

Productive Capacity of Biodiversity: Crop Diversity and Permanent Grasslands in Northwestern France

François Bareille, Pierre P. Dupraz

► To cite this version:

François Bareille, Pierre P. Dupraz. Productive Capacity of Biodiversity: Crop Diversity and Permanent Grasslands in Northwestern France. Environmental and Resource Economics, 2020, 77 (2), pp.365-399. 10.1007/s10640-020-00499-w . hal-02925099

HAL Id: hal-02925099 https://hal.inrae.fr/hal-02925099

Submitted on 26 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

1	Productive capacity of biodiversity: crop diversity and permanent grasslands in
2	northwestern France
3	
4	François Bareille ^{a*} , Pierre Dupraz ^b
5	^a Economie Publique, INRAE, Agro Paris Tech, Université Paris-Saclay, Thiverval-Grignon,
6	France
7	^b SMART-LERECO, INRAE, Rennes, France
8	
9	E-mail: francois.bareille@inrae.fr
10	
11	
12	
13	
14	
15	
16	
17	Acknowledgements
18	The authors thank the three anonymous reviewers for their suggestions. The authors thank
19	Sylvain Cariou for his help with data management. This research was funded by the Horizon
20	2020 program of the European Union (EU) under grant agreement no. 633838 (PROVIDE
21	project, http://www.provide-project.eu/). It is completed with the support of the French
22	National Research Agency (ANR-16-CE32-0005, Soilserv, 2016 – 2020). This article does not
23	necessarily reflect the view of the EU and in no way anticipates the European Commission's

- 24 future policy.
- 25

Abstract: Previous studies on the productive capacity of biodiversity emphasized that greater 26 27 crop diversity increases crop yields. We examined the influence of two components of agricultural biodiversity - farm-level crop diversity and permanent grasslands - on the 28 29 production of cereals and milk. We focused on productive interactions between these two 30 biodiversity components, and between them and conventional inputs. Using a variety of 31 estimators (seemingly unrelated regressions and general method of moments, with or without 32 restrictions) and functional forms, we estimated systems of production functions using a sample 33 of 3,960 mixed crop-livestock farms from 2002-2013 in France. The estimates highlight that 34 increasing permanent grassland proportion increased cereal yields under certain conditions and confirmed that increasing crop diversity increases cereal and milk yields. Crop diversity and 35 permanent grasslands can substitute each other and be a substitute for fertilizers and pesticides. 36 37 Keywords: Agriculture; Biodiversity; Ecosystem services; Pesticides; Productivity.

38

39 **1. Introduction**

Modern human activities have degraded biodiversity (MEA, 2005). Converting natural areas to agricultural land is considered the main driver of the decrease in biodiversity (Díaz et al., 2020). In addition, the decrease in the number of crops grown has amplified this issue (Kleijn et al., 2009). This trend has raised questions about the ability to combine intensive agriculture and biodiversity. Protecting biodiversity, however, is crucial because biodiversity contributes to ecosystem functioning, which ultimately influences the provision of many ecosystem services (ES) that are valued by societies, in particular by farmers (Hooper et al., 2005; MEA, 2005).

Supporting and regulating ES (e.g. nutrient cycles, biological control) have been
increasingly recognized as inputs for agriculture (Zhang et al., 2007). Several economic studies
have analyzed effects of these ES on the production of crop farms. To this end, they estimated

production functions that used biodiversity indicators as inputs (e.g. Di Falco et al., 2010).¹ 50 These biodiversity indicators, calculated as functions of proportions of agricultural land-use 51 52 types, usually indicate the degree of habitat diversity within the studied agroecosystems. Even 53 though the indicators reflect only a small portion of the full concept of biodiversity, they are 54 correlated with species diversity and richness (Burel and Baudry, 2003) and can thus be 55 considered as proxies of productive ES (i.e., ES with properties of agricultural inputs). For 56 example, higher on-farm crop diversity is correlated with greater soil structure (Mäder et al., 57 2002), pollination (Kennedy et al., 2013) and biological control (Letourneau et al., 2011). 58 Biodiversity indicators thus correspond to an observable but inherently imperfect description 59 of an ecosystem, which supports a vector of several productive ES that can be provided to 60 farms. We refer to the capacity of an ecosystem to provide productive ES based on its 61 observable characteristics as the "biodiversity productive capacity".

62 Previous studies on the biodiversity productive capacity have emphasized that crop 63 diversity increases mean agricultural yields and profits, while decreasing their variance (e.g. 64 Di Falco and Chavas, 2006; Donfouet et al., 2017; Noack et al., 2019; van Rensburg and Mulugeta, 2016). This information is useful for policymakers because it highlights that high 65 66 yields are compatible with diversified landscapes. These studies have focused, however, on a single biodiversity component, usually intraspecific or interspecific crop diversity,² considering 67 crops as the main habitats within many agroecosystems and revealing how narrowly 68 biodiversity is usually defined. However, crop-oriented agroecosystems usually have lower 69 70 habitat heterogeneity than many others, which often include diverse alternative landscape 71 elements, including semi-natural elements. These semi-natural elements are usually considered

¹ This method is often used in ecosystem services valuation studies (Perrings, 2010). Another method consists of stochastic frontier analysis, such as by Omer et al. (2007), Amsler et al. (2017) and Ang et al. (2018).

² Interspecific diversity refers to diversity among crop species, while intraspecific diversity refers to diversity among genetic varieties of the same crop.

72 as good-quality habitats for many species (Díaz et al., 2020). Semi-natural areas may also 73 contribute to agricultural production via the flow of productive ES supported by the species 74 they host. For example, Klemick (2011) found that upstream forest fallows have productive 75 spillover effects on crops. Tilman et al. (2001) and Schaub et al. (2020) concluded that grassland 76 diversity increases forage yields. Although these studies focused on semi-natural areas, they 77 still considered only one biodiversity component, ignoring interactions between the diverse 78 components of agroecosystems. Natural sciences suggest, however, that such interactions do 79 exist. For example, several species involved in the biological control of crop pests dwell in 80 semi-natural areas (Aviron et al., 2005).

81 The present study aimed to extend the knowledge of biodiversity productive capacity 82 by (i) assessing the productivity of crop diversity and permanent grasslands (the latter being a 83 well-known example of semi-natural areas) for cereals and milk and (ii) characterizing 84 productive interactions between these two biodiversity components and between them and 85 conventional variable inputs. Our study thus contributes to debates about the form of the 86 functional relation between biodiversity and economic value (Paul et al., 2020). This knowledge 87 is useful for policymakers since it may hinder implementation of certain policy measures to 88 promote biodiversity conservation and/or decrease applications of polluting inputs.

Assuming that farmers maximize their very short-term profit, we estimated a primal model with two yield functions (cereals and milk) and two biodiversity habitats (crop interspecific diversity and permanent grasslands) on an unbalanced panel of farms from the French Farm Accountancy Data Network (FADN) from 2002-2013. To infer effects of permanent grasslands on cereal yields (or those of crop diversity on milk yields), we limited our sample to mixed crop-livestock farms that produced both milk and cereals. This type of farming is typical in northwestern France, which has the largest proportion of permanent

grasslands in France's lowland regions (Desjeux et al., 2015).³ The very short-term profit-96 97 maximizing framework uses the time-sequence of the farmers' decisions with, first, choices of 98 land use in autumn and, second, choices of variable input applications during the growing 99 season to assume that the farmers optimize only the variable inputs, taking the land use and 100 related biodiversity indicators as givens. The system of yield equations was estimated using a 101 variety of estimators from panel econometrics to account for (i) unobserved heterogeneity, (ii) 102 autocorrelation between the two equations and (iii) potential endogeneity issues with variable 103 input applications. We also tested several functional forms of the yield functions, which allowed 104 us to specify the interactions sequentially. We found that (i) crop diversity is an input for cereals 105 and milk, (ii) permanent grasslands are an input for cereals when crop diversity is low, (iii) crop 106 diversity and permanent grasslands can substitute each other and (iv) can be substitutes for 107 pesticides and mineral fertilizers.

Next, we present the case study region and the biodiversity indicators used. We then
detail the empirical strategy (section 3), present the results (section 4) and discuss them (section
5).

111

2. Habitat diversity in northwestern France

112 **2.1. Mixed crop-livestock farming in northwestern France**

Due to its cool oceanic climate, agriculture in northwestern France has naturally developed towards animal production (Figure 1). Currently, its three regions – Bretagne, Basse-Normandie and Pays-de-la-Loire – together produce ca. 75% of pigs, 60% of eggs and 60% of milk in France, while still producing ca. 20% of cereals. Most farms have several crops and/or animal-production activities, which makes mixed crop-livestock farming the dominant type of

³ Mountain regions in France have more permanent grasslands but less crop production.

farming in these regions. Mixed crop-livestock farming is concentrated mainly in western
 France (Chatellier and Gaigné, 2012).⁴

120 The interweaving of these activities has created diverse landscapes composed of a 121 mixture of arable and semi-natural areas. In particular, dairy cattle production helps maintain permanent grasslands and a typical "bocage" landscape composed of hedgerows (Thenail, 122 123 2002). The diversity of land use provides a diversity of habitats for several species involved in 124 agricultural production (e.g. carabid beetles), but this diversity induces complex spatial 125 interdependencies in ecological processes. For example, Martel et al. (2019) found that 126 hedgerow density increased the density of carabid beetles only in landscapes with low crop 127 diversity. In addition, from 2007 (the beginning of the European Union's (EU's) Land Parcel 128 Identification System in the Common Agricultural Policy (CAP)) to 2010, northwestern France 129 experienced a rapid decrease in semi-natural areas and an increase in crop diversity on arable 130 land (Desjeux et al., 2015). The region has conserved the highest density of permanent 131 grasslands in lowland regions of France.

132

2.2. Biodiversity indicators

Given the characteristics of northwestern France, we selected two biodiversity components: crop diversity (noted B_{i1t} for farm *i* in year *t*) and permanent grasslands (noted B_{i2t} for farm *i* in year *t*). We measured them using two indicators based on land use. First, we measured B_{i1t} using the Shannon index (Baumgärtner, 2006), an indicator commonly used to measure crop diversity (Donfouet et al., 2017). It has the advantage of (i) correcting for both species richness and evenness of their proportional abundances, (ii) being insensitive to sample size and (iii) being well suited to measure habitat diversity (Mainwaring, 2001). Other indices (e.g. count

⁴ We excluded southwestern France from our analysis since it has a notably smaller area of permanent grasslands than northwestern France does (especially due to its warmer climate).

140 index) do not usually correct for evenness (Baumgärtner, 2006). Specifically, the Shannon 141 index is a measure of entropy based on proportions of land-use types. We calculated it using 142 micro-scale data, in which a_{ijt} was the area of output *j* at the farm scale *i*. Since we assessed 143 crop diversity instead of overall land-use diversity, we corrected the index for the area of 144 permanent grassland a_{ijt} . Formally, we calculated B_{lt} as:

145
$$B_{i1t} = -\sum_{j=1}^{J-1} \frac{\frac{a_{ijt}}{A_{it}}}{1 - \frac{a_{ijt}}{A_{it}}} \ln\left(\frac{\frac{a_{ijt}}{A_{it}}}{1 - \frac{a_{ijt}}{A_{it}}}\right)$$

where A_{it} was the utilized agricultural area (UAA) of the farm *i* in year *t*. We calculated crop 146 147 diversity using all crops defined in the FADN (41 annual crops including forages, i.e. maize 148 and temporary grasslands, plus orchards, but without permanent grasslands, i.e. J-1=42). 149 According to the Shannon index, $B_{i1t} = 0$ for a whole farm in monoculture and increases as 150 crop diversity increases. Landscape ecologists have highlighted that biodiversity levels increase 151 as B_{i1t} increases (Burel and Baudry, 2003). The productivity of B_{i1t} captures the productivity 152 of ES such as the preservation of soil quality (Mäder et al., 2002) and biological control 153 (Letourneau et al., 2011). Crop diversity's influence on soil structure explains how it may 154 interact with fertilizer productivity, while its influence on biological control explains how it 155 may interact with the application of pesticides.

We calculated the indicator for permanent grasslands (B_{i2t}) simply as the proportion of permanent grasslands in the UAA of farm *i* (i.e. $B_{i2t} = a_{iJt}/A_{it}$). Using land-use proportions directly as biodiversity indicators make sense when the land-use type considered differs significantly in quality from the other types (Burel and Baudry, 2003), which is likely true for permanent grasslands (Steffan-Dewenter et al., 2002). The literature highlights that B_{i2t} provides suitable habitat for pollinators (Steffan-Dewenter et al., 2002; Ricketts et al., 2008) or for insects involved in biological control (Martel et al., 2019). More generally, the proportion 163 of permanent grasslands is also correlated with other permanent semi-natural landscape 164 elements, such as hedgerows (Thenail, 2002), which may have positive effects on milk and crop 165 yields, such as (i) providing wind breaks, (ii) providing habitats for insects involved in 166 biological control, (iii) influencing hydrological flow, (iv) decreasing erosion and (v) 167 contributing to microclimates (Baudry et al., 2000). Potential effects of permanent grasslands 168 and other related landscape elements on hydrological flows, erosion and biological control also 169 indicate that B_{i2t} may interact with productivities of fertilizers and pesticides.

170 **3. Empirical strategy**

In this section, we first present the econometric strategy used to estimate the productivity of crop diversity and permanent grasslands within a system of yield functions (for cereals and milk). Section 3.2. introduces the alternative functional forms that we use for the yield functions. Section 3.3. presents the descriptive statistics of the sample.

175 **3.1. Econometric strategy**

176 We have considered a population of farms I that produce milk and cereals, each farm identified 177 by the subscript i ($i \in [1, ..., I]$). Estimation consisted of a system of yield equations (vector y_{it} with the yield $y_{ijt} = Y_{ijt}/a_{ijt}$ for cereals (j=1) and milk (j=2), where Y_{ijt} is the production of 178 output j on farm i in year t and a_{ijt} the corresponding area) that depends on (i) the two 179 180 biodiversity indicators (B_{it} , including B_{i1t} and B_{i2t}); (ii) conventional agricultural inputs, 181 including variable inputs (X_{it} , namely mineral fertilizers, pesticides, seeds and fuel in year t for 182 milk and cereals; and cow feed, health and reproduction expenses for milk) and the quasi-fixed input levels (Z_{it} , namely capital, labor and total UAA (A_{it}) in year t); and (iii) additional control 183

184 variables (C_{it} , including weather data and available organic fertilizer (manure) area in year *t*).⁵ 185 The two yield equations constituted the following system:

186
$$\begin{cases} y_{i1t} = f_1(B_{it}, X_{it}, Z_{it}, C_{it}) + \varepsilon_{i1t} \\ y_{i2t} = f_2(B_{it}, X_{it}, Z_{it}, C_{it}) + \varepsilon_{i2t} \end{cases}$$
(1)

where $f_1(\cdot)$ and $f_2(\cdot)$ are the estimated production functions for cereals and milk, respectively, 187 and ε_{i1t} and ε_{i2t} are the respective error terms. The error terms captured the unspecified 188 189 variability in yields, especially the unobserved heterogeneity in the farm population (e.g. 190 farmers' skills and preferences, soil quality). Much of this heterogeneity was considered to be 191 fixed over time, so the error terms were broken down into $\varepsilon_{ijt} = u_{ij} + v_{jt}$ for $j = \{1, 2\}$.⁶ 192 Introducing individual fixed effects u_{ij} allowed for control of fixed characteristics of farms that 193 otherwise might have biased estimation of productivities of the biodiversity indicators (e.g. 194 exogenous soil quality). We chose to estimate system (1) using panel econometric estimators, 195 especially the *within* transformation (e.g. Baltagi, 2008), to remove u_{ij} . The v_{jt} , which are the 196 white noise that remains, are assumed to be distributed symmetrically around zero.

197 We estimated system (1) using seemingly unrelated regressions (SUR). Indeed, since 198 the farms considered were multi-output and thus likely to have jointness in production technologies, the error terms of the two equations were likely correlated (Zellner, 1962).⁷ A 199 200 well-known example of jointness is fertilization of cereals with organic fertilizers. Likewise, 201 cereals can be consumed on-farm as a substitute for forage or purchased cow feed. More 202 generally, any allocable (limiting) input that is marginally used more for one production is, by 203 definition, used less for another. We called Model 1 the estimation of the *within* transformation 204 of system (1) with SUR.

⁵ Organic fertilizer (manure) is a crucial control variable since it is correlated with permanent grassland area. Excluding it from the estimation would have overestimated the productivity of permanent grasslands.

⁶ A random individual effect could have been specified, but the Durbin-Wu-Hausman test indicated that an individual fixed effect was preferable.

⁷ Moreover, the milk yield equation had two more regressors than that for cereals (cow feed and health expenses).

However, contrary to data from random experiments (e.g. Tilman et al., 2001; Schaub et al., 2020), the observed yields in our sample were not independent from the regressors. In particular, the data-generating process resulted from a *profit maximization* (or other optimization process). Formally, farmers modify input levels in response to input and output prices to the extent that the variable input uses depend on the yields the farmers target. This dependence can lead to endogeneity bias in the SUR estimation, which calls for an instrumental variable approach.

212 To choose the appropriate instruments, consider a risk-neutral farmer who maximizes 213 her annual profit π_{it} . Given input price w_t , she produces agricultural goods Y_{it} sold at price p_t . We assumed that farmers maximize their profits in the very short term: Z_{it} and B_{it} are not 214 adjusted and farmers optimize only the variable inputs X_{it} (Asunka and Shumway, 1996). This 215 216 assumption differs from previous studies, which usually instrumented biodiversity indicators, 217 implicitly assuming that farmers optimize B_{it} , but did not instrument any other inputs (e.g. Di 218 Falco and Chavas, 2008; Di Falco et al., 2010; Donfouet et al., 2017). There is, however, much 219 evidence that farmers do optimize inputs, in particular variable inputs (e.g. McFadden, 1978). 220 This implies that some explanatory variables are likely be correlated with the error terms. If 221 uncorrected, this endogenous bias would spread to the other parameters estimated, including 222 those measuring the productivity of biodiversity. Appendix 1 presents the decomposition of the 223 profit maximization in a two-stage optimization process in which (i) farmers' land-use 224 decisions a_{it} (and thus the related biodiversity indicators) are determined in the first stage based 225 on (ii) the expected margins of the outputs, which depend on the productivity of the inputs 226 (including B_{it}, X_{it} and Z_{it}) and the expected prices of outputs $E(p_t)$ and variable inputs $E(w_t)$. 227 Following Carpentier and Letort (2012), we assumed that farmers have rational expectations of input prices $(E(w_{it}) = w_{it})$ but have naïve expectations of output prices $(E(p_{ijt}) = p_{ijt-1})$. 228 229 However, because the first stage (land-use decisions) occurs ca. 3-6 months before the second

stage (variable input applications),⁸ expectations of variable input prices may differ between 230 231 the two stages (due to new information), which may lead to differences between expected and 232 realized gross margins. This difference in expected and realized margins justified the 233 instrumentation of the variable input applications. Specifically, we estimated the within 234 transformation of system (1) using the general method of moments (GMM) in Model 2, 235 instrumenting variable input applications with observed output prices in year t-1 and observed 236 variable input prices in year t. We also used decoupled subsidies and milk quotas as additional 237 instruments to capture heterogeneity in the farms' economic environment. Since farmers are 238 price-takers, and milk quotas have never been tradable in France but are instead allocated 239 administratively, our prices and policy instruments were exogenous from the farmer's 240 viewpoint and should have been correlated with variable input applications (Appendix 1). We 241 also instrumented total labor by including the labor of farm partners, which is fixed in the short 242 term and can thus be considered exogenous. The GMM has the additional advantage of 243 correcting for potential heteroscedasticity.

244 An additional problem arising in our data was that they contained only variable input purchases at the farm scale (and not for each output; e.g. Bareille and Letort, 2018). Specifying 245 246 output-specific yield functions may thus have required additional technology assumptions 247 about the allocation of the inputs among the outputs. For example, variable input applications 248 can be considered to be rival among products because one unit of an input allocated to a given 249 product cannot be applied to another. However, some of the input may also benefit other 250 products if there is some jointness among the production processes. Therefore, we used two 251 approaches to represent allocation of variable inputs between cereals and milk (see Appendix

⁸ In France, the first stage (land-use decisions) usually occurs in autumn, while the second stage (variable input applications) usually occurs in spring.

252 2 for the theoretical relations that justify them). In the first approach, we considered variable 253 inputs as allocable inputs and applied the corresponding rivalry property to derive optimal 254 conditions of variable input allocation. These conditions led to a set of restrictions on the 255 variable input productivities: the ratio of marginal productivities of cereals to milk must be 256 equal for all variable inputs. We used this property for all shared variable inputs (mineral 257 fertilizers, pesticides, seeds and fuel) to restrict parameters in Model 3 (SUR estimation) and 258 Model 4 (GMM estimation). Thus, Models 3 and 4 corresponded to Models 1 and 2 with 259 additional parameter restrictions, respectively. In the second approach, we simply modeled the 260 variable inputs as non-allocable inputs (Baumol et al., 1988), which implied that variable inputs 261 were the source of unspecified output complementarities and were available to all outputs at 262 the farm level. This specification led to direct estimation of the within transformation of system 263 (1), which consisted simply of Model 1 (SUR) and Model 2 (GMM). Choosing between the 264 two approaches is an empirical issue.

265 Finally, for all four models, we made no assumptions about the allocation of Z_{it} and B_{it} 266 among the outputs, since they were non-allocable inputs (Baumol et al., 1988), but considered 267 some unspecified degree of non-rivalry among outputs. Agricultural economists often use this 268 approach for Z_{it} (e.g. Carpentier and Letort, 2012). The possible non-rivalry of B_{it} among 269 outputs seemed consistent, since ecological processes can have many spillover effects. Models 270 1 and 2 were compared to illustrate the usefulness of controlling for the endogeneity of variable 271 input applications. Models 1 and 3 were compared to illustrate the utility of adding structure to 272 the system to allocate the observed (farm-scale) variable input applications between cereals and 273 milk. We expected Model 4 to be the best model since it controlled for both variable input 274 endogeneity and allocation issues.

3.2. Alternative functional forms of the production functions

A variety of functional forms can be assumed for $f_1(\cdot)$ and $f_2(\cdot)$ in Models 1-4. We estimate the models using several forms, which we introduce below. We first used log-linear production functions, which other studies have used to estimate the productivity of crop diversity (e.g. Noack et al., 2019).⁹ In addition, the log-linear function is usually considered the best functional form for mitigating heteroscedasticity and limiting unobserved heterogeneity biases (Wooldridge, 2015). Specifically, we estimated:

$$282 \quad \begin{cases} \log(y_{i1t}) = \alpha_1 + \sum_{l=1}^2 \beta_{l1} B_{ilt} + \sum_{k=1}^4 \gamma_{k1} \frac{x_{ikt}}{A_{it}} + \sum_{m=1}^2 \delta_{m1} \frac{z_{imt}}{A_{it}} + \rho_1 A_{it} + \sum_{n=1}^4 \theta_{k1} C_{int} + u_{i1} + v_{1t} \\ \log(y_{i2t}) = \alpha_2 + \sum_{l=1}^2 \beta_{l2} B_{ilt} + \sum_{k=1}^6 \gamma_{k2} \frac{x_{ikt}}{A_{it}} + \sum_{m=1}^2 \delta_{m2} \frac{z_{imt}}{A_{it}} + \rho_2 A_{it} + \sum_{n=1}^4 \theta_{k2} C_{int} + u_{i2} + v_{2t} \end{cases}$$
(2)

The parameter set $(\alpha_1, \beta_{l1}, \gamma_{k1}, \delta_{m1}, \rho_1, \theta_{k1})$ was used to estimate effects of the independent 283 variables on cereal yields. In it, β_{l1} represents the vector of productivity of crop diversity and 284 285 permanent grassland for cereals (i.e. the productive capacity of the two biodiversity components). We considered four variable inputs for cereals: mineral fertilizer (k=1), pesticides 286 287 (k=2), seeds (k=3) and fuel (k=4). The two fixed inputs *m* were available labor and farm capital. 288 It had 11 control variables C_{int} : nine climatic variables and two variables for organic fertilization (manure production per ha from cattle or from other livestock).¹⁰ We calculated the 289 290 proxies for organic fertilization using an equation of the French Ministry of Agriculture, based 291 on the number of animal units at the farm scale (CORPEN, 2006).

The parameter set $(\alpha_2, \beta_{l2}, \gamma_{k2}, \delta_{m2}, \rho_2, \theta_{k2})$ was used to estimate effects of the independent variables on milk yields. In it, β_{l2} represents the productive capacity of the two biodiversity components. We included the productivities of B_{it} and the four first variable inputs

⁹ Most studies on the productivity of biodiversity have used log-log production functions (e.g., Di Falco and Zoupanidou, 2017). However, because approximately one-third of our observations had no permanent grassland, we could not estimate this function without transforming the data.

¹⁰ The nine annual climatic variables are total rainfall, days of rain, total snowfall, days of snowfall, wind speed, humidity, and minimum, maximum and mean temperatures measured.

for milk because of their potential positive impacts on forage production (i.e. greater forage production should increase milk yields). To them, we added purchased feed (k=5) and health and reproduction expenses (k=6). Milk yields depended indirectly on the number of cows through the addition of the variable for cattle manure production per ha. Because we estimated the *within* transformation of system (2), the constants α_1 and α_2 captured the average technical progress.

Assuming that variable inputs were non-allocable inputs, Models 1 and 2 estimated system (2) directly using the SUR and GMM estimators, respectively. For Models 3 and 4, we added the following restrictions on variable input productivities between cereals and milk (see Appendix 3):

305	$\gamma_{11}/\gamma_{12} = \gamma_{21}/\gamma_{22}$	(Restriction 1)
306	$\gamma_{21}/\gamma_{22} = \gamma_{31}/\gamma_{32}$	(Restriction 2)
307	$\gamma_{31}/\gamma_{32} = \gamma_{41}/\gamma_{42}$	(Restriction 3)

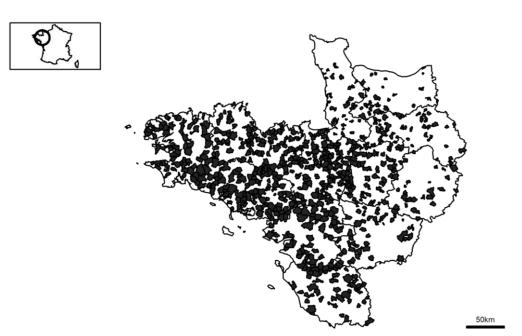
308 We compared in Section 4.1 performances of the four models that estimated the *within* 309 transformation of system (2) using the log-linear production functions. We also used the 310 following log-quadratic production functions:

 $\begin{cases} \log(y_{i1t}) = \alpha_1 + \sum_{l=1}^2 \beta_{l1} B_{ilt} + \sum_{l=1}^2 \beta_{ll1} B_{ilt}^2 + \beta_{121} B_{i1t} B_{i2t} + \sum_{k=1}^4 \gamma_{k1} \frac{x_{ikt}}{A_{it}} + \sum_{m=1}^2 \delta_{m1} \frac{z_{imt}}{A_{it}} + \rho_1 A_{it} + \sum_{n=1}^4 \theta_{k1} C_{int} + u_{i1} + v_{1t} \\ \log(y_{i2t}) = \alpha_2 + \sum_{l=1}^2 \beta_{l2} B_{ilt} + \sum_{l=1}^2 \beta_{ll2} B_{ilt}^2 + \beta_{122} B_{i1t} B_{i2t} + \sum_{k=1}^6 \gamma_{k2} \frac{x_{ikt}}{A_{it}} + \sum_{m=1}^2 \delta_{m2} \frac{z_{imt}}{A_{it}} + \rho_2 A_{it} + \sum_{n=1}^4 \theta_{k2} C_{int} + u_{i2} + v_{2t} \end{cases}$ (3)312 where the additional $\boldsymbol{\beta}$ parameters represent the productivity of the two biodiversity 313 components for milk and cereals at the second orders. In particular, β_{121} and β_{122} represent the cross-productivity of crop diversity with permanent grasslands. The log-quadratic production 314 315 functions can capture interesting properties of the biodiversity productive capacity. Indeed, 316 while previous studies found that crop diversity has a decreasing return to scale for cereal 317 production (e.g. Di Falco and Chavas, 2006), they ignored its form for milk production. We 318 also found no information about the form of the productivity of permanent grasslands for milk

319 and cereals in the literature. More importantly, we ignored how the two biodiversity 320 components interact, i.e., whether they are substitutes or complements foreach other (whether β_{121} and β_{122} are positive or negative). Studies from the natural sciences (e.g., Martel et al., 321 322 2019) suggest that landscapes with few semi-natural habitats require greater complexity of the 323 crop mosaic to achieve a level of biological control similar to that in that landscapes with many 324 semi-natural habitats. Assuming a positive effect of biological control on both milk and cereals, 325 this observation would suggest that the two biodiversity components are substitute inputs. We 326 aimed to verify this relation by estimating the *within* transformation of system (3) with Models 327 1, 2, 3 and 4.

328 As mentioned, several studies from the natural sciences suggest that biodiversity 329 productive capacities may interact with applications of mineral fertilizers and/or pesticides (e.g. 330 Letourneau et al., 2011). Some economic studies have already assessed these interactions. For 331 example, Bareille and Letort (2018) found that higher crop diversity requires application of 332 smaller amounts of fertilizers and pesticides to reach the same yields (i.e. that crop diversity 333 leads to input-savings). To our knowledge, however, no study has assessed technical relations between biodiversity productive capacity and variable inputs when estimating production 334 335 functions. We thus estimated the following system:

 $\begin{cases} \log(y_{i1t}) = \alpha_1 + \sum_{l=1}^2 \beta_{l1} B_{ilt} + \sum_{k=1}^4 \gamma_{k1} \frac{x_{ikt}}{A_{it}} + \sum_{l=1}^2 \sum_{k=1}^2 \beta_{lk}^{\gamma} B_{ilt} \frac{x_{ikt}}{A_{it}} + \sum_{m=1}^2 \delta_{m1} \frac{z_{imt}}{A_{it}} + \rho_1 A_{it} + \sum_{n=1}^4 \theta_{k1} C_{int} + u_{i1} + v_{1t} \\ \log(y_{i2t}) = \alpha_2 + \sum_{l=1}^2 \beta_{l2} B_{ilt} + \sum_{k=1}^6 \gamma_{k2} \frac{x_{ikt}}{A_{it}} + \sum_{m=1}^2 \delta_{m2} \frac{z_{imt}}{A_{it}} + \rho_2 A_{it} + \sum_{n=1}^4 \theta_{k2} C_{int} + u_{i2} + v_{2t} \end{cases}$ $\tag{4}$


where the four additional β_1^{γ} parameters represent interactions between the two biodiversity components with mineral fertilizers and pesticides for cereals.¹¹ We were not aware of any studies that justified productive interactions of biodiversity components with seeds or fuel. To our knowledge, seeds and fuel should be insensitive to the productive ES supported by the two

¹¹ We attempted to add similar interactions for milk production, but performances of the models decreased considerably (e.g. several variable inputs had negative productivities for milk).

biodiversity components. Because of these new interactions in system (4), the three restrictions
no longer held; thus, we estimated the *within* transformation of system (4) using only Models 1
and 2.

344 Finally, we estimated the most general model, which combined systems (3) and (4): $\begin{cases}
\log(y_{i1t}) = \alpha_1 + \sum_{l=1}^2 \beta_{l1} B_{ilt} + \sum_{l=1}^2 \beta_{ll1} B_{ilt}^2 + \beta_{121} B_{i1t} B_{i2t} + \sum_{k=1}^4 \gamma_{k1} \frac{x_{ikt}}{A_{it}} \\
345 + \sum_{l=1}^2 \sum_{k=1}^2 \beta_{lk1}^2 B_{ilt} \frac{x_{ikt}}{A_{it}} + \sum_{m=1}^2 \delta_{m1} \frac{z_{imt}}{A_{it}} + \rho_1 A_{it} + \sum_{n=1}^4 \theta_{k1} C_{int} + u_{i1} + v_{1t} \\
\log(y_{i2t}) = \alpha_2 + \sum_{l=1}^2 \beta_{l2} B_{ilt} + \sum_{l=1}^2 \beta_{ll2} B_{ilt}^2 + \beta_{122} B_{i1t} B_{i2t} + \sum_{k=1}^6 \gamma_{k2} \frac{x_{ikt}}{A_{it}} + \sum_{m=1}^2 \delta_{m2} \frac{z_{imt}}{A_{it}} + \rho_2 A_{it} + \sum_{n=1}^4 \theta_{k2} C_{int} + u_{i2} + v_{2t}
\end{cases}$ (5)

Given the interactions between the biodiversity components and variable inputs, the three restrictions did not hold. We thus estimated the *within* transformation of system (5) using only Models 1 and 2. The many interactions of the biodiversity components in system (5) were expected to highlight the main productive effects of crop diversity and permanent grasslands.

350

- 351 **Figure 1.** Location of municipalities in northwestern France that contained farms in the sample.
- 352 Six municipalities are not displayed in order to maintain statistical anonymity.

353

3.3. Data description

354 Data came from the FADN for the three regions of northwestern France from 2002-2013. The 355 FADN is a bookkeeping survey performed each year by the French Ministry of Agriculture 356 with a rotating panel of farms. Each country in the EU must perform a similar survey to assess 357 effects of past and future CAP reforms. We considered that the set of financial supports 358 remained relatively homogenous during the sample period, since data from 2002 were used 359 only for price expectations. Farms in the sample faced only the 2008 CAP reform, whose most 360 notable changes were the removal of fallow obligations, gradual increase in milk quotas and 361 further decoupling of CAP payments. We selected mixed crop-livestock farms that produced 362 milk and cereals; they represented 76% of the FADN farms that produced milk in these regions. 363 The rotating panel sample was composed of 3,960 observations, which corresponded to 999 364 different farms observed for a mean of 3.96 years. The observations were located in ca. 250 365 municipalities each year (out of the ca. 4,000 municipalities in these regions), illustrating their 366 wide spatial distribution (Figure 1).

367 Since the FADN does not include prices of inputs, we calculated a quantity index for 368 each input using each farm's purchases and mean regional prices for the three regions (base 100 369 in 2010). We deflated prices and subsidies by the national consumption price index. Cereals 370 consisted of soft wheat, durum wheat, rye, spring barley, winter barley, escourgeon, oats, 371 summer crop mix, grain maize, seed maize, rice, triticale, non-forage sorghum and other crops. 372 We calculated cereal yields in constant euros using a Paasche index based on the mean price of 373 each cereal in 2010. For milk, we used the prices that each farm had received. We also added 374 annual climatic variables (data not shown).

Table 1 presents the descriptive statistics for the farms in the sample. Since the FADN excludes small farms, the average sampled farms had a UAA of 90 ha, which is somewhat

377	larger than the French mean. The biodiversity indicators had wide ranges. For example, the
378	maximum value of the crop diversity index was 11 times as large as the minimum value (0.206,
379	which indicates a trend to monoculture). Permanent grasslands were also distributed extremely
380	unequally: 30% of the observations had no permanent grasslands ($B_{i2t} = 0$). Consequently, we
381	performed a sensitivity analysis in Section 4.3 in which B_{i2t} equaled the proportion of
382	permanent grasslands in the UAA of (i) the municipality (LAU2 region), ¹² (ii) district (LAU1
383	region) or (iii) province (NUTS3 region) of each farm <i>i</i> . Finally, milk and cereals were the most
384	profitable products, providing a mean of 57% and 10% of total revenue, respectively. Some
385	farms had other activities, especially pig production (11% of farms).

Table 1. Descriptive statistics of farms (N=3,960)

Variable	Mean	Median	Q1	Q3	Min	Max
Cereal yield (constant €/ha)	1064.14	1074.04	918.15	1217.05	58.65	2455.44
Milk yield (kg/ha)	6111.58	6171.39	4553.45	7852.81	276.81	20909.08
log(cereal yield)	6.942	6.979	6.822	7.105	4.071	7.806
log(milk yield)	8.718	8.727	8.423	8.968	5.623	9.947
Crop diversity (Shannon index)	1.246	1.207	1.021	1.496	0.206	2.287
Permanent grassland proportion	0.10	0.015	0	0.14	0	0.89
Utilized agricultural area (ha)	90.01	77.62	55.18	110.39	15.59	382.88
Main forage area (ha)	60.95	53.64	37.27	76.39	8.16	290.9
Fertilizer (quantity index)	9899.41	8028.13	4778.82	12821.82	0	87025.84
Pesticides (quantity index)	6402.45	4843.92	2754.69	7837.9	0	71907
Seeds (quantity index)	6866.18	5575.39	3567.07	8462.67	0	73701.09
Fuel (quantity index)	57.19	47.58	30.56	72.89	0	311.41
Cow feed (quantity index)	282.52	225.19	131.31	368.81	1.702	2803.41
Health and reproduction (quantity index)	54.2	42.77	25.9	74.32	0	407.17
Cattle manure (kg)	8871.66	7456.86	5093.1	10886.78	735.81	45234.26
Other livestock manure (kg)	2076.85	0	0	0	0	95850
Capital (1000€)	299.88	258.30	158.94	383.41	0	3822.41
Labor (annual worker unit/100)	218.19	200	150	272	100	1200

387 **4. Results**

388 **4.1. Log-linear specifications**

- 389 Table 2 presents the estimation of system (2) using Models 1-4. We find that crop diversity
- 390 (B_{i1t}) increased both cereal and milk yields in the four models. Permanent grasslands (B_{i2t})

¹² LAUs (Local Administrative Units) are building blocks of the NUTS (Nomenclature of Territorial Units for Statistics) used by the European Union statistical system.

391 had no significant effect on cereal yields, which indicates that it had little or heterogeneous 392 productive spillover effects on a able land. The productivity of B_{i1t} estimated by Models 1 and 393 3 (SUR estimates) was twice that estimated by Models 2 and 4 (GMM estimates), which 394 suggested endogenous bias in Models 1 and 3 but also partly supported our assumption that 395 farmers adjust variable input applications given the biodiversity levels. At least, it showed that 396 the instrumentation of the variable inputs disentangled some correlations between them and B_{i1t} . However, Models 1 and 3 highlighted that B_{i2t} decreased milk yields.¹³ Interestingly, the 397 effect became null with Models 2 and 4 once we instrumented the variable input allocations. 398 399 The lower estimated productivities of B_{i1t} and B_{i2t} in these models highlighted that variable 400 inputs and biodiversity levels were correlated.

401 While productivities of the biodiversity components were our parameters of interest, the literature provided little information about their signs or amplitudes (at least for B_{i2t}). In 402 403 contrast, much more is known about productivities of variable inputs, which are theoretically 404 non-negative (e.g. Carpentier and Letort, 2012). We used this information to discriminate 405 among the four models. Model 1 estimated that all productivities of variable inputs were 406 positive or null, but as mentioned, the estimated productivities of the biodiversity components 407 were likely overestimated due to endogenous biases in variable inputs. Correcting for this issue, 408 Model 2 provides sensibly higher estimates for the productivities of variable inputs (and, thus, lower biodiversity productive capacities).¹⁴ The single questionable issue was that the 409

¹³ This result was not surprising: milk-producing farms with a larger proportion of permanent grasslands are usually considered the most extensive (Ryschawy et al., 2012).

¹⁴ Equations of the variable input applications instrumented with prices and subsidies showed $R^2 = 0.16-0.34$ (results available upon request). Price ratios had significant effects and expected signs. In addition, we tested the assumption of short-term optimization by estimating the influence of the other exogenous variables on crop diversity. Ordinary-least-square estimation showed $R^2 = 0.03$ in the *within* form (results available upon request), which suggested little endogenous bias in crop diversity and tended to support the assumption of very short-term optimization.

productivity of pesticides for milk was negative,¹⁵ perhaps because variable inputs should have 410 been specified as allocable inputs instead of non-allocable inputs. Indeed, for Model 4, the three 411 412 restrictions added to the productivities of variable inputs differed significantly from zero at the 413 5% level (i.e. they do act as binding constraints). Consequently, all productivities of variable 414 inputs estimated by Model 4 were positive or null, which was consistent with theory. Most 415 importantly, the different specifications for variable inputs did not influence estimates of 416 biodiversity productive capacities (compare Models 2 and 4). Model 3 had similar 417 characteristics but did not correct the endogeneity. Because Model 4 suggests productivities 418 consistent with theory and accounts for endogeneity, we select it as the preferred model.

419 Finally, all fixed inputs had null productivity except UAA, which decreased milk yields: the 420 total area captured the lower per-ha milk yields of extensive farms. The null productivity of 421 other fixed inputs highlighted the difficulty in measuring them accurately. Increasing quantities 422 of cattle manure decreased crop yields, but manure from other livestock had non-significant 423 effects (at the 5% level). This result suggests inefficient management of cattle manure, perhaps 424 because of legislative restrictions on application of organic fertilizers. Specifying alternative 425 organic fertilizer proxies did not influence the significance or the sign of the productivity of 426 B_{i1t} or the variable input productivities. Finally, all climatic variables influenced cereal yields significantly (data not shown). In contrast, only total snowfall and minimum, maximum and 427 428 mean temperatures influenced milk yields. Omitting weather data led to negative productivities 429 of certain variable inputs, highlighting that applications of variable inputs are influenced by the 430 weather. The estimations of Models 1-4 without the individual fixed effects also led to negative

¹⁵ Addition of an interaction variable between pesticide application and a trend highlighted that pesticide productivities were positive at the beginning of the period but negative at the end (Appendix 4). This result may have been due to a change in pesticide quality: farmers applied different types of pesticides during the period, and the pesticides that remained by the end may have been less effective. Since milk yields increased over the period, this may have been a temporal conjuncture confound.

- 431 productivities. The addition of weather variables and individual fixed effects thus decreased the
- 432 unobserved heterogeneity, removing some endogenous biases.

	Model 1		Model 2	(GMM)	Model	3 (SUR)	Model 4	(GMM)
	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)
Biodiversity indicators								
B_{ilt} (crop diversity)	0.108 ***	0.186 ***	0.052 *	0.120 ***	0.109 ***	0.186 ***	0.044 °	0.088 ***
	(0.018)	(0.014)	(0.023)	(0.029)	(0.018)	(0.014)	(0.023)	(0.026)
B_{i2t} (permanent grasslands)	0.054	-0.119 **	-0.007	-0.021	0.055	-0.119 **	0.012	-0.020
	(0.057)	(0.015)	(0.066)	(0.073)	(0.057)	(0.015)	(0.064)	(0.069)
Variable inputs								
Fertilizers	0.0002 **	0.0001	0.002 ***	0.0002	0.0001	0.0001	0.001 ***	0.0001 *
	(0.0001)	(0.0001)	(0.0003)	(0.0005)	(0.0001)	(0.0001)	(0.0003)	(0.00003)
Pesticides	0.0001	0.0004 ***	0.0001	-0.002 *	0.0001 *	0.0003 *	0.0001	0.0001
	(0.0001)	(0.0001)	(0.0002)	(0.001)	(0.00005)	(0.0002)	(0.0002)	(0.0002)
Seeds	0.0001	0.0004 **	0.001 *	0.0005	0.0001	0.0004 **	0.001 *	0.001 *
	(0.0001)	(0.0001)	(0.0005)	(0.0008)	(0.0001)	(0.0001)	(0.0005)	(0.0004)
Fuel	0.016	0.017	0.114	0.575 ***	0.007	0.020	0.357 ***	0.300 ***
	(0.020)	(0.016)	(0.128)	(0.137)	(0.006)	(0.016)	(0.107)	(0.137)
Cow feed		0.048 ***		0.096 ***	· · · ·	0.049 ***	· · · ·	0.097 ***
		(0.002)		(0.013)		(0.002)		(0.010)
Health and reproduction		0.081 ***		0.214 *		0.081 ***		0.193 *
		(0.008)		(0.107)		(0.008)		(0.090)
Organic Fertilizer proxies		(0.000)		(01107)		(0.000)		(0.020)
	0.039	0.167 ***	-0.061	-0.142 °	0.043	0.165 ***	-0.104 *	-0.109
Cattle manure/total area	(0.030)	(0.025)	(0.043)	(0.077)	(0.030)	(0.025)	(0.041)	(0.069)
Other livestock manure/total	-0.014	-0.017 °	-0.01	-0.025	-0.014	-0.017 °	-0,02	-0.022 °
area	(0.011)	(0.009)	(0.012)	(0.016)	(0.012)	(0.009)	(0.013)	(0.013)
Other control variables	(01011)	(0.00))	(0.012)	(01010)	(0.012)	(01007)	(01010)	(01012)
Total area	0.0001	-0.0008 ***	0.0003	-0.0005	0.0001	-0.0008 ***	-0.0002	-0.0008 *
i otal alca	(0.0002)	(0.0002)	(0.0003)	(0.0005)	(0.0002)	(0.0002)	(0.0003)	(0.0004)
Capital/total area	1E-04	0.001 ***	0.0004	-0.0007	0.0001	0.001 ***	-0.0001	-0.0005
Cupital/total area	(0.0003)	(0.0003)	(0.0004)	(0.0005)	(0.0003)	(0.0003)	(0.0004)	(0.0004)
Labor (annual worker	-0.614	2.079 ***	-2.933	1.877	-0.512	2.063 ***	-2.898	2.166
unit)/total area	(0.781)	(0.571)	(2.375)	(2.884)	(0.717)	(0.579)	(2.401)	(2.610)
Average technical progress	-0.007	-0.003	-0.006	0.002	-0.011 *	-0.003	-0.002	0.003
Average technical progress	(0.005)	(0.002)	(0.015)	(0.002)	(0.005)	(0.002)	(0.015)	(0.002)
Individual fixed effect	Yes	Yes	Yes	Yes	(0.003) Yes	Yes	Yes	(0.002) Yes
Weather variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Ies	res	res	Tes	res	res	res	res
Restrictions					2 2 4 1 *		2 202 *	
Restriction 1					-2.241 *		-2.203 *	
					(0.913)		(1.086)	
Restriction 2					0.391		-2.273 *	
					(2.021)		(1.090)	
Restriction 3					0.756		-2.545 *	
					(0.923)		(1.04)	

433 **Table 2.** Estimates of system (2) with log-linear production functions (Models 1-4) (N=3,960).

435 = seemingly unrelated regressions, GMM = general method of moments.

436

437

438 **4.2. Models with alternative functions**

439 Table 3 presents results of the estimation of Model 4 for system (3) when we added alternative 440 interaction terms for the biodiversity indicators (Appendix 4 presents results of system (3) with Models 1-3). Table 3 includes two degraded forms of system (3) in which either the squared or 441 442 cross terms of the biodiversity indicators were removed (noted system (3') and system (3''), respectively). Second-order parameters of the productivity of B_{i1t} were non-significant for milk 443 444 once interaction terms were added (system (3)). Adding them even decreased the precision of 445 the estimate of the first-order productivity of milk, except when the squared terms were 446 removed (system (3") in Table 3). The results for cereals were more informative. In the most 447 general form, B_{i1t} had a negative return to scale but did have positive productivity at the average point (system (3) in Table 3). The estimates of B_{i2t} and B_{i2t}^2 were both positive but non-448 significant. The drop in the interaction term between B_{i1t} and B_{i2t} suggested, however, that 449 B_{i2t} had increasing return to scale (system (3') in Table 3); in other words, the productivity of 450 B_{i2t} for cereals was positive when permanent grassland proportions were high (specifically, 451 when $B_{i2t} > 0.248$, representing ca. 15% of the sample). 452

453 Finally, the first-order productivity of B_{i2t} was positive for cereals once the squared 454 terms were removed (system (3") in Table 3). More interestingly, the two biodiversity 455 indicators interacted negatively with each other for cereal yields, suggesting that they were 456 substitute inputs (systems (3) and (3")). B_{i2t} increased cereal yields only when its marginal productivity (0.261-0.217* B_{i1t} – system (3'')) was positive (i.e. when $B_{i1t} < 1.20$). Based on 457 458 the distribution of B_{i1t} , B_{i2t} increased cereal yields for 46% of the observations. Similarly, B_{i1t} 459 increased cereal yields for 89% of the observations (when $B_{i2t} < 0.35$). At the average level of B_{i2t} , increasing B_{i1t} from an area equally distributed among three crops (B_{i1t} =1.099) to an area 460 461 equally distributed among four crops (B_{i1t} =1.386) increased cereal yields by 2.3% and milk 462 yields by 2.6%. In contrast, B_{i2t} did not influence cereal and milk yields at the average level of 463 B_{i1t} , but it did increase cereal yields at low levels of B_{i1t} . When $B_{i1t}=1$, an increase in B_{i2t} 464 from 0.1 to 0.2 increased cereal yields by 0.4%, which is relatively small compared to the 465 productivity of B_{i1t} .

466

467 **Table 3.** GMM estimates with log-quadratic production functions (Model 4) (N=3,960)

	Model 4 – S	ystem (3)	Model 4 – S	System (3')	Model 4 – S	ystem (3'')
	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)
Biodiversity indicators						
Bilt	0.467 *** (0.104)	-0.043 (0.103)	0.330 *** (0.094)	-0.030 (0.100)	0.077 ** (0.026)	0.096 ** (0.028)
$(B_{ilt})^2$	-0.149 *** (0.036)	0.052 (0.038)	-0.111 ** (0.034)	0.046 (0.038)		
B_{i2t}	0.111 (0.214)	0.051 (0.183)	-0.298 * (0.138)	0.015 (0.142)	0.261 * (0.123)	0.042 (0.13)
$(B_{i2t})^2$	0.385 (0.246)	-0.075 (0.224)	0.602 ** (0.227)	-0.073 (0.222)	(0.125)	(0.13)
$B_{ilt} * B_{i2t}$	-0.261 ** (0.103)	-0.040 (0.108)			-0.217 * (0.093)	-0.069 (0.11)
Variable inputs						
Fertilizers	0.001 *** (0.0003)	0.001 ** (0.0003)	0.001 *** (0.0003)	0.001 ** (0.0003)	0.001 *** (0.0003)	0.001 ** (0.0003)
Pesticides	0.0001 (0.0003)	0.0001 (0.0002)	0.0001 (0.0003)	0.0001 (0.0002)	0.0001 (0.0003)	0.0001 (0.0002)
Seeds	0.0006 (0.0005)	0.0006 (0.0004)	0.001 ° (0.0005)	0.001 * (0.0004)	0.001 ° (0.0005)	0.001 * (0.0004)
Fuel	0.348 ** (0.108)	0.293 ** (0.102)	0.37 ** (0.108)	0.311 ** (0.102)	0.34 ** (0.108)	0.276 ** (0.09)
Cow feed		0.101 *** (0.010)		0.097 *** (0.010)		0.099 *** (0.010)
Health and reproduction		0.205 * (0.093)		0.207 * (0.091)		0.193 * (0.091)
Organic Fertilizer proxies						
Available cattle manure/total area	-0.097 * (0.041)	-0.118 ° (0.070)	-0.112 ** (0.041)	-0.102 (0.070)	-0.094 * (0.041)	-0.115 ° (0.070)
Other available manure/total area	-0.013 (0.013)	-0.023 ° (0.014)	-0.018 (0.013)	-0.023 (0.014)	-0.016 (0.013)	-0.022 (0.013)
Control variables						
Total area	0.0002	-0.0009 *	0.0002	-0.0008 °	-2.50E-4	-9.15E-4 *
Capital/total area	(0.0002) -0.0001 (0.0004)	(0.0004) -0.0006 (0.0005)	(0.0002) -0.0001 (0.0004)	(0.0004) -0.0006 (0.0005)	(2.65E-4) -0.0001	(4.16E-4) -0.0006
Labor (annual worker unit)/total	(0.0004) -3.720	(0.0005) 2.372	(0.0004) -2.907	(0.0005) 2.149	(0.0004) -3.57	(0.0005) 2.45
area	(2.406)	(2.676)	(2.420)	(2.658)	(2.42)	(2.63)
Average technical progress	-0.006	0.003	-0.007	0.003	-0.002	0.002
Individual fixed effect	(0.015) Yes	(0.002) Yes	(0.015) Yes	(0.002) Yes	(0.015) Yes	(0.002) Yes
Weather variables	Yes	Yes	Yes	Yes	Yes	Yes
Restrictions	105	105	103	103	103	105
Restriction 1	-2.227 *		-2.249 *		-2.109 *	
Restriction 1	(1.109)		(1.112)		(1.045)	
Restriction 2	-2.362 *		-2.406 *		-2.170 *	
	(1.097)		(1.117)		(1.044)	
Restriction 3	-2.419 *		-2.551 *		-2.310 *	
	(1.045)		(1.073)		(0.959)	

468 Standard errors are in parentheses; ***, **, * and ° denote p-values of 0.1%, 1%, 5% and 10%, respectively.

When we added interaction terms between variable inputs and biodiversity indicators 469 470 for cereals, the parameters were less significant for Model 1 (SUR; Appendix 6) and Model 2 471 (Table 4) than for the previous models, but all of the interaction terms were significantly negative (except between fertilizers and B_{i2t} in system (5); Table 4).¹⁶ This result suggested 472 473 that the productive capacities of the two biodiversity components were substitute inputs for 474 fertilizers and pesticides. Taking the estimated parameters from system (4), on average, a 10% increase in B_{i1t} decreased fertilizer and pesticide productivities for cereals by 3.6% and 3.3% 475 respectively. Similarly, a 10% increase in B_{i2t} decreased fertilizer and pesticide productivities 476 477 by 0.6% and 0.9%, respectively. The first-order productivities of the biodiversity indicators remained significant. At average points, productivities of B_{i1t} and B_{i2t} in systems (4) and (5) 478 479 were consistent with those of systems (2) and (3), confirming that different specifications of 480 variable input allocation did not influence the results. Like for system (2), the productivity of 481 pesticide for milk was negative for systems (4) and (5), but as explained, we could not use the 482 parameter restrictions; the only correction possible was to add an interaction term with a trend, 483 as for system (2) (Appendix 4).

484

¹⁶ Recall that systems (4) and (5) can be estimated only using Models 1 and 2 due to the interaction terms between the biodiversity indicators and variable inputs.

Model 2 –	System (5)	Model 2 – S	<u>System (4)</u>
log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)
-0.056	0.105	0.929 ***	0.113 ***
(0.039)	(0.102)	(0.248)	(0.025)
0.577 **	0.002	2.804 ***	0.063
(0.203)	(0.037)	(0.589)	(0.054)
2.090 *	0.164		
(0.839)	(0.184)		
-0.964	-0.254		
(0.758)	(0.210)		
-0.314	0.025		
(0.235)	(0.106)		
(0.200)	(00000)		
0.007 **	0.0001	0.007 **	0.0001
			(0.0004)
	(0.0007)		(0.0004)
· · · ·		· · · · ·	
· /	0.007 *		-0.002 *
· · ·	(0.001)		(0.001)
· /		· · · · ·	
0.022		-0.050	
· · · ·		· · ·	
			0.002 **
			(0.0007)
			0.441 ***
(0.156)	· · · ·	(0.157)	(0.128)
	0.069 ***		0.068 ***
	(0.013)		(0.012)
	0.261 **		0.236 **
	(0.087)		(0.084)
-0.081	-0.066	0.037	-0.053
(0.055)	(0.071)	(0.058)	(0.069)
0.008	-0.018	0.019	-0.018
(0.006)	(0.016)	(0.019)	(0.016)
	· · ·	· · · ·	
0.0003	-0.0004	-0.0003	-0.0006
			(0.0005)
			-0.0004
			(0.0005)
· /		· · · ·	1.863
			(4.892)
			(4.892)
			(0.002)
r es	res	res	Yes
	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccc} -0.056 & 0.105 \\ (0.039) & (0.102) \\ 0.577 ** & 0.002 \\ (0.203) & (0.037) \\ 2.090 * & 0.164 \\ (0.839) & (0.184) \\ -0.964 & -0.254 \\ (0.758) & (0.210) \\ -0.314 & 0.025 \\ (0.235) & (0.106) \\ \hline 0.007 ** & 0.0001 \\ (0.002) & (0.0004) \\ -0.004 * \\ (0.002) & (0.0004) \\ -0.002 & (0.0001) \\ -0.002 & (0.0003) \\ 0.023 *** & -0.002 * \\ (0.003) & -0.002 * \\ (0.003) & -0.002 * \\ (0.003) & -0.002 * \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.001 & 0.002 ** \\ (0.007) & 0.0003 & -0.004 \\ (0.0055) & (0.071) \\ 0.008 & -0.018 \\ (0.006) & (0.016) \\ \hline 0.0003 & -0.0004 \\ (0.0005) & (0.0005) \\ -0.0008 & -0.0002 \\ (0.0005) & (0.0005) \\ -0.607 & 0.469 \\ (6.067) & (4.895) \\ 0.001 & 0.002 \\ (0.002) & (0.002) \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

485 **Table 4.** GMM estimates of systems (4) and (5) (Model 2) (N=3,960)

486 Standard errors are in parentheses; ***, **, * and ° denote p-values of 0.1%, 1%, 5% and 10%, respectively.

488 **4.3. Sensitivity analysis for permanent grasslands**

489 The choice of indicators depends greatly on the data available. Using the FADN database 490 required us to rely on indicators calculated at the farm scale; however, landscape ecologists

491 suggest that the scale at which these indicators are calculated matters (Burel and Baudry, 2003).

⁴⁸⁷

492 Although Donfouet et al. (2017) emphasized that the scale at which B_{i1t} was calculated had no 493 significant influence on the assessment of the productivity of B_{i1t} in previous studies, we were 494 not aware of such evidence B_{i2t} . We thus tested whether the scale at which the permanent 495 grassland proportion was measured had an influence by estimating system (2) with alternative measures of B_{i2t} . Formally, we replaced B_{i2t} with the proportion of permanent grasslands in 496 497 the UAA of the (i) municipality, (ii) district or (iii) province where the farmstead of i was 498 located. This sensitivity analysis had the secondary advantage that B_{i2t} was always positive at 499 these scales, which was not the case at the farm scale (Table 1). The disadvantage was that we 500 had to decrease the number of observations from 3,960 to 2,344 since these alternative measures of B_{i2t} have been available only since 2007 in France (beginning of the Land Parcel 501 502 Identification System).

503 Using Model 4 to estimate system (2) with B_{i2t} measured at alternative scales revealed 504 that biodiversity productive capacity remained similar overall to that estimated at the farm scale 505 (Table 5). Although the amplitudes differed, B_{i1t} still increased cereal and milk yields. The alternative measures of B_{i2t} did not influence estimates of the productivity of B_{i1t} . The lack of 506 507 effect of B_{i2t} on cereal yields also remained, but the alternative measures of B_{i2t} influenced all 508 milk yields negatively (and significantly). The proportion of permanent grasslands at the district 509 level influenced the results the most. Estimating system (2) using all alternative measures of 510 permanent grasslands at the same time, the alternative measures of permanent grasslands again 511 had no effect on the productivity of B_{i1t} for cereals and milk (Appendix 7). We confirmed that 512 the proportion of permanent grasslands at the district level drove the negative effect on farms' 513 milk yields. Estimates of variable input productivities had lower quality (Table 5), however, 514 than those of previous models due to the smaller sample size.

515 **Table 5.** GMM estimates of system (2) using biodiversity indicators for permanent grasslands

516 measured at alternative scales (Model 4) (N=2,344)

	Fa	rm	Munic	ipality	Dist	rict	Prov	ince
	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)
Biodiversity indicators	<u> </u>	00- /						
Bilt	0.084 *** (0.025)	0.137 *** (0.028)	0.081 ** (0.025)	0.128 *** (0.029)	0.083 ** (0.025)	0.115 *** (0.029)	0.083 ** (0.025)	0.130 *** (0.027)
B _{i2t_farm}	-0.098	-0.051						
	(0.068)	(0.078)						
$B_{i2t_municipality}$			-0.038 (0.242)	-0.681 ** (0.221)				
B i2t_district					-0.072 (0.236)	-1.450 *** (0.383)		
$B_{i2t_province}$							0.293 (0.452)	-0.689 ° (0.383)
Variable inputs								
Fertilizer	0.0001 (0.0001)	-0.0004 (0.0005)	-0.001 (0.0001)	0.0007 (0.0005)	-0.001 (0.0001)	0.001 ** (0.0005)	-0.0001 (0.0007)	0.0005 (0.00004)
Pesticides	0.0002 (0.0002)	-0.001 ° (0.0007)	0.0002 (0.0002)	-0.002 * (0.0008)	0.0002 (0.0002)	-0.001 ° (0.0008)	0.0002 (0.0002)	-0.002 * (0.001)
Seeds	-0.0002 (0.0003)	0.002 ** (0.0007)	-0.0002 (0.0003)	0.002 ** (0.0008)	-0.0002 (0.0003)	0.001 ** (0.0008)	-0.0002 (0.0002)	0.002 ** (0.0004)
Fuel	-0.005 (0.007)	0.041 (0.027)	0.0004 (0.013)	-0.004 (0.144)	0.001 (0.004)	-0.007 (0.030)	-0.002 (0.004)	0.023 (0.027)
Cow feed		0.050 *** (0.008)		0.048 *** (0.008)		0.049 *** (0.009)		0.048 *** (0.008)
Health and reproduction		0.090 (0.095)		0.179 * (0.097)		0.214 * (0.098)		0.136 (0.089)
Organic Fertilizer proxies		(0.050)		(010) /)		(0.0,0)		(0.00))
Cattle manure/total area	0.039 (0.045)	0.086 (0.075)	0.022 (0.044)	0.108 (0.075)	0.019 (0.011)	0.087 (0.067)	0.027 (0.044)	0.096 (0.065)
Other livestock manure/total	0.017	-0.008	0.015	0.003	0.013	-0.007	0.013	0.0001
area	(0.012)	(0.010)	(0.012)	(0.011)	(0.012)	(0.011)	(0.012)	(0.010)
Control variables							(,	(,
Total area	-0.0003	-0.0007 °	-0.0004	- 0.0004	-0.0004	0.0005	-0.0003	0.0003
	(0.0004)	(0.0004)	(0.0004)	(0.0005)	(0.0004)	(0.0005)	(0.0003)	(0.0004)
Capital/total area	-0.0001	0.001 *	-0.0003	0 °	-0.0004	0.001 °	-0.0004	0.001 *
/ .	(0.0005)	(0.0004)	(0.0004)	(0.0005)	(0.0004)	(0.0005)	(0.0004)	(0.0004)
Labor/total area	-6.431 °	2.536	-5.838 °	0.759	-5.110 °	0.87	-5.324 °	2.226
A ((3.294)	(3.559)	(3.220)	(3.469)	(3.092)	(3.490)	(3.135)	(3.365)
Average technical progress	-0.018	0.0001	-0.020	0.0004	-0.018	0.0001	-0.018	0.001
Individual fixed effect	(0.016) Yes	(0.003) Yes	(0.017) Yes	(0.003) Yes	(0.016) Yes	(0.003) Yes	(0.017) Yes	(0.002) Yes
Weather variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Restrictions	105	105	105	105	105	103	105	105
Restriction 1	-0.074		0.509		0.447		0.563	
	(0.094)		(1.864)		(2.480)		(1.299)	
Restriction 2	1.149		1.617		1.910		2.297	
	(3.606)		(2.486)		(2.245)		(3.162)	
Restriction 3	0.006		-0.079 **		0.072		0.011 *	
	(1.315)		(0.026)		(0.249)		(0.756)	

517 Standard errors are in parentheses; ***, **, * and ° denote p-values of 0.1%, 1%, 5% and 10%, respectively.

518 **5. Discussion and concluding remarks**

519 The literature on the productivity of biodiversity has paid great attention to the productivity of

520 crop diversity for crops. Estimating a system of yield equations consistent with the assumption

521 of farmers' very short-term optimization, our study extends current knowledge about 522 biodiversity productive capacity to (i) two biodiversity components (crop diversity and 523 permanent grasslands), (ii) two products (milk and cereals) and (iii) interactions with 524 conventional variable inputs (fertilizers and pesticides). We estimated a variety of functional 525 forms of the production functions, which provide additional information about biodiversity 526 productive capacities (Paul et al., 2020).

527 First, we confirmed that crop diversity is an input for cereal production. In particular, 528 we agree with Donfouet et al. (2017) that crop diversity is a productive input in regions with 529 wet climates. In line with Di Falco and Chavas (2006), we found that crop diversity has a 530 decreasing return to scale for cereals. We also found that crop diversity is an input for milk 531 production. We interpret it as the increasing of forage yields, which means that forages are 532 sensitive to the productive ES that crop diversity supports. It may also suggest that dairy cows 533 benefit from more varied feed. While van Rensburg and Mulugeta (2016) found a positive effect 534 of habitat diversity on livestock farm profits, we are the first (to our knowledge) to identify that 535 crop diversity increases production of products besides crops. The positive effect of crop 536 diversity on milk yield is consistent, however, with the recent increase in crop diversity in the 537 studied regions (Desjeux et al., 2015).

In contrast, we found no significant positive effects of permanent grassland proportion on either cereals or milk when using log-linear production functions. However, when using logquadratic production functions, permanent grassland proportion increased cereal yields when crop diversity was low, highlighting some productive spillover effects of semi-natural areas on arable lands. The existence of these productive spillovers has been suggested by agronomic and ecological studies (Baudry et al., 2000; Steffan-Dewenter et al., 2002; Ricketts et al., 2008). Klemick (2011) also highlighted similar spillovers from forest fallows in Brazil. The negative 545 interaction between crop diversity and permanent grassland proportion also implies that both 546 biodiversity components are substitute inputs for cereal production. This result could confirm 547 recent results in landscape ecology; for example, Martel et al. (2019) observed that landscapes 548 with few natural areas need more complex crop mosaics to achieve the same level of biological 549 control that landscapes with higher density of natural habitats have. We conclude that farmers 550 have no incentives to increase both components of biodiversity productive capacity 551 simultaneously. This conclusion is consistent with Desjeux et al. (2015), who observed a trade-552 off between crop diversity and permanent grasslands in most French regions.

553 Bareille and Letort (2018) stressed that crop diversity leads to variable input savings. In 554 the present study, we also emphasized that both biodiversity productive capacities interact with 555 variable inputs within the production function. Crop diversity is a substitute for pesticides, with 556 an elasticity of pesticide productivity relative to crop diversity of 0.33%. This extends results 557 of Di Falco and Chavas (2006), who found that crop diversity and pesticides are substitute 558 inputs for risk management. Crop diversity is also a substitute for fertilizer, with an elasticity 559 of fertilizer productivity relative to crop diversity of 0.36%. This is consistent with Kim et al. 560 (2000) and Di Falco and Zoupanidou (2017), who highlighted that soil quality and fertilizers 561 are substitutes in the short term in the United States and Italy, respectively. Because crop 562 diversity increases soil quality, our results confirm their previous findings. In addition, we also 563 found that permanent grasslands are substitutes for pesticides and fertilizers in the short term 564 (elasticities of 0.09% and 0.06%, respectively). This result could confirm the positive effects 565 of permanent grasslands and associated elements on biological control (Baudry et al., 2000). 566 Crop diversity appears to interact more with variable inputs than permanent grasslands do, 567 confirming its greater influence on agricultural production. However, unlike crop diversity, 568 permanent grasslands have a marginally greater influence on crop protection than on crop 569 fertilization, which is consistent with ecological studies (Martel et al., 2019).

570 Our results are robust to several panel econometric methods and functional forms. 571 Among the models estimated, we highlighted the need to instrument variable input applications: 572 not doing so overestimates the productivity of the biodiversity components. We also showed 573 that adding parameter restrictions on variable input productivities provided estimates consistent 574 with theory, although they had little influence on the biodiversity productivities estimated. Our 575 results should be considered, however, as consistent in the short term, locally and in intensive agricultural regions.¹⁷ Our results are also valid if farmers do optimize in the very short term 576 577 and if we modeled the correct sequence of decisions (i.e. farmers optimize variable input 578 application based on previous land-use decisions and related biodiversity levels). We are 579 relatively confident about this assumption since linear regressions of the biodiversity indicators 580 on the other exogenous variables (including variable inputs) had low explanatory power. We 581 thus consider our biodiversity indicators as "predetermined" and exogenous. The 582 instrumentation of the Shannon index with time-lagged values by Di Falco and Chavas (2008), 583 for example, illustrates the quasi-fixity of crop diversity. However, assuming "predetermined" 584 biodiversity in the longer term is probably incorrect. In the longer term, biodiversity productive 585 capacities should be considered as quasi-fixed inputs and instrumented, or a structural model 586 should be built that explicitly considers biodiversity dynamics, especially to capture the long-587 term benefits of biodiversity (Di Falco and Chavas, 2008; Bareille and Letort, 2018). Finally, 588 the biodiversity indicators we used may be correlated with other economic confounders such 589 as soil quality or levels of fixed inputs. These issues are common to all economic studies on 590 biodiversity productive capacity. Although we attempted to capture these effects using 591 individual fixed effects and considering the quasi-fixed input levels (and additional control 592 variables), some results may have been biased due to remaining confounders.

593

¹⁷ The relation between variable inputs and biodiversity productive capacity may differ in developing regions, where variable inputs are limiting inputs.

594 **5.1. Implications for environmental policies**

595 Policymakers often aim to improve environmental quality and biodiversity levels due to their 596 positive effects on social welfare. Our results can help policymakers because they emphasize 597 incentives encountered by profit-maximizing farmers who manage biodiversity. Our results 598 highlight that the two biodiversity components increase cereal and milk yields, suggesting no 599 conflict between biodiversity and high yields. However, the estimated second-order effects of 600 the biodiversity indicators reveal the difficulty in designing optimal sets of policy instruments 601 that target crop diversity and permanent grasslands at the same time. Policy instruments that 602 provide incentives to increase crop diversity also encourage a decrease in permanent grasslands and vice-versa. For example, a subsidy to conserve or increase permanent grasslands should 603 604 lead to a decrease in crop diversity. This substitution is amplified because crops and permanent 605 grasslands compete for UAA, which is a limited resource for farmers. Thus, cross-compliance 606 requirements introduced in the 2014 CAP reform may lead to counterintuitive land-use 607 dynamics. For example, crop-oriented regions (with high initial levels of crop diversity) receive 608 incentives to enhance ecological focus areas and permanent grasslands, which in turn leads to 609 a decrease in the marginal productivity of crop diversity: assuming profit-maximizing farmers, 610 cross-compliance requirements should lead to a decrease in crop diversity.

Finally, we want to emphasize optimistic implications of the substitution between variable inputs and biodiversity productive capacity (in the short term and in intensive agricultural regions). This substitution implies that any policy instruments that discourage use of variable inputs (e.g. a tax on fertilizers or pesticides) would provide incentives to farmers to increase biodiversity levels. Similarly, biodiversity subsidies should encourage farmers to decrease application of fertilizers and pesticides. Environmental policies could thus reach several objectives simultaneously.

618 **References**

- Amsler, C., Prokhorov, A., Schmidt, P. (2017). Endogenous environmental variables in
 stochastic frontier models. Journal of Econometrics *199(2)*, 131-140.
- Ang, F., Mortimer, S.M., Areal, F.J., Tiffin, R. (2018). On the Opportunity Cost of Crop
 Diversification. Journal of Agricultural Economics *69(3)*, 794-814.
- Asunka, S., Shumway, C.R. (1996). Allocatable fixed inputs and jointness in agricultural
 production: more implications. Agricultural and Resource Economics Review 25, 143-148.
- 625 Aviron, S., Burel, F., Baudry, J., Schermann, N. (2005). Carabid assemblages in agricultural

landscapes: impacts of habitat features, landscape context at different spatial scales and
farming intensity. Agriculture, Ecosystems & Environment *108(3)*, 205-217.

628 Baltagi, B. (2008). *Econometric analysis of panel data*. John Wiley & Sons.

- Baudry, J., Bunce, R.G.H., Burel, F. (2000). Hedgerows: an international perspective on their
 origin, function and management. Journal of Environmental Management *60*, 7–22.
- Baumgärtner, S. (2006). Measuring the diversity of what? And for what purpose? A conceptual
 comparison of ecological and economic biodiversity indices. *Working Paper*. Heidelberg:
- 633 Interdisciplinary Institute for Environmental Economics.
- Baumol, W.J., Panzar, J. C., Willig, R.D., Bailey, E.E., Fischer, D., Fischer, D. (1988). *Contestable markets and the theory of industry structure*. New York: Harcourt Brace
 Jovanovich.
- Burel, F., Baudry, J. (2003). *Landscape ecology: concepts, methods, and applications*. Enfield,
 N.H., Science Publishers. 362 p.

- Carpentier, A., Letort, E. (2012). Accounting for heterogeneity in multicrop micro-econometric
 models: implications for variable input demand modeling. American Journal of Agricultural
 Economics *94*, 209–224.
- 642 Chatellier, V., Gaigné, C. (2012). Les logiques économiques de la spécialisation productive du
 643 territoire agricole français. Innovations Agronomiques 22, 185-203.
- 644 CORPEN. (2006). Les émissions d'ammoniac et de gaz azotés à effet de serre en agriculture.
 645 Paris, France: MAAP.
- 646 Desjeux, Y., Dupraz, P., Kuhlman, T., Paracchini, M.L., Michels, R., Maigné, E., Reinhard, S.
- 647 (2015). Evaluating the impact of rural development measures on nature value indicators at
 648 different spatial levels: Application to France and The Netherlands. Ecological Indicators
 649 59, 41–61.
- 650 Díaz, S., J. Settele, E. Brondízio, H. Ngo, M. Guèze, J. Agard, A.Arneth, P. Balvanera, K.
- Brauman, S. Butchart, K. Chan, L.Garibaldi, K. Ichii, J. Liu, S. Subrmanian, G. Midgley, P.
- 652 Milo-slavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers
- R. Chowdbury, Y. Shin, I. Visseren-Gamakers, K. Bilis, C. Zayas. (2019). Summary for
 policy-makers of the global assessment report on biodiversity and ecosystem services of the
 Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
 (Available from:
- https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf)
- Di Falco, S., Chavas, J.-P. (2006). Crop genetic diversity, farm productivity and the
 management of environmental risk in rainfed agriculture. European Review of Agricultural
 Economics *33*, 289–314.

- Di Falco, S., Chavas, J.-P. (2008). Rainfall shocks, resilience, and the effects of crop
 biodiversity on agroecosystem productivity. Land Economics 84, 83–96.
- Di Falco, S., Bezabih, M., Yesuf, M. (2010). Seeds for livelihood: crop biodiversity and food
 production in Ethiopia. Ecological Economics *69*, 1695–1702.
- Di Falco, S., Zoupanidou, E. (2017). Soil fertility, crop biodiversity, and farmers' revenues:
 Evidence from Italy. Ambio 46(2), 162-172.
- Donfouet, H.P.P., Barczak, A., Détang-Dessendre, C., Maigné, E. (2017). Crop Production and
 Crop Diversity in France: A Spatial Analysis. Ecological Economics *134*, 29–39.
- 670 Finger, R., Buchmann, N. (2015). An ecological economic assessment of risk-reducing effects

of species diversity in managed grasslands. Ecological Economics *110*, 89–97.

- Hooper, D.U., Chapin Iii, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H.,
 Lodge, D.M., Loreau, M., Naeem, S. (2005). Effects of biodiversity on ecosystem
 functioning: a consensus of current knowledge. Ecological Monographs 75, 3–35.
- Kim, K., Barham, B.L., Coxhead, I. (2000). Measuring soil quality dynamics A role for
 economists, and implications for economic analysis. Agricultural Economics 25, 13–26.
- 677 Kleijn, D., Kohler, F., Báldi, A., Batáry, P., Concepción, E.D., Clough, Y., Diaz, M., Gabriel,
- D., Holzschuh, A., Knop, E., Kovács, A., Marshall, E.J.P., Tscharntke, T., Verhulst, J.
- 679 (2009). On the relationship between farmland biodiversity and land-use intensity in Europe.
- 680 Proceedings of the Royal Society of London B: Biological Sciences 276, 903–909.
- Klemick, H. (2011). Shifting cultivation, forest fallow, and externalities in ecosystem services:
 Evidence from the Eastern Amazon. Journal of Environmental Economics and Management
- *683 61*, 95–106.

- Martel, G., Aviron, S., Joannon, A., Lalechère, E., Roche, B., Boussard, H. (2019). Impact of
 farming systems on agricultural landscapes and biodiversity: From plot to farm and
 landscape scales. European Journal of Agronomy *107*, 53-62.
- Mainwaring, L. (2001). Biodiversity, biocomplexity, and the economics of genetic
 dissimilarity. Land Economics 77, 79–83.
- 689 MEA. (2005). Ecosystems and human well-being. Washington, DC: Island press.
- 690 Noack, F., Riekhof, M. C., Di Falco, S. (2019). Droughts, biodiversity, and rural incomes in the
- tropics. Journal of the Association of Environmental and Resource Economists 6(4), 823852.
- Omer, A., Pascual, U., Russell, N.P. (2007). Biodiversity conservation and productivity in
 intensive agricultural systems. Journal of Agricultural Economics 58, 308–329.
- Paul, C., Hanley, N., Meyer, S.T., Fürst, C., Weisser, W.W., Knoke, T. (2020). On the
 functional relationship between biodiversity and economic value. Science Advances 6(5), *Online first*.
- 698 Perrings, C. (2010). The economics of biodiversity: the evolving agenda. Environment and
 699 Development Economics *15*, 721–746.
- van Rensburg, T.M., Mulugeta, E. (2016). Profit efficiency and habitat biodiversity: The case
 of upland livestock farmers in Ireland. Land Use Policy *54*, 200–211.
- 702 Ricketts, T.H., Regetz, J., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Bogdanski, A.,
- 703 Gemmill-Herren, B., Greenleaf, S.S., Klein, A.M., and Mayfield, M.M. (2008). Landscape
- effects on crop pollination services: are there general patterns? Ecology Letters *11*, 499–515.

705	Ryschawy, J., Choisis, N., Choisis, J.P., Joannon, A., Gibon, A. (2012). Mixed crop-livestock
706	systems: an economic and environmental-friendly way of farming? Animal 6, 1722–1730.
707	Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C., Tscharntke, T. (2002). Scale-
708	dependent effects of landscape context on three pollinator guilds. Ecology, 83(5), 1421-
709	1432.
710	Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T., Lehman, C. (2001). Diversity and
711	productivity in a long-term grassland experiment. Science 294(5543), 843-845.
712	Thenail, C. (2002). Relationships between farm characteristics and the variation of the density
713	of hedgerows at the level of a micro-region of bocage landscape. Study case in Brittany,
714	France. Agricultural Systems, 71, 207-230.
715	Wooldridge J.M. (2015). Introductory Econometrics: A Modern Approach, Boston, Cengage
716	Learning.
- 1 -	
717	Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests
718	for aggregation bias. Journal of the American statistical Association, 57(298), 348-368.

Zhang, W., Ricketts, T.H., Kremen, C., Carney, K., Swinton, S.M. (2007). Ecosystem services
and dis-services to agriculture. Ecological Economics *64*, 253–260.

721 Appendices

722

728

Appendix 1: very short-term optimization

We considered a risk-neutral farmer who maximizes her annual profit π_{it} by adjusting her applications of variable inputs (X_{it}) according to her quasi-fixed input levels (Z_{it}) and levels of biodiversity productive capacity (B_{it}). We wrote the general farmer's program as follows:

726
727
$$\pi_{it} = \max_{\mathbf{X}_{it}} \{ E(\mathbf{p}_{it})' \mathbf{Y}_{it} - E(\mathbf{w}_{it})' \mathbf{X}_{it} + S_{it}; (\mathbf{Y}_{it}, \mathbf{X}_{it}, \mathbf{Z}_{it}, \mathbf{B}_{it}, A_{it}) \in \mathbf{T} \}$$
(A.1)

where $E(\mathbf{p}_{it})$ and $E(\mathbf{w}_{it})$ are the farmer's expected prices, *S* sums the area-based subsidies received by the farm¹⁸, and T is the production feasible plan of the multi-output farm. Program (A.1) defined the multi-output multi-input profit function that represents T if T is bounded compact and quasi-convex in $(\mathbf{X}_{it}, \mathbf{Y}_{it})$ for each \mathbf{Z}_{it} , \mathbf{B}_{it} and A_{it} (McFadden, 1978).

733 Program (A.1) represented the farmer's annual production decisions, which we divided into a two-stage 734 optimization process that isolated the estimated yield functions. The first stage occurs at the beginning of the 735 agricultural year, when the farmer sows her land based on decoupled area subsidies s_{ijt} (with $S_{it} = \sum_i s_{ijt} a_{ijt}$) 736 and expected margins per ha $E(\omega_{iit})$, with her land-use decisions being composed of J components a_{iit} . $E(\omega_{iit})$ 737 depends on the farmer's price expectations during this stage (usually in October in France). Unlike prices, s_{iit} is 738 known and depends only on the type of land use (arable or grasslands).¹⁹ The second stage (i.e. very short-term 739 optimization) occurs during the agricultural year when the farmer optimizes gross margins of each area based on 740 variable input application given her land use, which is assumed to be fixed (Asunka and Shumway, 1996). 741 Following Carpentier and Letort (2012) and Bareille and Letort (2018), we assumed that farmers know input prices $(E(w_{it}) = w_{it})$ but have naïve expectations of output prices $(E(p_{ijt}) = p_{ijt-1})$. However, because the first stage 742 (land-use decisions) occurs ca. 3-6 months before the second stage (variable input applications),²⁰ expectations of 743 744 variable input prices may differ between the two stages (due to new information), which may lead to differences 745 between expected and realized margins. This difference justified the very short-term optimization. Specifically, 746 we broke down (A.1) into a first-stage optimization (A.2) followed by a second-stage optimization (A.3):

¹⁸ In subsequent model development, area-based subsidies of the European Union's Common Agricultural Policy were not considered in the empirical estimation since they were decoupled from yields before the beginning of our panel.

¹⁹ Since area-based subsidies were decoupled from yields, they influence land allocation among products but not yields.

²⁰ In France, the first stage usually occurs in autumn, while the second stage usually occurs in spring.

747
$$\pi_{it} = \max_{a_{i1t};...;a_{iJt}} \left\{ \sum_{j=1}^{J} a_{ijt} \left[E\left(\omega_{ijt} \left(p_{ijt-1}, E(\boldsymbol{w}_{it}), \boldsymbol{Z}_{it} \right) \right) + s_{ijt} \right]; \sum_{j=1}^{J} a_{ijt} = A_{it} \right\}$$
(A.2)

748
$$E\left(\omega_{ijt}(p_{ijt-1}, w_{it}, Z_{it})\right) = \max_{x_{ijt}} \{p_{ijt-1} \cdot y_{ijt} - w_{it}' x_{ijt}; y_{ijt} \le f_j(x_{ijt}; B_{it}, Z_{it}, Y_{-ijt})\}$$
(A.3)

where the vector \mathbf{x}_{ijt} contains the variable input applied per ha of product *j* such that $\sum_{j} a_{ijt} \mathbf{x}_{ijt}$ are the components of **X**. We assumed that T is defined completely by the *J* output-specific frontiers $f_j(\cdot)$ such that $Y_{ijt} \leq a_{ijt}f_j(\cdot)$ where Y_{ijt} is output production at the farm level and \mathbf{Y}_{-ijt} represents the vector of the outputs besides *j*. The outputspecific frontiers thus consider technological jointness at the farm level (e.g. organic fertilization, on-farm cereal consumption). Function $f_j(\cdot)$ is nonnegative, nondecreasing, linearly homogenous and concave in \mathbf{x}_{ijt} . Note that $f_j(\cdot)$ does not depend on a_{ijt} explicitly (i.e. we assumed that marginal short-run returns to area are constant in output area). ²¹ In the econometric strategy, we focused only on the second stage (A.3), in which variable inputs

are determined based on the exogenous land-use decisions and related biodiversity indicators.

757

²¹ Carpentier and Letort (2012), for example, also made this assumption. We estimated the production functions assuming non-constant return to area, but the estimated parameters were non-significant.

758 Appendix 2. Allocation of variable inputs between outputs

We considered the case in which variable inputs are allocable inputs (which corresponds to x_{ijt} in relations (A.3)). Without loss of generality, we considered two outputs (j=1 for cereals and j=2 for milk) and solved the second stage (A.3) for x_{ijkt} (x_{ijkt} being the kth element of x_{ijt}). With $Y_2 = a_2y_2$ and the area devoted to milk production $a_2 > 0$ (which corresponds to the total forage area²² and is exogenous in the second stage), we obtained the following first-order conditions:

770
$$\frac{\partial f_2(\boldsymbol{x}_{i2t}; \boldsymbol{B}_{it}, \boldsymbol{Z}_{it}, Y_{i1t})}{\partial x_{i2kt}} = \frac{w_{kt}}{p_{2t-1} + \frac{a_{i1t}}{a_{i2t}}p_{1t-1}\frac{\partial y_{i1t}}{\partial y_{i2t}}}$$

where $\partial y_{i1t} / \partial y_{i2t}$ represents additional cereal yields due to the increase of one unit of milk yield (which is null when there is no jointness). Farmers apply x_{i2kt} on a_{i2t} until the sum of the expected marginal productivity of x_{i2kt} on y_{i2t} and its indirect marginal productivities on y_{i1t} equals w_{kt} . Like the common short-term maximization conditions, the previous relation highlights that an increase in the expected price of one output leads to increased input use (because $f_j(\cdot)$ is concave in x_{ijt}). Because the above relation is valid for each input and output, we obtained:

$$771 \qquad \frac{\partial f_1(\cdot)}{\partial x_{i11t}} / \frac{\partial f_2(\cdot)}{\partial x_{i21t}} = \dots = \frac{\partial f_1(\cdot)}{\partial x_{i1Jt}} / \frac{\partial f_2(\cdot)}{\partial x_{i2Jt}} = \frac{p_{2t-1} + p_{1t-1} \frac{a_{i1t} \partial y_{i1t}}{a_{i2t} \partial y_{i2t}}}{p_{1t-1} + p_{2t-1} \frac{a_{i2t} \partial y_{i2t}}{a_{i1t} \partial y_{i1t}}}$$
(A.4)

The ratios of marginal input productivities of cereals for milk are equal if variable inputs are actually allocable
inputs. We used relation (A.4) for the shared variable inputs (fertilizers, pesticides, seeds and fuel) as parameter
restrictions in Model 3 (SUR) and Model 4 (GMM).

775 In the second case, we modeled the variable inputs as non-allocable inputs (Baumol et al., 1988). We
776 broke down program (A.1) into programs (A.5) (land-use decisions) and (A.6). (variable input application). Unlike
777 in program (A.3.), the farmer cannot optimize each margin separately in the second stage. We obtained:

778
$$\pi_{it} = \max_{a_{i1t}; \dots; a_{ijt}} \left\{ \sum_{j=1}^{J} a_{ijt} \left[E\left(\omega_{ijt}(p_{ijt-1}, E(\boldsymbol{w}_{it}), \boldsymbol{Z}_{it})\right) + s_{ijt} \right]; \sum_{j=1}^{J} a_{ijt} = A_{it} \right\}$$
(A.5)

779
$$E\left(\omega_{ijt}(p_{ijt-1}, \boldsymbol{w}_{it}, \boldsymbol{Z}_{it})\right) = \max_{\boldsymbol{x}_{it}} \{p_{ijt-1} \cdot y_{ijt} - \boldsymbol{w}_{it}' \boldsymbol{x}_{it}; \ y_{ijt} \le g_j(\boldsymbol{x}_{it}; \boldsymbol{B}_{it}, \boldsymbol{Z}_{it}, \boldsymbol{Y}_{-ijt})\}$$
(A.6)

780 where x_{it} is the vector of variable input applied per ha at the farm level such that $X_{it} = Ax_{it}$. $E(y_k)$ and E(x) defined 781 in (A.5) are the solutions of (A.6) in which w is imperfectly known. The vector of yields y_{it} is composed of J

²² Total forage area equals the sum of the areas of maize silage, temporary grassland and permanent grassland. Note that a_{i2t} and B_{i2t} differ: B_{i2t} provides information only about permanent grasslands. The areas of maize silage and temporary grasslands are ecosystem components captured by B_{i1t} .

yields y_{ijt} . The function $g_j(\mathbf{x}_{it}; \mathbf{B}_{it}, \mathbf{Z}_{it}, \mathbf{Y}_{-ijt})$ is the yield function of y_{ijt} , which differs from function $f_j(\cdot)$ by the form of the modelling of the variable inputs. We assumed that T is defined completely by the K output-specific frontiers $g_j(\cdot)$ such that $Y_{ijt} \le a_j g_j(\cdot)$. Like function $f_j(\cdot), g_j(\cdot)$ is nonnegative, nondecreasing, linearly homogenous and concave in \mathbf{x}_{it} .

The variable input in program (A.6) was optimized in the very short term for all products at the same time(here, only milk and cereals), which led to the following:

$$788 \qquad a_{i1t}p_{1t-1}\left(\frac{\partial g_1(\boldsymbol{x_{it}};\boldsymbol{B_{it}},\boldsymbol{Z_{it}},\boldsymbol{Y_{i2t}})}{\partial x_{i2kt}} + \frac{\partial y_{1it}}{\partial y_{12t}}\frac{\partial g_2(\boldsymbol{x_{it}};\boldsymbol{B_{it}},\boldsymbol{Z_{it}},\boldsymbol{Y_{i21}})}{\partial x_{i2kt}}\right) + a_{i2t}p_{2t-1}\frac{\partial g_2(\boldsymbol{x_{it}};\boldsymbol{B_{it}},\boldsymbol{Z_{it}},\boldsymbol{Y_{i21}})}{\partial x_{i2kt}} = w_{kt}$$

789 The sum of the direct and indirect marginal productivities of x_{it} equals w, which prevented deriving parameter

restrictions between outputs and inputs as was done in Models 3 and 4. Modeling variable inputs as non-allocable

- inputs led to direct estimation of the *within* transformation of system (2), with instrumentation (Model 2) or without
- instrumentation (Model 1) of the variable input applications.

793 Appendix 3. Verification of parameter restrictions for a log-linear production function and unobserved

794 variable input application

- 795 We considered system (2) when the variable inputs were assumed to be private (Appendix 2). We verified the
- parameter restriction (A.4) when the production functions had a log-linear form (and assuming $\partial y_{i1t} / \partial y_{i2t} =$
- 797 $\partial y_{i2t} / \partial y_{i1t} = 0$, as in system (2)). We calculated marginal productivities of $x_{ikt} = X_{ikt} / A_{it}$ ($k \in [1; 4]$) for
- 798 cereals and milk. Noting that $X_{ikt} = a_{i1t}x_{i1kt} + a_{i2t}x_{i2kt}$, we obtained respectively:

799
$$\begin{cases} \frac{\partial \log(y_{i1t})}{\partial x_{ikt}} = \gamma_{k1} \frac{a_{i1t}}{A_{it}}\\ \frac{\partial \log(y_{i2t})}{\partial x_{ikt}} = \gamma_{k2} \frac{a_{i2t}}{A_{it}} \end{cases}$$

800 Which is equivalent to:

801
$$\begin{cases} \frac{\partial y_{i1t}}{\partial x_{ikt}} = \gamma_{k1} \frac{a_{i1t}}{A_{it}} y_{i1t} \\ \frac{\partial y_{i2t}}{\partial x_{ikt}} = \gamma_{k2} \frac{a_{i2t}}{A_{it}} y_{i2t} \end{cases}$$

802 Thus, we obtained $\forall k \in [1; 4]$:

$$803 \qquad \frac{\frac{\partial y_{i1t}}{\partial x_{ikt}}}{\frac{\partial y_{i2t}}{\partial x_{ikt}}} = \frac{\gamma_{k1}a_{i1t}y_{i1t}}{\gamma_{k2}a_{i2t}y_{i2t}}$$

804 Because $a_{i1t}y_{i1t}$ and $a_{i2t}y_{i2t}$ do not depend on x_{ikt} , we had the three valid restrictions, which held if we added

805 Y_{i2t} to the cereal yield function explicitly or vice-versa (see program (A.4), Appendix 2).

806

807 Appendix 4. Alternative estimates of Model 2

	Without inter	action term	With interac	tion term
	log(y_cereals)	log(y_milk)	log(y_cereals)	log(y_milk)
Biodiversity indicators				
B _{ilt}	0.081 **	0.117 ***	0.075 **	0.090 **
	(0.026)	(0.030)	(0.027)	(0.034)
B_{i2t}	0.234 °	-0.049	0.225 °	-0.101
	(0.126)	(0.134)	(0.126)	(0.139)
$B_{ilt} * B_{i2t}$	-0.207 *	0.002	-0.195 *	0.012
	(0.094)	(0.116)	(0.094)	(0.121)
Variable inputs				
Fertilizer	0.002 ***	0.0001	0.002 ***	0.0005
	(0.001)	(0.0005)	(0.001)	(0.0005)
Pesticides	0.0003	-0.002 **	0.0003	0.005 °
	(0.0004)	(0.001)	(0.0004)	(0.003)
Pesticides*trend	(010001)	(0.00-)	(010001)	-0.001 *
				(0.0004)
Seeds	0.001 °	0.001	0.001 °	0.001
Secul	(0.001)	(0.0008)	(0.001)	(0.0008)
Fuel	0.118	0.539	0.136	0.518
i dei	(0.131)	(0.139)	(0.131)	(0.143)
Cow feed	(0.151)	0.101 ***	(0.151)	0.101 **
		(0.014)		(0.014)
Health and reproduction		0.189 °		0.171
ficulti and reproduction		(0.113)		(0.121)
Organic Fertilizer proxies		(0.115)		(0.121)
с т	-0.045	-0.167 *	-0.050	-0.192 *
Cattle manure/total area	(0.048)	(0.079)	(0.048)	(0.080)
	-0.006	-0.032	-0.006	-0.040 °
Other livestock manure/ total area	(0.013)	(0.019)	(0.014)	(0.021)
Fixed inputs	(<	<	()
Total area	3.70E-04	-0.0005	3.80E-4	-0.0007
	(3.21E-4)	(0.0005)	(3.21E-4)	(0.0005)
Capital/total area	0.001	-0.0009	0.001	-0.001 °
- ··· L ································	(0.001)	(0.0005)	(0.001)	(0.0006)
Labor/total area	-4.186	4.556	-4.304	7.503
	(3.950)	(4.739)	(3.952)	(4.953)
Technical progress	-0.016	0.002	-0.018	0.004
recuired progress	(0.026)	(0.002)	(0.026)	(0.003)

808 **Table A4.1.** Estimates of Model 2 without or with an additional interaction term for pesticides (N=3,960)

809 Standard errors are in parentheses; ***, **, * and ° denote p-values of 0.1%, 1%, 5% and 10%, respectively.

810

811 Appendix 5. Additional estimates of log-quadratic production functions

	Model		Model 2		Model 3 (SUR)		
	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)	log(y_crops)	log(y_milk)	
Biodiversity indicators							
B1	0.496 ***	0.035	0.497 ***	0.013	0.502 ***	0.035	
	(0.085)	(0.069)	(0.104)	(0.109)	(0.085)	(0.069)	
B1 ²	-0.141 ***	0.061 *	-0.158 ***	0.039	-0.143 ***	0.053 *	
	(0.032)	(0.026)	(0.036)	(0.041)	(0.032)	(0.015)	
B2	0.168	0.054	0.108	0.064	0.175	0.054	
	(0.188)	(0.152)	(0.216)	(0.197)	(0.188)	(0.152)	
B2 ²	0.283	-0.197	0.393	-0.184	0.267	-0.194	
	(0.209)	(0.169)	(0.246)	(0.263)	(0.209)	(0.169)	
B1*B2	-0.258 *	-0.059	-0.270 **	0.008	-0.255 *	-0.060	
	(0.101)	(0.080)	(0.103)	(0.114)	(0.101)	(0.081)	
Variable inputs	(01101)	(0.000)	(01100)	(01111)	(01101)	(01001)	
Fertilizers	0.0003 **	0.0001	0.002 ***	0.0003	0.0003	0.0001	
	(0.0001)	(0.0001)	(0.0003)	(0.0005)	(0.0003)	(0.0001)	
Pesticides	0.0001	0.0004 **	0.0001	-0.002 *	0.0001 °	0.0004 *	
resticides	(0.0001)	(0.0001)	(0.0002)	(0.001)	(0.00005)	(0.0001)	
Seeds	0.0001	0.0004 **	0.001	0.0005	0.0001	0.0004 *	
Seeds	(0.0001)	(0.0001)	(0.0006)	(0.0008)	(0.0001)	(0.0001)	
Fuel	0.014	0.018	0.129	0.558 ***	0.006	0.020	
Fuel							
Com for 1	(0.020)	(0.016) 0.049 ***	(0.127)	(0.138) 0.096 ***	(0.006)	(0.016) 0.049 *	
Cow feed		0.017				0.017	
TT 1.1 1 1 .		(0.002)		(0.013)		(0.002)	
Health and reproduction		0.081 ***		0.224 *		0.081 *	
		(0.008)		(0.133)		(0.008)	
Organic Fertilizer proxies							
Available cattle manure/total area	0.035	0.170 ***	-0.055	-0.144 °	0.039	0.168 *	
	(0.030)	(0.025)	(0,043)	(0.077)	(0.029)	(0.025)	
Other available manure/total area	-0.012	-0.019 *	-0.004	-0.026	-0.011	-0.019 *	
	(0,012)	(0,009)	(0,011)	(0,016)	(0,011)	(0,009)	
Control variables							
Total area	0.0001	-0.0009 ***	-0.0003	-0.0005	1.09E-5	-0.0009 *	
	(0.0002)	(0.0002)	(0.0003)	(0.0005)	(0.0002)	(0.0002)	
Capital/total area	0,0001	0.001 ***	0.0003	-0.0008	1E-04	0.001 *	
	(0,0003)	(0.0003)	(0,0004)	(0.0005)	(0,0004)	(0.0003)	
Labor/total area	-0.668	2.081 ***	-3.918	1.967	-0.567	2.067 *	
	(0.716)	(0.579)	(2.377)	(2.920)	(0.715)	(0.579)	
Average technical progress	-0.008	-0.003	-0.008	0.002	-0.011 *	-0.003	
5	(0.005)	(0.002)	(0.015)	(0.002)	(0.005)	(0.002)	
Individual fixed effect	Yes	Yes	Yes	Yes	Yes	Yes	
Weather variables	Yes	Yes	Yes	Yes	Yes	Yes	
Restrictions	- •••			/		100	
Restriction 1					-2.202 *		
					(0.888)		
Restriction 2					0.408		
					(2.095)		
Restriction 3					0.721		
Restriction 5					(0.953)		

812 **Table A5.1.** Estimates of log-quadratic production functions (system (3)) with Models 1-3 (N=3,960)

813 Standard errors are in parentheses; ***, **, * and ° denote p-values of 0.1%, 1%, 5% and 10%, respectively.

814 Appendix 6. Seemingly unrelated regression estimates of systems (4) and (5)

System (4) System (5) log(y_milk) log(y_crops) log(y_milk) log(y_crops) **Biodiversity indicators** 0.186 *** 0.464 *** 0.034 0.185 *** B_{ilt} (0,014) -0.119 ** (0.088) (0.069) (0.035)-0.112 ** 0.030 $(B_{ilt})^2$ 0.061 (0.037) (0.026) (0.091) (0.015) 0.001 0.054 B_{i2t} (0.222)(0.151)0.304 * $(B_{i2t})^2$ -0.197 (0.102) (0.169) $B_{ilt} * B_{i2t}$ -0.304 ** -0.059 (0.110)(0.081)Variable inputs 0.0004 0.0001 0.0004 0.0001 Fertilizer (0.0003)(0.0001)(0.0003)(0.0001)-0.0001 Fertilizer*B_{ilt} -0.0002 (0.0002)(0.0002)Fertilizer*Bi2t 0.0001 -0.0001 (0.0006)(0.0006)Pesticides 0.0015 0.0004 ** 0.002 *** 0.0004 *** (0.0006)(0.0005)(0.0002)(0.0001)Pesticides*B_{ilt} -0.0005 -0.0009 (0.0004)(0.0003)0.0006 Pesticides*Bi2t 0.002 * (0.001) (0.001)Seeds -0.0001 0.0004 ** -0.0001 0.0004 ** (0.0001) (0.0001)(0.0001)(0.0001)Fuel 0.008 0.018 0.010 0.017 (0.020) (0.016) (0.020) (0.016) 0.049 *** 0.048 *** Cow feed (0.001) 0.081 *** (0.002)0.081 *** Health and reproduction (0.008)(0.008)**Organic Fertilizer proxies** 0.044 0.169 *** 0.167 *** 0.045 Cattle manure/total area (0.030) (0.025) (0.030) (0.025) Other livestock manure/total area -0.011 -0.019 * -0.012 -0.017 (0,009) (0.009)(0.012)(0.011)**Control variables** -0.0009 *** -0.0008 *** Total area 0.0001 0.0001 (0.0002) (0.0002) (0.0002)(0.0002)0.001 *** Capital/total area 0.0001 -0.0001 0.001 *** (0.0003) (0.0004)(0.0004)(0.0003) 2.079 *** Labor/total area -0.304 2.081 -0.783 (0.716) (0.571) (0.715)(0.579)Average technical progress -0.002 -0.003 -0.003 -0.002(0.002)(0.002)(0.002)(0.002)Individual fixed effect Yes Yes Yes Yes Weather variables Yes Yes Yes Yes

815	Table A6.1. SUR estimates of log-quadratic production functions with Model 1 (N=3,960)
-----	--

816 Standard errors are in parentheses; ***, **, * and ° denote p-values of 0.1%, 1%, 5% and 10%, respectively.

817

818 Appendix 7. Estimates of system (2) with all alternative measures of permanent grassland proportion (farm,

819 municipality, district and province scales)

	Model 4 (GMM)	
	log(y_crops)	log(y_milk)
Biodiversity indicators		
B_{ilt}	0.085 ***	0.126 ***
	(0.025)	(0.028)
B_{i2t_farm}	-0.101	0.003
	(0.066)	(0.080)
$B_{i2t_municipality}$	-0.008	0.530
	(0.461)	(0.404)
$B_{i2t_district}$	-0.100	-1.676 *
	(0.396)	(0.720)
$B_{i2t_province}$	0.351	0.226
	(0.486)	(0.583)
Variable inputs	. ,	
Fertilizer	-0.0001	0.0006
	(0.0001)	(0.0004)
Pesticides	0.0002	-0.002 *
	(0.0002)	(0.0008)
Seeds	-0.0002	0.002 **
	(0.0003)	(0.0007)
Fuel	-0.002	0.017
	(0.003)	(0.027)
Cow feed	(0.005)	0.048 ***
		(0.008)
Health and reproduction		0.150 °
		(0.088)
Organic Fertilizer proxies		(0.000)
Available cattle manure/total area	0.024	0.082
Available cattle manufe/total area	(0.045)	(0.067)
Other available manure/total area	0.015	-0.001
	(0.012)	(0.010)
Control variables	(0.012)	(0.010)
Total area	-0.0004	-0.0005
Total alea		
Capital/total area	(0.0004) -0.0003	(0.0004) 0.001 *
Labor/total area	(0.0005)	(0.0004)
	-5.358 °	2.482
A	(3.226)	(3.553)
Average technical progress	-0.018	0.0005
T 1 1 1 0 1 00	(0.017)	(0.003)
Individual fixed effect	Yes	Yes
Weather variables	Yes	Yes
Restrictions		
Restriction 1	0.562	
	(1.478)	
Restriction 2	2.257	
	(3.201)	
Restriction 3	0.005	
	(0.587)	

820 Table A7.1. Estimates of system (2) with all indicators for permanent grasslands and Model 4 (N=2,344)

821 Standard errors are in parentheses; ***, **, * and ° denote p-values of 0.1%, 1%, 5% and 10%, respectively.