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The functional trait framework provides a powerful corpus of integrated concepts and theories to assess how environmental factors influence ecosystem functioning through community assembly. While common in plant ecology, this approach is under-used in microbial ecology. After an introduction of this framework in the context of microbial ecology and enzymology, we propose an approach 1) to elucidate new links between soil microbial community composition and microbial traits; and 2) to disentangle mechanisms

Introduction

Theoretical framework based on the functional trait concept provides a wide corpus of integrated concepts and theories at different levels to address organisms' adaptation, community assembly and ecosystem functioning [START_REF] Lavorel | Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[END_REF][START_REF] Diaz | Incorporating plant functional diversity effects in ecosystem service assessments[END_REF][START_REF] Violle | Let the concept of trait be functional![END_REF]. Functional traits are defined as any physiological, morphological, phenological or genomic feature, measured at the individual level, and affecting the fitness or function of an organism [START_REF] Violle | Let the concept of trait be functional![END_REF][START_REF] Krause | Trait-based approaches for understanding microbial biodiversity and ecosystem functioning[END_REF]). Integrated at the community level, functional traits underlie the community functional composition often characterized by the community weighted mean (CWM) trait and the trait diversity [START_REF] Diaz | Incorporating plant functional diversity effects in ecosystem service assessments[END_REF][START_REF] Violle | Let the concept of trait be functional![END_REF]). These emergent properties at the community level are controlled by mechanisms at the individual (physiological acclimation), population (adaptation) and community (species turnover) scales [START_REF] Violle | Let the concept of trait be functional![END_REF]) and they are considered as major drivers of ecosystem functioning [START_REF] Grime | Benefits of plant diversity to ecosystems: immediate, filter and founder effects[END_REF][START_REF] Petchey | Functional diversity: back to basics and looking forward[END_REF][START_REF] Diaz | Incorporating plant functional diversity effects in ecosystem service assessments[END_REF]). Hence, the linkages between response traits (controlling organism response and adaptation to environmental changes) and effect traits (controlling organism effect on ecosystem functioning), and their integration at the community level, provide a mechanistic basis to understand community assembly and cascading effects on ecosystem functioning (Lavorel andGarnier 2002, Litchman et al. 2015) (Figure 1). Such multiscale integrated framework is essential to correctly interpret complex ecological data. However, functional trait framework has hardly been used in microbial ecology and further studies are required to develop how it can be successfully used for soil microbial communities [START_REF] Piton | Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands[END_REF].

Plant and microbial traits associated with resource acquisition are both response and effect traits (Lavorel andGarnier 2002, Litchman et al. 2015), making them promising candidates for inclusion into mechanistic models of ecosystem functioning [START_REF] Allison | A trait-based approach for modelling microbial litter decomposition[END_REF].

Extracellular decomposition of organic matter and subsequent assimilation of its depolymerized compounds are central in the resource acquisition strategies of heterotrophic soil microbes [START_REF] Sinsabaugh | Ecoenzymatic stoichiometry and ecological theory[END_REF]. Traits associated with extracellular enzyme production (ecoenzymatic traits) and the uptake of nutrients are probably key in microbial physiological and evolutionary trade-offs (Malik et al. 2019a) (Figure 1). Indeed, the production of extracellular enzymes bears high energy and nitrogen (N) costs for microbes [START_REF] Frankena | Substrate and energy costs of the production of exocellular enzymes by Bacillus licheniformis[END_REF][START_REF] Allison | Evolutionaryeconomic principles as regulators of soil enzyme production and ecosystem function[END_REF], at the expense of the investment in other metabolic pathways such as growth, cellular maintenance and stress tolerance (Malik et al. 2019a, Ramin andAllison 2019). Hence, it has been proposed that oligotrophic microbial species in resource-poor environments invest more in extracellular enzymes to cope with low resource availability compared to copiotrophic species with a growth oriented strategy dominating in resource-rich environments [START_REF] Fontaine | The priming effect of organic matter: a question of microbial competition?[END_REF][START_REF] Fierer | Toward an ecological classification of soil bacteria[END_REF]). Trade-offs also exist between the production of different enzymatic classes since enzymes should match with substrate availability, while satisfying the nutritional need of the microbial cell (Figure 1).

Biomass stoichiometry is relatively constrained in heterotrophic microbes [START_REF] Fanin | An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system[END_REF][START_REF] Zechmeister-Boltenstern | The application of ecological stoichiometry to plantmicrobial-soil organic matter transformations[END_REF], with high biomass C:N and N:P ratios reported in fungi relative to bacteria and in oligotrophic microbes relative to copiotrophic ones [START_REF] Fierer | Toward an ecological classification of soil bacteria[END_REF][START_REF] Strickland | Considering fungal: bacterial dominance in soilsmethods, controls, and ecosystem implications[END_REF][START_REF] Litchman | Microbial resource utilization traits and trade-offs: implications for community structure, functioning, and biogeochemical impacts at present and in the future[END_REF]. To match these stoichiometric constraints, the resource allocation model [START_REF] Sinsabaugh | Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[END_REF]) predicts microbes to optimize the enzyme production for C, N and P acquisition toward the most limiting element to maximize their fitness. Following this theory, enzymatic stoichiometry, that is the relative investment by microbes for C, N or P acquisition enzymes [START_REF] Sinsabaugh | Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[END_REF], can be considered as a proxy of the resource acquisition strategy that should be adapted to the nutritional constraint on microbial communities. Oligotrophic microbial communities dominating nutrient poor soils are expected to direct their resource acquisition strategy toward nutrient (N and P) acquisition, whereas copiotrophic microbes should display an opposed stategy (C acquisition) in nutrient rich soils. However, recent empirical results [START_REF] Rosinger | Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-A critical assessment in two subtropical soils[END_REF]) challenge this theory and suggest that the nutritional constraint is not the only factor controlling enzymatic stoichiometry.

Measuring functional traits, requires measurement at the individual level, which is very challenging for microbes [START_REF] Martiny | Microbiomes in light of traits: a phylogenetic perspective[END_REF]. However, [START_REF] Piton | Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands[END_REF] demonstrated that measuring biomass-specific potential enzyme activity (potential activity per unit of microbial biomass) and enzyme stoichiometry give a direct approximation of community-weighted mean (CWM) traits representative of the dominant strategy in the microbial community.

Using such indicators, Malik et al. (2019c) and [START_REF] Piton | Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands[END_REF] observed decreases in mass-specific extracellular potential enzyme activity along soil resource gradients. Their results indicate that oligotrophic microbes invest more in the production of extracellular enzymes as compared to copiotrophic ones, with these extracellular enzymes especially oriented toward nutrient acquisition (especially P in [START_REF] Piton | Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands[END_REF], consistent with theoretical expectation [START_REF] Sinsabaugh | Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[END_REF][START_REF] Fontaine | The priming effect of organic matter: a question of microbial competition?[END_REF], Malik et al. 2019a).

Consequently, ecoenzymatic CWM traits (biomass-specific activity and enzymatic stoichiometry) are promising candidates to understand how the response of soil microbial communities to environmental changes and its cascading effect on ecosystem functioning. Extracellular enzyme activity in soils is central for ecosystem functioning as it controls decomposition and mineralization of soil organic matter (Schimel andBennett 2004, Bengtson and[START_REF] Bengtson | Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures[END_REF]. Firstly, this activity depends on the enzyme concentrations in soil and their catalytic properties (e.g. the catalytic turnover rate representing the number of substrates molecules converted to product per enzyme per unit of time). These two parameters drive the extracellular enzymatic potential activity (Vmax), commonly measured under laboratory condition without constraint of substrates concentration and diffusion, often at a single temperature and a single pH [START_REF] Wallenstein | Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes[END_REF]. The realized in situ activity is more difficult to assess but can be modelled, based on this potential activity and the environmental conditions [START_REF] Wallenstein | Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes[END_REF][START_REF] Steinweg | Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data[END_REF][START_REF] Allison | Consequences of drought tolerance traits for microbial decomposition in the DEMENT model[END_REF].

Total extracellular enzyme potential activity is controlled by microbial mechanisms scaling from individual to community level [START_REF] Sinsabaugh | Fungal enzymes at the community scale[END_REF][START_REF] Burns | Soil enzymes in a changing environment: current knowledge and future directions[END_REF].

Extracellular enzymes are broadly produced among soil microbes (Allison et al. 2007a[START_REF] Vranova | Proteolytic activity in soil: a review[END_REF], so that soil enzyme potential activity is assumed to be firstly controlled by the microbial biomass [START_REF] Kivlin | Tradeoffs in microbial carbon allocation may mediate soil carbon storage in future climates[END_REF]. However, a decoupling between microbial biomass and enzyme potential activity can be induced by enzyme stabilization on inorganic surfaces and organic colloids and persistence after the death of their producers [START_REF] Nannipieri | Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis[END_REF], or through differences among microbes in extracellular enzyme production per unit of microbial biomass (Allison et al. 2007b[START_REF] Burns | Soil enzymes in a changing environment: current knowledge and future directions[END_REF][START_REF] Kivlin | Tradeoffs in microbial carbon allocation may mediate soil carbon storage in future climates[END_REF], Steinweg et al. 2013). Variations in the biomass-specific enzyme activity measured at the community level (the CWM trait) can emerge both from changes in community composition [START_REF] Li | Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a longterm nitrogen fertilized grassland[END_REF], as well as from the community members' physiological acclimation to environmental changes [START_REF] Schimel | Microbial stress-response physiology and its implications for ecosystem function[END_REF] or evolutionary adaptation [START_REF] Allison | Temperature acclimation and adaptation of enzyme physiology in Neurospora discreta[END_REF].

Today with novel molecular and culturing techniques, there is evidence for a large variation of enzyme production across microbial taxa [START_REF] Lladó | Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition[END_REF][START_REF] Manoharan | Agricultural land use determines functional genetic diversity of soil microbial communities[END_REF][START_REF] Žifcáková | Feed in summer, rest in winter: microbial carbon utilization in forest topsoil[END_REF]. For instance, at broad taxonomic scale, a more important production of enzymes for fungi is expected compared to bacteria, explaining their succession during litter decomposition [START_REF] Sinsabaugh | Fungal enzymes at the community scale[END_REF]. Nevertheless, the importance of bacterial enzyme activity in soils has been shown [START_REF] Manoharan | Agricultural land use determines functional genetic diversity of soil microbial communities[END_REF][START_REF] López-Mondéjar | Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes[END_REF]. Several studies also indicate a variation in enzymatic investment within bacterial and fungal groups [START_REF] Lladó | Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition[END_REF][START_REF] Pierre-Emmanuel | Into the functional ecology of ectomycorrhizal communities: environmental filtering of enzymatic activities[END_REF]. Gram positive and Gram negative bacteria are considered as oligotrophic and copiotrophic respectively [START_REF] Fierer | Toward an ecological classification of soil bacteria[END_REF][START_REF] Fanin | The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils[END_REF]. Gram positive bacteria use more recalcitrant carbon (C) compounds and produce more enzymes to extract energy and nutrients from organic matter.

Comparatively, Gram negative bacteria use labile C compounds and produce less enzymes (Fanin et al. 2018, Naylor and[START_REF] Naylor | Drought stress and root-associated bacterial communities[END_REF]. Together these studies suggest the potential important contribution of the microbial community composition to ecosystem functioning [START_REF] Graham | Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes[END_REF]) through its links with CWM biomass-specific activity.

Finally, experimental results also provide some supports for a physiological acclimation of microbial community members or for an evolutionary adaptation of their population in response to environmental changes [START_REF] Allison | Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates[END_REF][START_REF] Hertzog | How robust are Structural Equation Models to model miss-specification? A simulation study[END_REF][START_REF] Lashermes | Enzymatic strategies and carbon use efficiency of a litter-decomposing fungus grown on maize leaves, stems, and roots[END_REF], affecting enzymes production independently of community composition or microbial biomass changes, potentially also contributing to variations of CWM biomass-specific activity.

To sum up, the control of potential extracellular enzyme activity in soil relies on four parameters: microbial biomass and three parameters potentially influencing biomass-specific activity: community composition, community members' acclimation/adaptation and enzyme abiotic stabilization (reduction of enzymes turnover by abiotic factors). To assess the relative importance of these four parameters, their physical control in a manipulated experiment would be very difficult and implicate a highly artificial environment. Structural equation model (SEM) framework can be used as an alternative to statistically assess the role of different mechanisms underlying observed responses in experimental or observational studies where factors affecting the processes under investigation cannot be physically controlled [START_REF] Shipley | Cause and correlation in biology: a user's guide to path analysis, structural equations and causal inference with R[END_REF].

Based on experimental data assessing ecosystem functioning across different management (conventional intensive vs. ecological intensive) and countries (France, Switzerland and Portugal) under 4 rain regime scenarios (Dry, Normal, Intermittent and Wet rain regimes, during 263 days, followed by 89 days of recovery), we used ecoenzymatic CWM traits [START_REF] Piton | Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands[END_REF]): 1) to identify the links between traits and soil microbial community composition along abiotic gradients; and 2) to disentangle mechanisms driving the potential enzyme activity in soil.

We hypothesized:

1) A high biomass-specific activity (oligotrophic CWM trait), and a nutrient acquisition strategy to be associated with fungi and/or Gram positive dominated communities, explaining their dominance in low nutrients and low moisture conditions.

Then, we firstly assessed the relative importance of microbial biomass and biomassspecific activity in the variation of the total enzyme activity (ecosystem level property).

Secondly, we used structural equation models to disentangle soil abiotic factors and microbial community composition control of microbial biomass and biomass-specific activity.

2) We further hypothesized that: Microbial biomass variation is the main driver of the total enzyme activity in soil, and that altered rain regimes induce biomass-specific activity adjustment in response to resource availability changes. Biomass-specific activity is mainly controlled by changes in microbial community composition and to a lesser extent by community members' acclimation/adaptation or enzyme abiotic stabilization.
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Material and methods

Experimental design and setup

In this study, we used data from a continental scale experiment testing effects of 4 rain regimes (normal, dry, wet and intermittent) on Terrestrial Model Ecosystems (TME) extracted from grasslands representing dominant pedoclimatic and management conditions across Europe (Table 1 and [START_REF] Lori | Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes[END_REF] for details). One hundred and twenty TMEs (40 cm depth x 16.5 cm diameter) encased in HDTPE tubes were collected. More precisely, four different plots were sampled for each management (eco-intensive and conventional-intensive)

in each country (8 plots per county), with 5 TMEs extracted in each plot, using a retroexcavator and a special stainless-steel extractor as described by [START_REF] Knacker | Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: conceptual approach and study design[END_REF].

After sampling, all TMEs were transported in a refrigerated truck to a single climate chamber at the Laboratory of Soil Ecology and Ecotoxicology of Coimbra University. TMEs were randomly placed inside special carts creating a temperature gradient between the lower and the upper part as described by [START_REF] Ng | Does altered rainfall regime change pesticide effects in soil? A terrestrial model ecosystem study from Mediterranean Portugal on the effects of pyrimethanil to soil microbial communities under extremes in rainfall[END_REF]. Air humidity was maintained at 60% and temperature at 20˚C during the entire experiment and photoperiod was adjusted at 16h:8h

(light:dark).

During the first 81 days, artificial rainwater [START_REF] Velthorst | Manual for chemical water analyses[END_REF]) was added on each TME, with the amount of water adjusted to obtain a soil moisture in the upper 20 cm layer (assessed using Decagon moisture sensors) equivalent to 50%-60% of the maximum water holding capacity (WHCmax) of the soil from each site where TMEs were collected. Those specific values of soil moisture (50%-60% WHCmax) are considered as the "Normal" rain regime for each country. After this acclimation period under "Normal" rain regime, the upper 10 cm of soil were sampled on one TMEs (destructive sampling) to characterize initial state (T0).

After this acclimation period, 4 rain regimes were simulated during 263 days, with one rain regime simulated on each of the four TME left from the 32 plots. Soil moisture was maintained at 20-30%, 50%-60% and 70-80% of the WHCmax for Dry, Normal and Wet rain regimes respectively. Intermittent rain regime was also simulated with 74 days under wet rain regime followed by 125 days under dry regime and finally 64 days back to normal.

After this period (T1). One soil core of 98cm 3 (5 cm diameter and 5 cm height) was collected from each TME (non-destructive sampling) and pure sand encased into a small plastic cylinder was used to fill the holes left after sampling. After this period of altered rain regimes, all TMEs were set again to Normal rain regime for 89 days followed by a last destructive sampling (T2) as described for T0 (upper 10 cm). At the 3 sampling times, soils were sieved at 5 mm, plant roots were hand-sorted and samples were stored at 4°C or -20°C for further analyses.

Soil abiotic properties

Soil moisture was determined as the weight difference of a fresh soil sample after drying it for one week at 70°C, followed by 4 hr at 500°C to determine soil organic matter content (SOM) by loss on ignition. Soil pH was determined in a 1:6 (soil: 1M KCl) solution. Total soil N content was measured using an elemental analyzer (FlashEA 1112, Fisher Scientific, Waltham, Massachusetts, USA) on oven-dried subsamples ground to a fine powder (5 µm diameter) with a ball mill (MM301, Retsch GmbH, Haan, Germany).

Microbial community biomass and composition

Analysis of phospholipid fatty acids (PLFA) were used to characterize microbial biomass and community composition. Lipids were extracted from 3 g of soil according to [START_REF] Frostegård | Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[END_REF]. Separation of the resulting fatty acid methyl esters was done on a Hewlett Packard 6890 gas chromatograph (column HP 5). PLFAs i15:0, a15:0, 15:0, i16:0, 16:1ω9, i17:0, a17:0, cy17:0, 18:1ω7, cy19:0 were chosen to represent bacterial biomass. PLFA 18:2ω6 was used as an indicator of fungal biomass [START_REF] Frostegård | The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[END_REF]. Gram positive biomass was indicated by i15:0, a15:0, i16:0, i17:0, a17:0 (O'leary and Wilkinson 1988), Gram negative bacteria biomass by PLFAs 18:1ω7, cy17:0, cy19:0 [START_REF] Wilkinson | Gram-negative bacteria[END_REF][START_REF] Zelles | Phospholipid fatty acid profiles in selected members of soil microbial communities[END_REF] and Actinobacteria biomass by 10Me17:0 and 10Me18:0 [START_REF] Lechevalier | Lipids in bacterial taxonomy-a taxonomist's view[END_REF]Moss 1977, Kroppenstedt 1985). The NLFA 16:1ω5 was used as an indicator for AMF biomass [START_REF] Olsson | The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil[END_REF]. Microbial biomass-C was calculated based on the conversion factors: 363.6 nmol of bacterial-PLFA = 1 mg-C [START_REF] Frostegård | The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[END_REF], 11.8 nmol of fungal-PLFA = 1 mg-C [START_REF] Klamer | Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18: 2ω6, 9[END_REF]) and 1.047 nmol of NLFA = 1 µg-C [START_REF] Olsson | The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil[END_REF].

The Fungal:Bacterial ratio and Gram+:Gram-ratio were calculated as Fungal biomass-C:

Bacterial biomass-C ratio (F:B here after), and Gram+ biomass-C: Gram-biomass-C ratio (GP:GN hereafter) respectively. Relative abundances (% mol PLFA) of 27 identified PLFA markers were used to characterize the overall microbial community composition. In this study, biomass-specific activity and ecoenzymatic stoichiometry were calculated and used as ecoenzymatic CWM traits proxies [START_REF] Piton | Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands[END_REF]). Biomass-specific activity was obtained by weighting total enzyme activity with microbial biomass-C. This indicator has been considered as a proxy of the average investment in extracellular enzyme activity of one mass-unit of microbe (Allison et al. 2007b[START_REF] Moorhead | Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models[END_REF], Malik et al. 2019b). Eco- Effects of sampling time, microbial community composition (F:B, GP:GN, PCoA-1), soil abiotic properties (Soil-N, pH and moisture) and their interactions on ecoenzymatic stoichiometry (EEC:EEN, EEC:EEP and EEN:EEP) were assessed using mixed effect models with country and plot nested in country as random factors. We also assessed correlations between microbial composition and soil abiotic properties (Soil-N, pH, moisture) for each sampling time (T0, T1, T2) using mixed effect correlations.

enzymatic

Factor controlling microbial biomass and total enzyme activity

The natural logarithm of the total soil enzyme activity (EEA) can be decomposed in the sum of the natural logarithm of biomass-specific activity (ln ), and natural logarithm of biomass (ln(Biomass)).

ln(EEA) = ln ( EEA Biomass × Biomass) ln(EEA) = ln EEA Biomass + ln (Biomass)
To assess the relative importance of these 2 components (biomass-specific activity and biomass) in the control of total enzyme activity, regressions of ln(EEA) on ln(Biomass) were fitted for each sampling time. Assuming soil microbial biomass to be the first parameter controlling total enzyme activity, the proportion explained by the model represents the importance of biomass in the control of total enzyme activity in soil while the non-explained variation was attributed to variation in biomass-specific activity.

Piecewise structural equation models (SEM) were used to assess the most important mechanisms driving both parameters (biomass and biomass-specific activity, Figure 2). This method is less sensitive to sample size than standard SEM and enables to implement mixed effect model in the SEM structure [START_REF] Lefcheck | piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics[END_REF]). In such approach, Shipley's test of directed separation (based on a chi-square test (see [START_REF] Shipley | A new inferential test for path models based on directed acyclic graphs[END_REF][START_REF] Shipley | Confirmatory path analysis in a generalized multilevel context[END_REF])) is used to assess model goodness-of-fit, testing if missing paths exist in the model structure. When several models are accepted, information criterion such as Akaike information criterion or Bayesian

Information Criterion (BIC) can be used to identify the best model. To obtain the most parsimonious model we used a three steps selection process, testing a series of potential mechanisms through which soil abiotic environment might influence extracellular enzyme activity, established based on our knowledge of the system [START_REF] Laughlin | Species richness and soil properties in Pinus ponderosa forests: a structural equation modeling analysis[END_REF][START_REF] Grace | Structural equation modeling: building and evaluating causal models: Chapter 8[END_REF]. Firstly, a SEM was fitted with the most parsimonious a priori structure, stating that biomass-specific activity was only driven by community composition (Figure 2), and then model fit was assessed. In the case of model rejection (p-val< 0.05), potential missing paths in the SEM structure (such as direct effect of soil abiotic properties on biomass-specific activity, indicating community member's acclimation/adaptation enzyme abiotic stabilization) were evaluated using d-sep test [START_REF] Shipley | A new inferential test for path models based on directed acyclic graphs[END_REF][START_REF] Shipley | Testing recursive path models with correlated errors using d-separation[END_REF]. Secondly, missing paths were added and model fit was newly assessed. Finally, we used a stepwise removal process of non-significant relationships. As De Vries and Bardgett (2016), we tested the effect of each removal using Bayesian Information Criterion (BIC). BIC was used instead of Akaike information criterion because BIC better identified true model in a simulation study with conditions close to our experiment [START_REF] Hertzog | How robust are Structural Equation Models to model miss-specification? A simulation study[END_REF]. Each removal was retained if it did not induce a significant 3 Results

Influence of soil abiotic properties on microbial community composition

A large proportion (43%) of the microbial community composition was explained by the first axis of the PCoA (PCoA-1, Figure 3). PLFAs contributing the most to this axis (coordinates higher than 0.1 or lower than -0.1) were two Gram negative (18:1ω7 and cy17:0) and one Gram positive (a15:0) bacteria which were negatively related to the PCoA-1, whereas two Gram positive (i15:0 and i17:0), one from Actinobacteria (10Me17:0) and one from unclassified bacteria (15:0) were positively associated (Figure 3).

The F:B ratio decreased in nutrient rich, alkaline soils under wet condition, as demonstrated by a negative association with soil-N (T0, T2), pH (T0, T2) and moisture (T0, T1, T2) (Table 2). The GP:GN ratio also decreased with nutrient availability (i.e. soil-N at T1 and T2), and alkalinity (i.e. pH at T1, and T2). PCoA-1 (Figure 3) showed almost the same behaviour, with negative association with pH (T0, T1, T2), soil-N (T0, T1) and moisture (T0) (Table 2).

Influence of soil abiotic properties and microbial community composition on ecoenzymatic stoichiometry

The association between ecoenzymatic EEC:EEN and EEC:EEP and soil abiotic properties highly varied between sampling times (significant interaction between soil properties and time, Figure 4). Negative association between soil-N and EEC:EEN was observed only at T0, whereas EEC:EEN showed a negative association with pH at T0, shifting to positive at T2, and a negative association with moisture at T0 shifting to a positive association at T1 and T2. EEC:EEP ratios showed positive association with soil pH (T1 and T2) and moisture (T2). EEN:EEP showed more constant relationships with soil abiotic properties, increasing with soil-N and pH and decreasing with soil moisture at all sampling times (Figure 4).

Conversely, associations between microbial community composition and ecoenzymatic stoichiometry were highly constant between sampling times (Figure 5). More fungal dominated communities (i.e. high F:B) showed an N acquisition strategy as demonstrated by a positive correlation of F:B with EEN:EEP and a negative one with EEC:EEN (Figure 5). The GP:GN ratio shifted toward a more P-oriented strategy with increasing Gram positive abundance, and toward C and N oriented strategy for Gram negative bacteria as demonstrated by negative associations of GP:GN with EEC:EEP and EEN:EEP (Figure 5). Correlations between GP:GN and EEC:EEN and between F:B and EEC:EEP were not significant. PCoA-1

showed the same association with ecoenzymatic stoichiometry than the GP:GN ratio (data not shown).

Contributions of microbial biomass and biomass-specific activity to total enzyme activity

The total enzyme activity was significantly correlated with microbial biomass at all sampling times (p< 0.001), with R² varying from 91% of the EEA variation explained by biomass at T0, to 46% at T1 and 62% at T2, indicating a higher contribution of microbial biomass to potential soil enzyme activity before altered rain regime simulation (T0) and after the recovery period (T2), whereas biomass-specific activity was the most the dominant factor explaining potential soil enzyme activity at the end of the altered rain regime period (T1) (Figure 6).

Drivers of microbial biomass and biomass-specific activity

Due to their high covariation, PCoA-1 and GP:GN ratio (R²= 0.42, p< 0.001), showed similar responses to soil abiotic factors and had the same effect on biomass-specific activity and microbial biomass. PCoA-1 better explained biomass-specific activity and was therefore conserved in the final structural equation model (Figure 7). At T0 the SEM with full a priori structure stating that biomass-specific activity was only driven by microbial community Variations of microbial community composition along environmental gradients have been extensively reported [START_REF] Fierer | The diversity and biogeography of soil bacterial communities[END_REF], Allison et al. 2007b[START_REF] Lauber | Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[END_REF][START_REF] De Vries | Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities[END_REF], Fierer et al. 2012a[START_REF] Ren | Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics[END_REF][START_REF] Martinez-Almoyna | Multi-trophic β-diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions[END_REF].

However, these studies rarely explored how the observed community shifts could explain microbial trait variations (Fierer et al. 2012b[START_REF] Leff | Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[END_REF]. Community weighted mean (CWM) trait values (the average trait value per unit of biomass within a community) is mostly driven by traits of the dominant species (Lavorel andGarnier 2002, Garnier et al. 2004). Thus, these CWM traits are expected to be associated with the adaptive value of traits along environmental gradients that control community composition changes [START_REF] Ackerly | Community assembly, niche conservatism, and adaptive evolution in changing environments[END_REF][START_REF] Shipley | From plant traits to plant communities: a statistical mechanistic approach to biodiversity[END_REF][START_REF] Laughlin | Survival rates indicate that correlations between community-weighted mean traits and environments can be unreliable estimates of the adaptive value of traits[END_REF]. The first aim of this study was to assess the relationships between microbial community composition and ecoenzymatic CWM traits proxies [START_REF] Piton | Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands[END_REF]) along environmental gradients.

Observed associations between soil abiotic properties and community composition were consistent with the literature [START_REF] De Vries | Fungal/bacterial ratios in grasslands with contrasting nitrogen management[END_REF][START_REF] Ho | Revisiting life strategy concepts in environmental microbial ecology[END_REF][START_REF] Naylor | Drought stress and root-associated bacterial communities[END_REF], indicating that oligotrophic environments (low resource availability) favour fungi and Gram positive bacteria, while resource-rich conditions were beneficial for Gram negative bacteria (Figure 7 and Table 2). Our trait-based approach showed distinct ecoenzymatic CWM traits associated with these three microbial groups potentially explaining their dominance in oligotrophic and copiotrophic environments respectively. First, fungi were associated with lower biomass-specific activity and their ecoenzymatic stoichiometry suggested their enzyme production to be oriented preferentially toward N acquisition (Figure 5). Second, Gram positive bacteria were associated with a higher investment in extracellular enzymes production oriented toward P acquisition (Figure 5). Finally, Gram negative bacteria showed lower investment in enzyme production and a strategy oriented toward C acquisition.

The lower biomass-specific potential enzyme activity in more fungal dominated communities (Figure 7) was unexpected since fungi are commonly considered as principal enzyme producers in soils [START_REF] Sinsabaugh | Fungal enzymes at the community scale[END_REF][START_REF] Romani | Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities[END_REF]). However, only hydrolytic enzymes were measured in this study and not oxidative ones, which could have biased this observation.

Oxidative enzyme production has being observed in both bacterial and fungal groups (Allison et al. 2007a), but the capacity to produce enzymes degrading lignin is more restricted in microbes than hydrolase production, with important contributions attributed to fungi such as white-rot basidiomycetes [START_REF] Kirk | Enzymatic" combustion": the microbial degradation of lignin[END_REF]Farrell 1987, Boer et al. 2005). Thus, the pattern observed here might also correspond to a shift from a resource acquisition strategy based on hydrolytic enzymes from bacteria, to a strategy more based on oxidative enzymes from fungi. Similar work, crossing hydrolase and oxidase measurements, should shed light on such potential trade-off. Overall, this result was consistent with the growing idea that bacteria are also important in organic matter degradation [START_REF] López-Mondéjar | Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes[END_REF]. Furthermore, fungal dominance in N-poor soil observed at T0 and T2 (Table 2), associated with higher relative production of N-acquisition enzyme (Figure 5), supports the resource allocation model, which predicts higher investment in N acquisition when N is limiting [START_REF] Sinsabaugh | Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[END_REF].

Considering also the higher biomass C:N ratio of fungi compared to bacteria (Strickland and Rousk 2010), higher biomass C:N combined with lower EEC:EEN ratio seems to be two response traits associated to low N and high C availability [START_REF] Mooshammer | Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources[END_REF], likely explaining fungal dominance in such environments. However, direct measurement of microbial biomass stoichiometry would be necessary to fully validate this mechanism.

Decreases of GP:GN and PCoA-1 were associated with variations in ecoenzymatic stoichiometry indicating a shift from P to C acquisition concomitant to a reduction of biomass-specific activity, consistent with our hypothesis 1. The most constant abiotic driver of GP:GN and ecoenzymatic C:P ratio was pH. pH is known to strongly influence P availability, potentially explaining why microbes invest more in P acquisition in acidic soil and shift for C acquisition under neutral conditions where pH constraint on P availability is released [START_REF] Xu | Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[END_REF]. Our results are also consistent with Gram positive bacteria having a more oligotrophic strategy [START_REF] Naylor | Drought stress and root-associated bacterial communities[END_REF], and depict two traits that might explain their dominance in resource poor and acidic soils: a higher investment in extracellular enzymes to cope with low resource availability [START_REF] Fontaine | The priming effect of organic matter: a question of microbial competition?[END_REF], Allison et al. 2007b, Malik et al. 2019b), and a preferential investment in P acquisition to cope with low P availability. Contrastingly, Gram negative bacteria showed a copiotrophic strategy, producing less enzymes [START_REF] Fontaine | The priming effect of organic matter: a question of microbial competition?[END_REF], and relying on labile C from plants [START_REF] Fanin | The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils[END_REF], two traits that might explain their dominance in neutral and resource rich soils. Adding molecular characterization of the microbial communities to our approach would be very valuable to further identify CWM traits associated with community composition at different taxonomic resolution.

Ecoenzymatic EEC:EEN ratio was related to soil N at T0, and became more associated to soil moisture at T1 and T2 (Figure 4), while remaining strongly negatively associated with F:B at all sampling times (Figure 5). The relationship between ecoenzymatic EEC:EEP and GP:GN ratio was also more stable through the experiment than the relationship between ecoenzymatic EEC:EEP ratio and soil abiotic factors. This suggests that ecoenzymatic stoichiometry was tightly associated with community composition. Thus, the predicted links between ecoenzymatic stoichiometry with C and nutrient availability [START_REF] Sinsabaugh | Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[END_REF][START_REF] Sinsabaugh | Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[END_REF]) might be limited if other factors such as soil moisture modify community composition.

4.2 Total enzyme activity in soils: disentangling mechanisms.

The second aim of this study was to assess the relative importance of different mechanisms to control total potential enzyme activity in soils. Our results confirm our hypothesis that biomass primarily controlled total soil enzyme activity under stable conditions, whereas biomass-specific activity (a CWM trait) became the most important factor to predict variations under altered rain regimes (Figure 6). This shows the need for a better understanding of the factors controlling microbial CWM trait variation to model and predict ecosystem level processes, and, especially their transient response to climate changes.

Then, we used SEM to disentangle the predominant mechanisms controlling the variation in microbial biomass and biomass-specific activity.

Factors controlling microbial biomass

Microbial biomass was directly affected by soil-N at T0 (Figure 7). Associated with soil organic matter quantity, higher soil N represents higher amount of resources available for microbes to build up biomass. We also found an important effect through community composition with F:B ratio having a positive effect on microbial biomass-C (Figure 7), which might be explained by a higher fungal biomass C:N (Strickland and Rousk 2010), a lower nutrient demand or a higher carbon use efficiency [START_REF] Hodge | Are microorganisms more effective than plants at competing for nitrogen?[END_REF][START_REF] Keiblinger | The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency[END_REF][START_REF] Zechmeister-Boltenstern | The application of ecological stoichiometry to plantmicrobial-soil organic matter transformations[END_REF], indicating a higher capacity to build up microbial biomass-C for a same amount of resources. Conversely, PCoA-1, was negatively related to microbial biomass-C. This link with PCoA-1 was probably not due to a difference in biomass stoichiometry, as PCoA-1 was not associated with F:B ratio. However, oligotrophic communities as indicated by PCoA-1 were likely characterized by a lower investment in biomass production (Figure 1) (Malik et al. 2019a(Malik et al. , 2019c)). The positive effect of bacterial community composition on biomass-specific activity, translating into a negative effect on biomass suggests that oligotrophic communities invest relatively more C in non-growth products such as enzymes (Malik et al. 2019a). Such trade-off (Figure 1) needs further investigations using molecular and culturing approaches (Malik et al. 2019c, Ramin andAllison 2019). Even if such trade-off across microbial diversity could justify to interpret these SEM paths accordingly (community composition affecting biomass-C), we acknowledge that a feedback might exist between community composition and biomass-C, with high biomass-C potentially influencing community composition by favouring competitive microbes. Thus, our SEM structure should be considered as a potential causal model rather than a proof of a unique causality. To sum up, these results might depict two parallel mechanisms influencing microbial biomass-C through modifications in community composition: 1) a positive effect of fungal abundance through microbial biomass stoichiometry; 2) a negative effect of oligotrophic bacterial community through a higher investment in non-growth products. While the importance of C from microbial origin in soil organic C sequestration is increasingly recognized [START_REF] Schmidt | Persistence of soil organic matter as an ecosystem property[END_REF][START_REF] Liang | The importance of anabolism in microbial control over soil carbon storage[END_REF], our results provide insights on two potential microbial mechanisms controlling soil C sequestration [START_REF] Trivedi | Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction[END_REF].

Factors controlling biomass-specific activity

Studies isolating bacteria and fungi have reported differences in enzymatic traits among microbial taxa (e.g. [START_REF] Lladó | Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition[END_REF][START_REF] Pierre-Emmanuel | Into the functional ecology of ectomycorrhizal communities: environmental filtering of enzymatic activities[END_REF], supporting the possibility of a community composition effect on enzyme activity in soils. However, in empirical studies directly measuring potential enzyme activity in soil, the effect of community composition on enzyme activity has rarely been assessed after correction for the microbial biomass effect [START_REF] Kivlin | Tradeoffs in microbial carbon allocation may mediate soil carbon storage in future climates[END_REF]. Using biomass-specific activity to correct for the biomass effects, our results gave support to this mechanism. Indeed, microbial community composition was the first driver of variation in biomass-specific activity (Figure 7), which showed strong association with F:B, GP:GN and the first PCoA axis used as a proxy of variation in the overall community composition. It is interesting to note that PCoA-1 was a better predictor than a copiotrophic:oligotrophic indicator such as the GP:GN ratio for biomass-specific activity. This invites for further investigations of enzymatic trait variations at a lower taxonomic resolution than broad groups such as fungi, Gram positive and Gram negative bacteria [START_REF] Ho | Revisiting life strategy concepts in environmental microbial ecology[END_REF].

Direct positive effects of soil moisture on biomass-specific activity were detected at T1, suggesting other mechanisms than microbial biomass and community composition to control enzyme activity. This direct effect can be attributed to modification of biomass-specific activity without change in community composition induced by physiological acclimation of microbes, and/or evolutionary adaptation of their populations [START_REF] Schimel | Microbial stress-response physiology and its implications for ecosystem function[END_REF][START_REF] Allison | Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates[END_REF][START_REF] Hertzog | How robust are Structural Equation Models to model miss-specification? A simulation study[END_REF][START_REF] Lashermes | Enzymatic strategies and carbon use efficiency of a litter-decomposing fungus grown on maize leaves, stems, and roots[END_REF], and/or enzyme stabilization [START_REF] Nannipieri | Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis[END_REF].

Our statistical approach does not enable us to decouple these mechanisms. However, enzyme turn-over is expected to be down regulated by soil drought, thus increasing the enzyme pool in soil [START_REF] Steinweg | Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data[END_REF][START_REF] Kivlin | Tradeoffs in microbial carbon allocation may mediate soil carbon storage in future climates[END_REF]), though we observed a negative effect of dry conditions. Consequently, we attributed the positive effect of soil moisture on biomass-specific activity to community members' physiological acclimation or evolutionary adaptation of their populations, whereas enzyme stabilization might be only marginal. Although we acknowledge that more studies on enzyme turnover in different environmental conditions [START_REF] Schimel | Estimating decay dynamics for enzyme activities in soils from different ecosystems[END_REF]) are necessary to be fully confident in our interpretation. These community members' acclimation/adaptation suggested by our results indicated a decrease of enzyme production under low soil moisture, and might result from a redirecting of the metabolism from resource acquisition to stress resistance [START_REF] Schimel | Microbial stress-response physiology and its implications for ecosystem function[END_REF], Malik et al. 2019a). This finding stresses the potential importance of physiological acclimation and evolutionary adaptation of microbial traits under climate changes to predict future ecosystem

functioning; an open question that urgently needs further experimental and modelling investigation [START_REF] Romero-Olivares | Neurospora discreta as a model to assess adaptation of soil fungi to warming[END_REF][START_REF] Allison | Temperature acclimation and adaptation of enzyme physiology in Neurospora discreta[END_REF][START_REF] Abs | Implications of Microbial Trait Evolution For Soil Carbon-Climate Feedbacks At Local And Global Scales[END_REF].

Overall, our results confirmed that microbial biomass is the first driver of the variation in total enzyme activity in soil under stable conditions, followed by community composition and community members' acclimation/evolution influencing biomass-specific activity, these two last mechanisms becoming especially important under altered climate scenarios. However, it is important to repeat that our study focused on potential and not realized in situ enzyme activity, with the latter being the results of both the potential activity and the in situ conditions (e.g. temperature, substrate diffusion, pH). Thus, the development of a modelling approaches of realized in situ enzyme activity remains essential to fully link with ecosystem functioning [START_REF] Wallenstein | Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes[END_REF][START_REF] Steinweg | Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data[END_REF][START_REF] Allison | Consequences of drought tolerance traits for microbial decomposition in the DEMENT model[END_REF].

Conclusion and perspectives

Our study showed that some enzymatic properties (mass-specific activity, enzymatic stoichiometry), considered as proxies of soil microbial CWM traits can be useful to assess the microbial adaptation to environmental variations and the mechanisms controlling ecosystem level total enzyme activity (Vmax). However, other enzymatic properties should also be considered in the light of the CWM traits concept, such as half saturation constant (Km), enzyme efficiency (Kcat), enzyme temperature sensitivity (Q10) and pH optimum. Studies assessing the response to environmental variations of these ecoenzymatic CWM traits (e.g. [START_REF] Bárta | Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil[END_REF][START_REF] German | The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study[END_REF]) and their relationships with microbial community composition (e.g. [START_REF] Tischer | Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions[END_REF], Puissant et al. 2019), are highly valuable to move forward our understanding of microbial adaptation, community assembly and their links to ecosystem functioning.

Using a functional trait framework to design our study and interpret our results, we bring new insights on the mechanisms controlling total enzyme activity in soils. Our results indicate a tight association between microbial community composition and ecoenzymatic traits with important consequences for total enzyme activity at the ecosystem level. Our results also stress the relevance of approaches disentangling the effect of biomass and biomass-specific activity on microbially-mediated ecosystem processes [START_REF] Billings | How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming[END_REF]Ballantyne 2013, Kivlin et al. 2013) 

Figures

Figure 1 Response-effect trait model [START_REF] Lavorel | Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[END_REF] presenting linkages between response traits (organisms response to environmental changes) and effect traits (organisms effect on ecosystem functioning), adapted for soil microbial community, demonstrating the central position of ecoenzymatic traits (enzyme production for C, N and P acquisition) and biomass stoichiometry (C/N/P) in evolutionary and/or physiological trade-off (dotted arrows)

affecting fitness and community composition, and microbial community effect on ecosystem functioning. Table 1. Characterization of the field sites from which intact soil cores were collected and their contrasting management. MAT= Mean annual temperature, MAP= Mean annual precipitation, N= Nitrogen. See [START_REF] Lori | Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes[END_REF] 

2. 4

 4 Potential extracellular enzyme activitiesStandard fluorimetric methods were used to measure potential extracellular enzymes activity of seven enzymes degrading C-rich substrates (α-Glucosidase (AG), β-1,4-Glucosidase (BG), β-D-Cellobiosidase (CB), and β-Xylosidase (XYL)), N-rich substrates (β-1,4-N-acetylglucosaminidase (NAG) and leucine aminopeptidase(LAP)) and P-rich substrates (phosphomonoesterase (PHOS))[START_REF] Bell | High-throughput fluorometric measurement of potential soil extracellular enzyme activities[END_REF]. Briefly, 2.75 g of frozen soil was thawed at room temperature and directly homogenized (1 min in a Waring blender) in 200 ml of a sodium acetate buffer solution adjusted to the mean soil pH (5.1 ± 0.7 SD, N= 24) measured at T0. The soil slurry (800 µL) was then added in technical duplicates to a 96-deep-well microplate with 200 µL of substrates at saturation concentration (Vmax). For each soil sample, duplicated standard curves (0-100 µM concentration) were prepared by mixing 800 µL of soil slurry with 200 µL of 4-methylumbelliferone (MUB) or 7-amino-4-methylcoumarin (MUC) in 96-deep-well microplates. Plates were incubated at 20°C in the dark (3 h) on a rotary shaker (150 rpm) before centrifugation at 2900 g (3 min). The supernatant (250 µL) was transferred to a black Greiner flat-bottomed plate and fluorescence was measured on a microplate reader (Varioscan Flash, Thermo Scientific) with excitation wavelength set to 365 nm and emission set to 450 nm. After correcting for negative controls, potential enzyme activities were expressed as nmol g soil -1 h -1 . Then, enzymes activities have been summed to represent enzyme activity degrading C-rich (EEC= AG+BG+CB+XYL), N rich (EEN= LAP+NAG), P rich substrates (EEP= PHOS) and total enzymes activity (EEA= EEC+EEN+EEP).

  stoichiometry was obtained following Sinsabaugh et al. (2009) Enzymatic C:N ratio (EEC:EEN) = ln(BG):ln(NAG+LAP), Enzymatic C:P ratio (EEC:EEP) = ln(BG):ln(PHOS) Enzymatic N:P ratio (EEN:EEP) = ln(NAG+LAP):ln(PHOS).These ratios were assumed to indicate the direction of the resource acquisition strategy (toward C, N or P).2.5 Statistical approach2.5.1 Microbial community compositionA Principal Coordinates Analysis (PCoA) was conducted on the relative abundances of the 27 individual PLFAs at T0, T1 and T2 (full dataset). Then, sample coordinates from the first axis of this PCoA were used as a synthetic variable representing the overall variation in microbial community composition. 2.5.2 Correlations between soil abiotic properties, microbial community composition and ecoenzymatic CWM traits.

  increase of BIC criteria (delta BIC< 2) compared to the model with the lower BIC. Global model fit and quality of the final model was verified using Fisher's C test, R² of endogenous variables and path significances before starting interpretation, as suggested by[START_REF] Hertzog | How robust are Structural Equation Models to model miss-specification? A simulation study[END_REF]. Analyses were run under R.3.5.152. (Development Core Team 2013) using packages piecewiseSEM for SEMs[START_REF] Lefcheck | piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics[END_REF], nlme for mixed effect models[START_REF] Pinheiro | nlme: Linear and nonlinear mixed effects models[END_REF], and ape for PCoA[START_REF] Paradis | ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R[END_REF].

  composition, and not by community members' acclimation/adaptation and enzyme stabilization, was accepted (C6 = 6.05, p = 0.42, BIC = 88.68). Then model simplification based on BIC criterion led to the removal of 6 paths (Figure 7, C18 = 10.31, p = 0.92, BIC = 77.05). At T1 the SEM with full a priori structure was rejected (C6 = 18.34, p = 0.005, BIC = 136.47) indicating missing paths in the SEM structure: Community composition was not sufficient to explain biomass-specific activity, suggesting community members' acclimation/adaptation and/or enzyme abiotic stabilization also occurred. D-sep tests showed a missing path between biomass-specific activity and moisture. The addition of this path improved the SEM which was finally accepted (C4 = 2.838, p = 0.59, BIC = 125.51), then model simplification led to the removal of 2 paths (Figure 7, C8 = 11.17, p = 0.19, BIC = 124.75). At T2 the a priori model was accepted (C6 = 7.89, p = 0.25, BIC = 126.56), and model simplification based on BIC criterion led to the removal of 4 paths (Figure 7, C14 = 15.75, p = 0.33, BIC = 116.17). CWM traits are tightly linked with microbial community composition along abiotic gradients

Figure 2 A

 2 Figure 2 A priori model tested using piecewise-SEM stating: soil abiotic factors influence on microbial community composition (arrow 1) and community composition effect on biomassspecific activity (arrow 2) explained by the difference in enzyme production between taxa ; community composition effect on biomass-C (arrow 3) explained by stoichiometry, growth or carbon use efficiency difference between taxa; direct abiotic effect of soil abiotic properties which influence amount and availability of resources (arrow 4); potential cost of enzyme production for biomass-C build up (arrow 5; direct effect of soil abiotic properties on biomass-specific activity representing either a community members' acclimation/evolution (change in enzyme production without modification of community composition) or enzyme abiotic stabilization (reduction of enzyme turnover in soil induced by change in abiotic environment, arrow 6). Arrow 6 (grey) was initially not included in the model and only added according to d-sep test[START_REF] Shipley | A new inferential test for path models based on directed acyclic graphs[END_REF], 2003[START_REF] Lefcheck | piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics[END_REF]. ε represent error terms. Oneheaded arrows represent causal relationships; double-headed arrows represent free correlations.

Figure 3

 3 Figure 3 PCoA plot of the 27 identified PLFAs from the 3 sampling times (T0, T1 and T2) representing the overall variation of the microbial community composition. Colours represent microbial groups.

Figure 4

 4 Figure 4 Correlations between ecoenzymatic stoichiometry and soil abiotic properties (Soil-N, moisture and pH) at different sampling times (T0: green, T1: red, T2: blue) and significance tested with mixed effect model using country as random factor. NS: p> 0.05, *: p< 0.05, **: p< 0.01, ***: p< 0.001. Point shapes represent the different rain regimes (square= dry, diamond= normal, triangle= intermittent, wet= circle).

Figure 5

 5 Figure 5 Correlation between ecoenzymatic stoichiometry and community composition (Gram positive: Gram negative (GP:GN) and Fungal : Bacterial (F:B) ratios) at different sampling time (T0: green, T1: red, T2: blue) and significance tested using mixed effect model using country as random factor. Correlations between GP:GN and EEC:EEN and between F:B and EEC:EEP are not presented because they were not significant. NS: p> 0.05, *: p <0.05, **: p< 0.01, ***: p< 0.001. Point shapes represent the different rain regimes (square= dry, diamond= normal, triangle= intermittent, wet= circle).

Figure 6

 6 Figure 6 Correlation between the natural logarithm of the total enzyme activity and the natural logarithm of microbial biomass-C for the three sampling times (T0: green points solid line, T1: red points, dotted line T2: blue points dashed line), left panel. Proportion of total enzyme activity explained by biomass-C (R² of the correlation between natural logarithm of the

  correlations between microbial community composition and soil abiotic properties at T0, T1 and T2. Coef= standardized coefficient, p=correlation p-value. Values in bold indicate a significant p-value.

  . We argue that empirical studies could develop a more mechanistic understanding SERVE project. PMS, EN, FR and PS carried out the experiment in the Laboratory of Soil Ecology and Ecotoxicology of the University of Coimbra. All authors participated in sampling. GP, NL, JCC, AF conducted the enzymatic assays. KH measured the PLFA. LMG conducted the soil chemistry analyses. GP run all the statistical analyses, wrote the first draft of this paper and edited it based on significant comments from AF, LMG, NL, KH, GBDD and JCC. All authors gave final approval for publication.

	by implementing this framework. Advancing our understanding of the roles of microbial traits
	in physiological acclimation, evolutionary adaptation, community composition changes, and
	ecosystem functioning should bring relevant insights to improve emerging microbial trait
	based models (Allison 2012).
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		Microbial	Soil abiotic properties			
		community	Soil-N	pH	Moisture			
	Country (coordinates)	Land use composition	N Fertilizer (average N kg ha -1 year -1 ) Time Coef p	MAT, MAP Coef p Coef p	Texture	pH	SOM	WHCmax
			Ecological-intensive:					
	Switzerland 47°30′N 7°33′E	Grassland in rotation	Slurry (120) Conventional-intensive: Synthetic	9.7 °C, 791 mm	Silt / Silt Loam	5.01 (±0.12)	4.15 % (±0.67)	58.91 % (1.89)
			(140)					
			Ecological-intensive:					
	France 45°07′N 5°31′E	Mountain grassland	Cow manure (30) Conventional-intensive: Cow	7.2 °C, 1483 mm	Sandy Loam / Loam	5.71 (±0.86)	9.34 % (±2.46)	90.92 % (±8.93)
			manure (70)					
	Portugal 38°42′N 8°19′W	Grassland in agroforest	Ecological-intensive: None (0) Conventional-intensive: Synthetic	16.5 °C, 1093 mm	Sandy Loam	4.62 (±0.35)	3.55 % (±0.64)	39.18 % (±4.45)
			(56)					
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enzyme activity and the natural logarithm of microbial biomass) and biomass-specific activity (variation not explained by biomass-C), right panel.