versus (D/d — k) for
our numerical data and consistently observe two sepa-
rate collapses, according to the two different diameters
d. As shown also in Fig.7b, the k£ values resulting from
this analysis are lower than those deduced from Q7" and
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Fig. 8: Duration tl_)3/4 as a function of D/d — k for all
simulations. The dotted lines stand for linear regres-
sions (see text for details). Inset: tp as a function of
D/d for d=4 mm and various Coh (on a log-log scale).

Qs, but it displays the same monotonic increase with
Cobh.

3.4 Fluid flow during cohesionless solid discharge

In this last subsection, we propose to study to what
extend the fluid flow in the vicinity of the orifice is
related to the solid discharge rate. Whereas flow mon-
itoring within a granular flow is difficult to perform
experimentally, our simulations provide hydrodynamic
quantities anywhere in the numerical domain. Here, we
propose to look closer at the cohesionless case where the
fluid flow can be properly acquired. We acquire the ex-
act flow measurement (velocity and pressure) in purely
fluid domains. In the presence of grains, as presented in
Appendix A, the LBM code applies the PSM method
at the solid interfaces and considers the DEM solid ve-
locity at each node within the particles.

When the submerged grains move downwards by
gravity, their motion entrains the interstitial fluid. The
fluid velocity at the top boundary, where we impose a
zero-pressure condition, varies according to the outlet
flow by mass conservation. Fig. 9 shows the correlation
between particle velocity and fluid velocity, as the dis-
charge rate reaches its maximum. To obtain this, we
select a temporal window corresponding to values of
Qs larger than 80% of Q7. Then, for each time step of
this selected part of the process, we determine a mean
particle velocity Us, defined by the x-average DEM ve-
locity within the granular sample (at y =0.3 m for
10< D/d <40 and y=0.5 m for 50< D/d <90), and a
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Fig. 9: Around the maximum discharge rate: mean par-
ticle velocities in the bulk Uy as a function of mean fluid
velocities at the inlet Uy (for the granular sample with
d=4 mm).

mean fluid velocity Uy, defined by the x-average LBM
velocity at the inlet (at y=0). We observe a clear linear
correlation with a slope close to 1. The fluid therefore
flows passively downwards at the same speed as the
grains, around the maximum discharge rate.

Fig. 10 presents typical fluid velocity and pressure
profiles along the median line, from the surface to the
end of the conduit (see the inset in Fig. 10a). Fig. 10a
shows a fluid velocity that is constant above the granu-
lar sample and which increases slowly up to the outlet
due to the sudden contraction of the flow section. In
parallel, the pressure profile in Fig. 10b correspondingly
exhibits a pressure drop around the orifice of the un-
derground conduit. There is a positive maximum value
P above the outlet and a negative minimum value
Pin just below it. This result is corroborated by a re-
cent experimental work conducted by Guo et al. (2017),
in which the authors monitored pressure variations with
transductors during a water-submerged granular flow
through a long efflux tube [21]. Fig.11a shows the time
evolution of Py,q, and Py, (which are systematically
above and below the outlet, respectively) for different
orifice sizes. Located above the outlet, P,,,, displays a
maximum followed by a decrease in time while P,,;,, be-
haves almost symmetrically with negative values. These
features are in full qualitative agreement with the ex-
perimental measurements reported previously [21].

As mentioned in the introduction section, in the
field of powder technology, empirical laws have been
proposed to model air-assisted granular flows through
long tubes [2,22]. From these experimental studies, the

11
2 T
1.5
E
z
Q
<}
2
0.
—  D/d=30 orifice
e DJd=60 position
0 L L L L L L
0 01 02 03 04 05 06
y (m)
(a)
2000 '
1000
=
&
E o
&
M
—1000
—  D/d=30 orifice P
--= D/d=60 position minn
_2000 1 1 1 1 | |
0 0.1 02 03 04 05 06
y (m)
(b)

Fig. 10: Typical flow velocity (a) and pressure (b) pro-
files along the flow direction during the discharge. For
the sake of readability, the curves have been smoothed
via a loess method (span of 10%).

most usual relationship for the solid mass flow rate
takes into account the effect of differential pressure, as
written in Eq. (3). The term (D/d — k) is related to
the same concept of apparent orifice as advocated in
the Beverloo laws. Fig.11b indeed shows the time evo-
lutions of VAP that are qualitatively very similar to
the grain discharge rate dNb/d¢ (Fig.6) and which de-
pends on the orifice diameter D. The larger D/d, the
smaller AP becomes. In line with our previous anal-
ysis in section 3.3 and based on Eq. (3), we study the
following 2D-adapted relationship for the solid flow rate
expressed by number of particles per second (in s71):

Q.= Clo—, [ 1

24
i\ (24)

[D/d K
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Fig. 11: Typical pressure evolution in time: (a) P

and Ppaz. (b) VAP = /Praz — Pmin- For the sake of

readability, the curves have been smoothed via a loess
method (span of 10%).

We recover Eq.(2) in which the terminal velocity is
B 2p . To study
this expression, we define the ratio R such that:

replaced by a pressure drop term

dNb/dt wd
PPy E
Vo ops
Note that the DEM solid fraction is equal to 0.83 for the
both two samples. By taking into account the hydraulic
radius r,=0.8 (Fig. 2), we obtain ¢ = 0.83r7 = 0.53.
The inset of Fig. 12 presents a typical time evolution
of the ratio R. Similar to the previous determination
of Q7', we average around the maximum to acquire the
characteristic value R,,, as depicted in the inset. Fi-
nally, we plot R, as a function of D/d for all orifice

sizes and the two granular samples. All data gathers
on a single curve that is linearly well fitted, to obtain

k= (25)

R,, = C.[D/d—k], with C% = 2.3+£0.1 and k = 9.3+2.6.
The value of the Beverloo-like cutoff k is higher but
remains consistent with the previous analysis, that in
contrast led to a coefficient C’ dependent on the ter-
minal velocity v;. Here, the data collapse means that
the pressure drop term contains the lacking physics,
thus giving a more uniform law for the solid discharge
rate. However, this pressure measurements is difficult to
obtain in practice, whereas v; can be calculated from
analytical solutions [46].
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Fig. 12: R,, as a function of D/d for the two granular
samples. Inset: typical time evolution of the ratio R and
estimation of R, for D/d=40.

4 Conclusion

In this article, we investigated the physical modeling
of the hydro-mechanical process of cohesive submerged
soil discharge through an underground orifice, notably
applicable to sinkhole occurrences in a flooded situ-
ation. The numerical study was based on a coupled
DEM-LBM method involving a cohesion DEM-model
that allowed simulation on to the grain-fluid interaction
scale during a gravitational granular flow discharge. A
parametric investigation was carried out to study the
influence of the cohesion of the granular medium and
the size of the orifice D on the solid flow rate Q5. Con-
sistent with a adapted 2D-Beverloo law for a submerged
hopper [8], we observed a linear increase of Qs with the
apparent orifice size (D/d — k), that was found to be
smaller than in the dry case. By adding inter-particle
cohesion, the cutoff k increased even more. The higher
the cohesion, the smaller the apparent orifice size. This
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interpretation of particle cohesion agrees with a recent
DEM study on capillary bonded, but non-saturated,
granular discharge [37].

Using the LBM-fluid calculation, we studied the fluid
flow generated downward by the motion of the parti-
cles. The systematic acquisition of the pressure drop
around the orifice during discharge was performed. We
obtain qualitative agreement with recent experimental
measurements using transducers [21]. By replacing the
terminal velocity term in the Beverloo-like law with a
squared pressure drop term, all the data collapsed re-
gardless of particle size. This new finding satisfactorily
links the experimental works of Wilson et al. (2014) and
Guo et al. (2017).

One of our immediate prospects is to now move
from gravitational flow configuration to pressure-driven
discharge. The work now in progress is focused more
specifically on particle-fluid interaction, notably by con-
sidering drag force in the pressure analysis. To improve
our understanding of soil cohesion, since this DEM-
LBM method permits taking a micromechanical ap-
proach, we intend to systematically characterize the
spatial and temporal size distribution of the aggregates.
Another perspective will be to calibrate our numeri-
cal modeling with experiments on artificial cemented
materials recently developed in our laboratory [48]. Be-
yond such hopper-like configurations, the present study
of submerged cohesive granular flow aims at improv-
ing knowledge and understanding of complex covered-
collapse sinkhole processes in karst terrains during or
after a flood. [4,5].
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Appendix A: Partial Saturation Method (PSM)

The Partially Saturated Method (PSM) was originally
developed by Noble and Torczynski [49] to consider a
modified non-slip condition. A virtual lattice cell, as-
sociated with each lattice node, can be completely or
partially saturated depending on the solid fraction, as
sketched in Fig.13. Then it gives:

fi(x+et, t+At) = fi(x,t)—[1—B(e, )2 T+ B(e, 7) 028
(26)

where Q217 accounts for fluid particle collisions at the
same node and (2] describes the interactions with solid
particles within the computational lattice. B(e, 7) is a

weighting function defined as:
e(t—1/2)
(1—¢e)(r—1/2)
where € stands for the solid volume fraction on each
lattice node 0 < ¢ < 1. B(e = 0,7) = 0 corresponds

to a pure fluid whereas B(e = 0,7) = 1 denotes a pure
solid. The collision operator {27 for solid nodes is based

B(e,7) = (27)

Fluid boundary node
® Solid boundary node

® Fluid node
Interior solid node

Fig. 13: Conceptual sketch of the Partial Saturation
Method (PSM) involving the local solid volume fraction
€ defined at each lattice node.

on the concept of the bounce-back [50] of the density
function distribution given by [49]:

2 = foi(xt) = filx, t) + [ (o, us) = fZ(py,0) (28)

where u; is the velocity of solid particles. Regarding
the fluid-wall boundary condition, since the pressure
and velocity derived from the density distribution func-
tions f; cannot be imposed directly on the boundaries,
a simple boundary condition method proposed by Zou
and He [50] is applied on the system. This method in-
volves the bounce-back of the non-equilibrium part of
the density distribution functions at the boundary. The
hydrodynamic force and torque applied on a solid ob-
stacle can be determined from:

Fh = %ZBHZ(%S&

Th = %ZBn(XZ —XS) X Z.Qfei

(29)

(30)
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where, here, Dim again denotes dimension (Dim = 2 for
2D case). B, stands for the B value at node n, which
represents all the lattice nodes occupied by the solid.
X, 18 the center of mass of the solid obstacle.

Appendix B: DEM contact model

In DEM, some simple geometrical objects such as circu-
lar disks, spheres and squares are considered as discrete
particles. Each particle has its own mass, velocity and
contact properties, while its motion is based on New-
ton’s second law. Each solid particle is driven by a total
contact force F¢, which is equal to the summation of
the contact forces over all the interacting particles, a
hydrodynamic force F/ resulting from the fluid action,
and the gravitational force. At each DEM time step, the
new position and velocity of a particle can be updated
from the following explicit time integration:

du; e h . dx; _
Mg = F{ +F{ +m;g (with ar u;) (31)

where m;, x; and u; are the particle mass, position and
velocity, respectively. T¢ and T? are the torque result-
ing from the inter-particle contact forces and the fluid
torque, respectively,. J is the moment of inertia and w
the angular velocity while g is gravity. The particle po-
sition and its velocity are solved using time integration
with the Verlet algorithm.

When two circular particles ¢ and j, located at posi-
tions r; and rj, touch each other, their contact is allowed
to slightly overlap:

5?j=Ri+Rj—(ri—rj)-n>O (33)

where I; and R; are the particle radii. The contact
force Ff; between the two particles is given by:

c __ n t
F§, = Fn+ Fl;t (34)

where F7} stands for the normal force and F}; for the
tangential force.

The normal component F of the contact force is
computed as:

(35)

n __ n n

where k,, is the normal spring stiffness of the interaction
and 7, is the normal coefficient of viscous dissipation.

The tangential component of the contact force is
calculated using a viscous-regularized Coulomb model
[33]:

Fl = —min(k,8L,, pFl)sgn(dt;) (36)

where k; is the coefficient of regularization and p is the
friction coefficient while d;; stands for the tangential
spring deformation.

The mechanical torque defined by the tangential
force with the particles’ radii as lever arms is comple-
mented by the following rolling resistance:

Vr Reff

u_
T = —| Ve |MrF£' ij

(37)

where v, is the rolling velocity defined by the difference
of angular velocities between particles ¢ and j. Rfjf F =
ﬁi—iﬂ% denotes the effective radius and p, is the rolling
coefficient.

The critical time step related to the period of os-
cillations at contact should be appropriately chosen in
the Newton equations. In particular, the time step of
the DEM Atpga should be below the critical value
At.,. corresponding to the mass-spring oscillator of the

smallest particle mass m and stiffness k:

Ater = 2m/m/ky,

To avoid any instability of the numerical method, a rea-
sonable coefficient A = 0.1 is selected between the DEM
time step and this critical value: Atpgyr = AAt,..

Note that the normal coefficient -,, of viscous dissi-
pation is related to the macroscopic coefficient of resti-
tution e, [51]:

(38)

—2lne,vmk,
o = L Eny/ by (39)

V72 +1Ine,
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