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Abstract  16 

The functional trait framework provides a powerful corpus of integrated concepts and 17 

theories to assess how environmental factors influence ecosystem functioning through 18 

community assembly. While common in plant ecology, this approach is under-used in 19 

microbial ecology. After an introduction of this framework in the context of microbial 20 

ecology and enzymology, we propose an approach 1) to elucidate new links between soil 21 

microbial community composition and microbial traits; and 2) to disentangle mechanisms 22 
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underlying “total” potential enzyme activity in soil (sum of 7 hydrolase potential activities). 23 

We address these objectives using a terrestrial grassland ecosystem model experiment with 24 

intact soil monoliths from three European countries (Switzerland, France and Portugal) and 25 

two management types (Conventional-intensive and Ecological-intensive), subjected to 4 rain 26 

regimes (Dry, Wet, Intermittent and Normal) under controlled conditions in a common 27 

climate chamber. We found tight associations between proxies of microbial ecoenzymatic 28 

community-weighted mean traits (enzymatic stoichiometry and biomass-specific activity) and 29 

community composition, bringing new information on resource acquisition strategy 30 

associated with fungi, Gram positive and Gram negative bacteria. We demonstrate that 31 

microbial biomass explained most of the total enzyme activity before altered rain regimes, 32 

whereas adjustments in biomass-specific activity (enzyme activity per unit of microbial 33 

biomass) explained most variation under altered rain regime scenarios. Furthermore, 34 

structural equation models revealed that the variation of community composition was the 35 

main driver of the variation in biomass-specific enzyme activity prior to rain perturbation, 36 

whereas physiological acclimation or evolutionary adaptation became an important driver 37 

only under altered rain regimes. This study presents a promising trait-based approach to 38 

investigate soil microbial community response to environmental changes and potential 39 

consequences for ecosystem functioning. We argue that the functional trait framework should 40 

be further implemented in microbial ecology to guide experimental and analytical design.   41 

Keywords: bacteria; climate change; enzymatic stoichiometry; fungi; PLFA; structural 42 

equation model  43 

1 Introduction  44 

Theoretical framework based on the functional trait concept provides a wide corpus of 45 

integrated concepts and theories at different levels to address organisms’ adaptation, 46 

community assembly and ecosystem functioning (Lavorel and Garnier 2002, Diaz et al. 2007, 47 
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Violle et al. 2007). Functional traits are defined as any physiological, morphological, 48 

phenological or genomic feature, measured at the individual level, and affecting the fitness or 49 

function of an organism (Violle et al. 2007, Krause et al. 2014). Integrated at the community 50 

level, functional traits underlie the community functional composition often characterized by 51 

the community weighted mean (CWM) trait and the trait diversity (Diaz et al. 2007, Violle et 52 

al. 2007). These emergent properties at the community level are controlled by mechanisms at 53 

the individual (physiological acclimation), population (adaptation) and community (species 54 

turnover) scales (Violle et al. 2007) and they are considered as major drivers of ecosystem 55 

functioning (Grime 1998, Petchey and Gaston 2006, Diaz et al. 2007). Hence, the linkages 56 

between response traits (controlling organism response and adaptation to environmental 57 

changes) and effect traits (controlling organism effect on ecosystem functioning), and their 58 

integration at the community level, provide a mechanistic basis to understand community 59 

assembly and cascading effects on ecosystem functioning (Lavorel and Garnier 2002, 60 

Litchman et al. 2015) (Figure 1). Such multiscale integrated framework is essential to 61 

correctly interpret complex ecological data. However, functional trait framework has hardly 62 

been used in microbial ecology and further studies are required to develop how it can be 63 

successfully used for soil microbial communities (Piton et al. 2019).  64 

Plant and microbial traits associated with resource acquisition are both response and 65 

effect traits (Lavorel and Garnier 2002, Litchman et al. 2015), making them promising 66 

candidates for inclusion into mechanistic models of ecosystem functioning (Allison 2012). 67 

Extracellular decomposition of organic matter and subsequent assimilation of its 68 

depolymerized compounds are central in the resource acquisition strategies of heterotrophic 69 

soil microbes (Sinsabaugh and Follstad Shah 2012). Traits associated with extracellular 70 

enzyme production (ecoenzymatic traits) and the uptake of nutrients are probably key in 71 

microbial physiological and evolutionary trade-offs (Malik et al. 2019a) (Figure 1). Indeed, 72 
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the production of extracellular enzymes bears high energy and nitrogen (N) costs for microbes 73 

(Frankena et al. 1988, Allison et al. 2010), at the expense of the investment in other metabolic 74 

pathways such as growth, cellular maintenance and stress tolerance (Malik et al. 2019a, 75 

Ramin and Allison 2019). Hence, it has been proposed that oligotrophic microbial species in 76 

resource-poor environments invest more in extracellular enzymes to cope with low resource 77 

availability compared to copiotrophic species with a growth oriented strategy dominating in 78 

resource-rich environments (Fontaine et al. 2003, Fierer et al. 2007). Trade-offs also exist 79 

between the production of different enzymatic classes since enzymes should match with 80 

substrate availability, while satisfying the nutritional need of the microbial cell (Figure 1). 81 

Biomass stoichiometry is relatively constrained in heterotrophic microbes (Fanin et al. 2013, 82 

Zechmeister-Boltenstern et al. 2015), with high biomass C:N and N:P ratios reported in fungi 83 

relative to bacteria and in oligotrophic microbes relative to copiotrophic ones (Fierer et al. 84 

2007, Strickland and Rousk 2010, Litchman et al. 2015). To match these stoichiometric 85 

constraints, the resource allocation model (Sinsabaugh et al. 1993) predicts microbes to 86 

optimize the enzyme production for C, N and P acquisition toward the most limiting element 87 

to maximize their fitness. Following this theory, enzymatic stoichiometry, that is the relative 88 

investment by microbes for C, N or P acquisition enzymes (Sinsabaugh et al. 2009), can be 89 

considered as a proxy of the resource acquisition strategy that should be adapted to the 90 

nutritional constraint on microbial communities. Oligotrophic microbial communities 91 

dominating nutrient poor soils are expected to direct their resource acquisition strategy toward 92 

nutrient (N and P) acquisition, whereas copiotrophic microbes should display an opposed 93 

stategy (C acquisition) in nutrient rich soils. However, recent empirical results (Rosinger et al. 94 

2019) challenge this theory and suggest that the nutritional constraint is not the only factor 95 

controlling enzymatic stoichiometry.   96 
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Measuring functional traits, requires measurement at the individual level, which is very 97 

challenging for microbes (Martiny et al. 2015). However, Piton et al (2019) demonstrated that 98 

measuring biomass-specific potential enzyme activity (potential activity per unit of microbial 99 

biomass) and enzyme stoichiometry give a direct approximation of community-weighted 100 

mean (CWM) traits representative of the dominant strategy in the microbial community. 101 

Using such indicators, Malik et al. (2019c) and Piton et al. (2019) observed decreases in 102 

mass-specific extracellular potential enzyme activity along soil resource gradients. Their 103 

results indicate that oligotrophic microbes invest more in the production of extracellular 104 

enzymes as compared to copiotrophic ones, with these extracellular enzymes especially 105 

oriented toward nutrient acquisition (especially P in Piton et al. 2019), consistent with 106 

theoretical expectation (Sinsabaugh et al. 1993, Fontaine et al. 2003, Malik et al. 2019a). 107 

Consequently, ecoenzymatic CWM traits (biomass-specific activity and enzymatic 108 

stoichiometry) are promising candidates to understand how the response of soil microbial 109 

communities to environmental changes and its cascading effect on ecosystem functioning.  110 

 111 

Extracellular enzyme activity in soils is central for ecosystem functioning as it controls 112 

decomposition and mineralization of soil organic matter (Schimel and Bennett 2004, 113 

Bengtson and Bengtsson 2007). Firstly, this activity depends on the enzyme concentrations in 114 

soil and their catalytic properties (e.g. the catalytic turnover rate representing the number of 115 

substrates molecules converted to product per enzyme per unit of time). These two parameters 116 

drive the extracellular enzymatic potential activity (Vmax), commonly measured under 117 

laboratory condition without constraint of substrates concentration and diffusion, often at a 118 

single temperature and a single pH (Wallenstein and Weintraub 2008). The realized in situ 119 

activity is more difficult to assess but can be modelled, based on this potential activity and the 120 
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environmental conditions (Wallenstein and Weintraub 2008, Steinweg et al. 2012, Allison and 121 

Goulden 2017).  122 

Total extracellular enzyme potential activity is controlled by microbial mechanisms 123 

scaling from individual to community level (Sinsabaugh 2005, Burns et al. 2013). 124 

Extracellular enzymes are broadly produced among soil microbes (Allison et al. 2007a, 125 

Vranova et al. 2013), so that soil enzyme potential activity is assumed to be firstly controlled 126 

by the microbial biomass (Kivlin et al. 2013). However, a decoupling between microbial 127 

biomass and enzyme potential activity can be induced by enzyme stabilization on inorganic 128 

surfaces and organic colloids and persistence after the death of their producers (Nannipieri et 129 

al. 2018), or through differences among microbes in extracellular enzyme production per unit 130 

of microbial biomass (Allison et al. 2007b, Burns et al. 2013, Kivlin et al. 2013, Steinweg et 131 

al. 2013). Variations in the biomass-specific enzyme activity measured at the community 132 

level (the CWM trait) can emerge both from changes in community composition (Li et al. 133 

2019), as well as from the community members’ physiological acclimation to environmental 134 

changes (Schimel et al. 2007) or evolutionary adaptation (Allison et al. 2018). 135 

Today with novel molecular and culturing techniques, there is evidence for a large 136 

variation of enzyme production across microbial taxa (Lladó et al. 2016, Manoharan et al. 137 

2017, Žifcáková et al. 2017). For instance, at broad taxonomic scale, a more important 138 

production of enzymes for fungi is expected compared to bacteria, explaining their succession 139 

during litter decomposition (Sinsabaugh 2005). Nevertheless, the importance of bacterial 140 

enzyme activity in soils has been shown (Manoharan et al. 2017, López-Mondéjar et al. 141 

2019). Several studies also indicate a variation in enzymatic investment within bacterial and 142 

fungal groups (Lladó et al. 2016, Pierre-Emmanuel et al. 2016). Gram positive and Gram 143 

negative bacteria are considered as oligotrophic and copiotrophic respectively (Fierer et al. 144 

2007, Fanin et al. 2018). Gram positive bacteria use more recalcitrant carbon (C) compounds 145 
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and produce more enzymes to extract energy and nutrients from organic matter. 146 

Comparatively, Gram negative bacteria use labile C compounds and produce less enzymes 147 

(Fanin et al. 2018, Naylor and Coleman-Derr 2018). Together these studies suggest the 148 

potential important contribution of the microbial community composition to ecosystem 149 

functioning (Graham et al. 2016) through its links with CWM biomass-specific activity. 150 

Finally, experimental results also provide some supports for a physiological acclimation of 151 

microbial community members or for an evolutionary adaptation of their population in 152 

response to environmental changes (Allison et al. 2014, 2018, Lashermes et al. 2016), 153 

affecting enzymes production independently of community composition or microbial biomass 154 

changes, potentially also contributing to variations of CWM biomass-specific activity.  155 

To sum up, the control of potential extracellular enzyme activity in soil relies on four 156 

parameters: microbial biomass and three parameters potentially influencing biomass-specific 157 

activity: community composition, community members’ acclimation/adaptation and enzyme 158 

abiotic stabilization (reduction of enzymes turnover by abiotic factors). To assess the relative 159 

importance of these four parameters, their physical control in a manipulated experiment 160 

would be very difficult and implicate a highly artificial environment. Structural equation 161 

model (SEM) framework can be used as an alternative to statistically assess the role of 162 

different mechanisms underlying observed responses in experimental or observational studies 163 

where factors affecting the processes under investigation cannot be physically controlled 164 

(Shipley 2016).  165 

Based on experimental data assessing ecosystem functioning across different management 166 

(conventional intensive vs. ecological intensive) and countries (France, Switzerland and 167 

Portugal) under 4 rain regime scenarios (Dry, Normal, Intermittent and Wet rain regimes, 168 

during 263 days, followed by 89 days of recovery), we used ecoenzymatic CWM traits (Piton 169 

et al. 2019): 1) to identify the links between traits and soil microbial community composition 170 
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along abiotic gradients; and 2) to disentangle mechanisms driving the potential enzyme 171 

activity in soil.  172 

We hypothesized: 173 

1) A high biomass-specific activity (oligotrophic CWM trait), and a nutrient acquisition 174 

strategy to be associated with fungi and/or Gram positive dominated communities, explaining 175 

their dominance in low nutrients and low moisture conditions. 176 

Then, we firstly assessed the relative importance of microbial biomass and biomass-177 

specific activity in the variation of the total enzyme activity (ecosystem level property). 178 

Secondly, we used structural equation models to disentangle soil abiotic factors and microbial 179 

community composition control of microbial biomass and biomass-specific activity. 180 

2) We further hypothesized that: 181 

Microbial biomass variation is the main driver of the total enzyme activity in soil, and 182 

that altered rain regimes induce biomass-specific activity adjustment in response to resource 183 

availability changes. Biomass-specific activity is mainly controlled by changes in microbial 184 

community composition and to a lesser extent by community members’ 185 

acclimation/adaptation or enzyme abiotic stabilization. 186 

2 Material and methods 187 

2.1 Experimental design and setup 188 

In this study, we used data from a continental scale experiment testing effects of 4 rain 189 

regimes (normal, dry, wet and intermittent) on Terrestrial Model Ecosystems (TME) extracted 190 

from grasslands representing dominant pedoclimatic and management conditions across 191 

Europe (Table 1 and Lori et al. (2020) for details). One hundred and twenty TMEs (40 cm 192 

depth x 16.5 cm diameter) encased in HDTPE tubes were collected. More precisely, four 193 

different plots were sampled for each management (eco-intensive and conventional-intensive) 194 
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in each country (8 plots per county), with 5 TMEs extracted in each plot, using a 195 

retroexcavator and a special stainless-steel extractor as described by Knacker et al. (2004). 196 

After sampling, all TMEs were transported in a refrigerated truck to a single climate 197 

chamber at the Laboratory of Soil Ecology and Ecotoxicology of Coimbra University. TMEs 198 

were randomly placed inside special carts creating a temperature gradient between the lower 199 

and the upper part as described by Ng et al. (2014). Air humidity was maintained at 60% and 200 

temperature at 20˚C during the entire experiment and photoperiod was adjusted at 16h:8h 201 

(light:dark).  202 

During the first 81 days, artificial rainwater (Velthorst 1993) was added on each TME, 203 

with the amount of water adjusted to obtain a soil moisture in the upper 20 cm layer (assessed 204 

using Decagon moisture sensors) equivalent to 50%-60% of the maximum water holding 205 

capacity (WHCmax) of the soil from each site where TMEs were collected. Those specific 206 

values of soil moisture (50%-60% WHCmax) are considered as the “Normal” rain regime for 207 

each country. After this acclimation period under “Normal” rain regime, the upper 10 cm of 208 

soil were sampled on one TMEs (destructive sampling) to characterize initial state (T0).  209 

After this acclimation period, 4 rain regimes were simulated during 263 days, with one rain 210 

regime simulated on each of the four TME left from the 32 plots. Soil moisture was 211 

maintained at 20-30%, 50%-60% and 70-80% of the WHCmax for Dry, Normal and Wet rain 212 

regimes respectively. Intermittent rain regime was also simulated with 74 days under wet rain 213 

regime followed by 125 days under dry regime and finally 64 days back to normal.  214 

After this period (T1). One soil core of 98cm3 (5 cm diameter and 5 cm height) was 215 

collected from each TME (non-destructive sampling) and pure sand encased into a small 216 

plastic cylinder was used to fill the holes left after sampling. After this period of altered rain 217 

regimes, all TMEs were set again to Normal rain regime for 89 days followed by a last 218 

destructive sampling (T2) as described for T0 (upper 10 cm). At the 3 sampling times, soils 219 
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were sieved at 5 mm, plant roots were hand-sorted and samples were stored at 4°C or -20°C 220 

for further analyses. 221 

2.2 Soil abiotic properties 222 

Soil moisture was determined as the weight difference of a fresh soil sample after drying 223 

it for one week at 70°C, followed by 4 hr at 500°C to determine soil organic matter content 224 

(SOM) by loss on ignition. Soil pH was determined in a 1:6 (soil: 1M KCl) solution. Total 225 

soil N content was measured using an elemental analyzer (FlashEA 1112, Fisher Scientific, 226 

Waltham, Massachusetts, USA) on oven-dried subsamples ground to a fine powder (5 µm 227 

diameter) with a ball mill (MM301, Retsch GmbH, Haan, Germany).  228 

2.3 Microbial community biomass and composition  229 

Analysis of phospholipid fatty acids (PLFA) were used to characterize microbial biomass 230 

and community composition. Lipids were extracted from 3 g of soil according to Frostegård et 231 

al. (1993). Separation of the resulting fatty acid methyl esters was done on a Hewlett Packard 232 

6890 gas chromatograph (column HP 5). PLFAs i15:0, a15:0, 15:0, i16:0, 16:1ω9, i17:0, 233 

a17:0, cy17:0, 18:1ω7, cy19:0 were chosen to represent bacterial biomass. PLFA 18:2ω6 was 234 

used as an indicator of fungal biomass (Frostegård and Bååth 1996). Gram positive biomass 235 

was indicated by i15:0, a15:0, i16:0, i17:0, a17:0 (O’leary and Wilkinson 1988), Gram 236 

negative bacteria biomass by PLFAs 18:1ω7, cy17:0, cy19:0 (Wilkinson 1988, Zelles 1997) 237 

and Actinobacteria biomass by 10Me17:0 and 10Me18:0 (Lechevalier and Moss 1977, 238 

Kroppenstedt 1985). The NLFA 16:1ω5 was used as an indicator for AMF biomass (Olsson et 239 

al. 1995). Microbial biomass-C was calculated based on the conversion factors: 363.6 nmol of 240 

bacterial-PLFA = 1 mg-C (Frostegård and Bååth 1996), 11.8 nmol of fungal-PLFA = 1 mg-C 241 

(Klamer and Bååth 2004) and 1.047 nmol of NLFA = 1 µg-C (Olsson et al. 1995). 242 
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The Fungal:Bacterial ratio and Gram+:Gram– ratio were calculated as Fungal biomass-C: 243 

Bacterial biomass-C ratio (F:B here after), and Gram+ biomass-C: Gram– biomass-C ratio 244 

(GP:GN hereafter) respectively. Relative abundances (% mol PLFA) of 27 identified PLFA 245 

markers were used to characterize the overall microbial community composition.  246 

2.4 Potential extracellular enzyme activities 247 

Standard fluorimetric methods were used to measure potential extracellular enzymes 248 

activity of seven enzymes degrading C-rich substrates (α-Glucosidase (AG), β-1,4-249 

Glucosidase (BG), β-D-Cellobiosidase (CB), and β-Xylosidase (XYL)), N-rich substrates (β-250 

1,4-N-acetylglucosaminidase (NAG) and leucine aminopeptidase(LAP)) and P-rich substrates 251 

(phosphomonoesterase (PHOS)) (Bell et al. 2013). Briefly, 2.75 g of frozen soil was thawed 252 

at room temperature and directly homogenized (1 min in a Waring blender) in 200 ml of a 253 

sodium acetate buffer solution adjusted to the mean soil pH (5.1 ± 0.7 SD, N= 24) measured 254 

at T0. The soil slurry (800 µL) was then added in technical duplicates to a 96-deep-well 255 

microplate with 200 µL of substrates at saturation concentration (Vmax). For each soil sample, 256 

duplicated standard curves (0-100 µM concentration) were prepared by mixing 800 µL of soil 257 

slurry with 200 µL of 4-methylumbelliferone (MUB) or 7-amino-4-methylcoumarin (MUC) 258 

in 96-deep-well microplates. Plates were incubated at 20°C in the dark (3 h) on a rotary 259 

shaker (150 rpm) before centrifugation at 2900 g (3 min). The supernatant (250 µL) was 260 

transferred to a black Greiner flat-bottomed plate and fluorescence was measured on a 261 

microplate reader (Varioscan Flash, Thermo Scientific) with excitation wavelength set to 365 262 

nm and emission set to 450 nm. After correcting for negative controls, potential enzyme 263 

activities were expressed as nmol g soil-1 h-1. Then, enzymes activities have been summed to 264 

represent enzyme activity degrading C-rich (EEC= AG+BG+CB+XYL), N rich (EEN= 265 

LAP+NAG), P rich substrates (EEP= PHOS) and total enzymes activity (EEA= 266 

EEC+EEN+EEP).  267 
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In this study, biomass-specific activity and ecoenzymatic stoichiometry were calculated 268 

and used as ecoenzymatic CWM traits proxies (Piton et al. 2019). Biomass-specific activity 269 

was obtained by weighting total enzyme activity with microbial biomass-C. This indicator has 270 

been considered as a proxy of the average investment in extracellular enzyme activity of one 271 

mass-unit of microbe (Allison et al. 2007b, Moorhead et al. 2013, Malik et al. 2019b). Eco-272 

enzymatic stoichiometry was obtained following Sinsabaugh et al. (2009) 273 

Enzymatic C:N ratio (EEC:EEN) = ln(BG):ln(NAG+LAP), 274 

Enzymatic C:P ratio (EEC:EEP) = ln(BG):ln(PHOS)  275 

Enzymatic N:P ratio (EEN:EEP) = ln(NAG+LAP):ln(PHOS).  276 

These ratios were assumed to indicate the direction of the resource acquisition strategy 277 

(toward C, N or P). 278 

2.5 Statistical approach 279 

2.5.1 Microbial community composition 280 

A Principal Coordinates Analysis (PCoA) was conducted on the relative abundances of 281 

the 27 individual PLFAs at T0, T1 and T2 (full dataset). Then, sample coordinates from the 282 

first axis of this PCoA were used as a synthetic variable representing the overall variation in 283 

microbial community composition. 284 

2.5.2 Correlations between soil abiotic properties, microbial community composition and 285 

ecoenzymatic CWM traits.  286 

Effects of sampling time, microbial community composition (F:B, GP:GN, PCoA-1), soil 287 

abiotic properties (Soil-N, pH and moisture) and their interactions on ecoenzymatic 288 

stoichiometry (EEC:EEN, EEC:EEP and EEN:EEP) were assessed using mixed effect models 289 

with country and plot nested in country as random factors. We also assessed correlations 290 
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between microbial composition and soil abiotic properties (Soil-N, pH, moisture) for each 291 

sampling time (T0, T1, T2) using mixed effect correlations.  292 

2.5.3 Factor controlling microbial biomass and total enzyme activity 293 

The natural logarithm of the total soil enzyme activity (EEA) can be decomposed in the 294 

sum of the natural logarithm of biomass-specific activity (ln � ���
���	
���), and natural logarithm 295 

of biomass (ln(Biomass)).  296 

ln(EEA) = ln ( EEA
Biomass × Biomass) 297 

ln(EEA) = ln � EEA
Biomass� + ln (Biomass) 298 

To assess the relative importance of these 2 components (biomass-specific activity and 299 

biomass) in the control of total enzyme activity, regressions of ln(EEA) on ln(Biomass) were 300 

fitted for each sampling time. Assuming soil microbial biomass to be the first parameter 301 

controlling total enzyme activity, the proportion explained by the model represents the 302 

importance of biomass in the control of total enzyme activity in soil while the non-explained 303 

variation was attributed to variation in biomass-specific activity. 304 

Piecewise structural equation models (SEM) were used to assess the most important 305 

mechanisms driving both parameters (biomass and biomass-specific activity, Figure 2). This 306 

method is less sensitive to sample size than standard SEM and enables to implement mixed 307 

effect model in the SEM structure (Lefcheck 2016). In such approach, Shipley’s test of 308 

directed separation (based on a chi-square test (see (Shipley 2000, 2009))) is used to assess 309 

model goodness-of-fit, testing if missing paths exist in the model structure. When several 310 

models are accepted, information criterion such as Akaike information criterion or Bayesian 311 

Information Criterion (BIC) can be used to identify the best model. To obtain the most 312 
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parsimonious model we used a three steps selection process, testing a series of potential 313 

mechanisms through which soil abiotic environment might influence extracellular enzyme 314 

activity, established based on our knowledge of the system (Laughlin et al. 2007, Grace et al. 315 

2015). Firstly, a SEM was fitted with the most parsimonious a priori structure, stating that 316 

biomass-specific activity was only driven by community composition (Figure 2), and then 317 

model fit was assessed. In the case of model rejection (p-val< 0.05), potential missing paths in 318 

the SEM structure (such as direct effect of soil abiotic properties on biomass-specific activity, 319 

indicating community member’s acclimation/adaptation enzyme abiotic stabilization) were 320 

evaluated using d-sep test (Shipley 2000, 2003). Secondly, missing paths were added and 321 

model fit was newly assessed. Finally, we used a stepwise removal process of non-significant 322 

relationships. As De Vries and Bardgett (2016), we tested the effect of each removal using 323 

Bayesian Information Criterion (BIC). BIC was used instead of Akaike information criterion 324 

because BIC better identified true model in a simulation study with conditions close to our 325 

experiment (Hertzog 2018). Each removal was retained if it did not induce a significant 326 

increase of BIC criteria (delta BIC< 2) compared to the model with the lower BIC. Global 327 

model fit and quality of the final model was verified using Fisher’s C test, R² of endogenous 328 

variables and path significances before starting interpretation, as suggested by Hertzog 329 

(2018). Analyses were run under R.3.5.152. (Development Core Team 2013) using packages 330 

piecewiseSEM for SEMs (Lefcheck 2016), nlme for mixed effect models (Pinheiro et al. 331 

2017), and ape for PCoA (Paradis and Schliep 2019). 332 

3 Results 333 

3.1 Influence of soil abiotic properties on microbial community composition 334 

A large proportion (43%) of the microbial community composition was explained by the 335 

first axis of the PCoA (PCoA-1, Figure 3). PLFAs contributing the most to this axis 336 
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(coordinates higher than 0.1 or lower than -0.1) were two Gram negative (18:1ω7 and cy17:0) 337 

and one Gram positive (a15:0) bacteria which were negatively related to the PCoA-1, whereas 338 

two Gram positive (i15:0 and i17:0), one from Actinobacteria (10Me17:0) and one from 339 

unclassified bacteria (15:0) were positively associated (Figure 3). 340 

The F:B ratio decreased in nutrient rich, alkaline soils under wet condition, as 341 

demonstrated by a negative association with soil-N (T0, T2), pH (T0, T2) and moisture (T0, 342 

T1, T2) (Table 2). The GP:GN ratio also decreased with nutrient availability (i.e. soil-N at T1 343 

and T2), and alkalinity (i.e. pH at T1, and T2). PCoA-1 (Figure 3) showed almost the same 344 

behaviour, with negative association with pH (T0, T1, T2), soil-N (T0, T1) and moisture (T0) 345 

(Table 2). 346 

3.2 Influence of soil abiotic properties and microbial community composition on 347 

ecoenzymatic stoichiometry 348 

The association between ecoenzymatic EEC:EEN and EEC:EEP and soil abiotic 349 

properties highly varied between sampling times (significant interaction between soil 350 

properties and time, Figure 4). Negative association between soil-N and EEC:EEN was 351 

observed only at T0, whereas EEC:EEN showed a negative association with pH at T0, 352 

shifting to positive at T2, and a negative association with moisture at T0 shifting to a positive 353 

association at T1 and T2. EEC:EEP ratios showed positive association with soil pH (T1 and 354 

T2) and moisture (T2). EEN:EEP showed more constant relationships with soil abiotic 355 

properties, increasing with soil-N and pH and decreasing with soil moisture at all sampling 356 

times (Figure 4). 357 

Conversely, associations between microbial community composition and ecoenzymatic 358 

stoichiometry were highly constant between sampling times (Figure 5). More fungal 359 

dominated communities (i.e. high F:B) showed an N acquisition strategy as demonstrated by a 360 
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positive correlation of F:B with EEN:EEP and a negative one with EEC:EEN (Figure 5). The 361 

GP:GN ratio shifted toward a more P-oriented strategy with increasing Gram positive 362 

abundance, and toward C and N oriented strategy for Gram negative bacteria as demonstrated 363 

by negative associations of GP:GN with EEC:EEP and EEN:EEP (Figure 5). Correlations 364 

between GP:GN and EEC:EEN and between F:B and EEC:EEP were not significant. PCoA-1 365 

showed the same association with ecoenzymatic stoichiometry than the GP:GN ratio (data not 366 

shown). 367 

3.3 Contributions of microbial biomass and biomass-specific activity to total enzyme 368 

activity 369 

The total enzyme activity was significantly correlated with microbial biomass at all 370 

sampling times (p< 0.001), with R² varying from 91% of the EEA variation explained by 371 

biomass at T0, to 46% at T1 and 62% at T2, indicating a higher contribution of microbial 372 

biomass to potential soil enzyme activity before altered rain regime simulation (T0) and after 373 

the recovery period (T2), whereas biomass-specific activity was the most the dominant factor 374 

explaining potential soil enzyme activity at the end of the altered rain regime period (T1) 375 

(Figure 6). 376 

3.4 Drivers of microbial biomass and biomass-specific activity 377 

Due to their high covariation, PCoA-1 and GP:GN ratio (R²= 0.42, p< 0.001), showed 378 

similar responses to soil abiotic factors and had the same effect on biomass-specific activity 379 

and microbial biomass. PCoA-1 better explained biomass-specific activity and was therefore 380 

conserved in the final structural equation model (Figure 7). At T0 the SEM with full a priori 381 

structure stating that biomass-specific activity was only driven by microbial community 382 

composition, and not by community members’ acclimation/adaptation and enzyme 383 

stabilization, was accepted (C6 = 6.05, p = 0.42, BIC = 88.68). Then model simplification 384 
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based on BIC criterion led to the removal of 6 paths (Figure 7, C18 = 10.31, p = 0.92, BIC = 385 

77.05). At T1 the SEM with full a priori structure was rejected (C6 = 18.34, p = 0.005, BIC = 386 

136.47) indicating missing paths in the SEM structure: Community composition was not 387 

sufficient to explain biomass-specific activity, suggesting community members’ 388 

acclimation/adaptation and/or enzyme abiotic stabilization also occurred. D-sep tests showed 389 

a missing path between biomass-specific activity and moisture. The addition of this path 390 

improved the SEM which was finally accepted (C4 = 2.838, p = 0.59, BIC = 125.51), then 391 

model simplification led to the removal of 2 paths (Figure 7, C8 = 11.17, p = 0.19, BIC = 392 

124.75). At T2 the a priori model was accepted (C6 = 7.89, p = 0.25, BIC = 126.56), and 393 

model simplification based on BIC criterion led to the removal of 4 paths (Figure 7, C14 = 394 

15.75, p = 0.33, BIC = 116.17). 395 

4 Discussion 396 

4.1 Ecoenzymatic CWM traits are tightly linked with microbial community composition 397 

along abiotic gradients 398 

Variations of microbial community composition along environmental gradients have been 399 

extensively reported (Fierer and Jackson 2006, Allison et al. 2007b, Lauber et al. 2009, De 400 

Vries et al. 2012, Fierer et al. 2012a, Ren et al. 2018, Martinez-Almoyna et al. 2019). 401 

However, these studies rarely explored how the observed community shifts could explain 402 

microbial trait variations (Fierer et al. 2012b, Leff et al. 2015). Community weighted mean 403 

(CWM) trait values (the average trait value per unit of biomass within a community) is mostly 404 

driven by traits of the dominant species (Lavorel and Garnier 2002, Garnier et al. 2004). Thus, 405 

these CWM traits are expected to be associated with the adaptive value of traits along 406 

environmental gradients that control community composition changes (Ackerly 2003, Shipley 407 

et al. 2006, Laughlin et al. 2018). The first aim of this study was to assess the relationships 408 
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between microbial community composition and ecoenzymatic CWM traits proxies (Piton et 409 

al. 2019) along environmental gradients. 410 

Observed associations between soil abiotic properties and community composition were 411 

consistent with the literature (De Vries et al. 2006, Ho et al. 2017, Naylor and Coleman-Derr 412 

2018), indicating that oligotrophic environments (low resource availability) favour fungi and 413 

Gram positive bacteria, while resource-rich conditions were beneficial for Gram negative 414 

bacteria (Figure 7 and Table 2). Our trait-based approach showed distinct ecoenzymatic 415 

CWM traits associated with these three microbial groups potentially explaining their 416 

dominance in oligotrophic and copiotrophic environments respectively. First, fungi were 417 

associated with lower biomass-specific activity and their ecoenzymatic stoichiometry 418 

suggested their enzyme production to be oriented preferentially toward N acquisition (Figure 419 

5). Second, Gram positive bacteria were associated with a higher investment in extracellular 420 

enzymes production oriented toward P acquisition (Figure 5). Finally, Gram negative bacteria 421 

showed lower investment in enzyme production and a strategy oriented toward C acquisition. 422 

The lower biomass-specific potential enzyme activity in more fungal dominated communities 423 

(Figure 7) was unexpected since fungi are commonly considered as principal enzyme 424 

producers in soils (Sinsabaugh 2005, Romani et al. 2006). However, only hydrolytic enzymes 425 

were measured in this study and not oxidative ones, which could have biased this observation. 426 

Oxidative enzyme production has being observed in both bacterial and fungal groups (Allison 427 

et al. 2007a), but the capacity to produce enzymes degrading lignin is more restricted in 428 

microbes than hydrolase production, with important contributions attributed to fungi such as 429 

white-rot basidiomycetes (Kirk and Farrell 1987, Boer et al. 2005). Thus, the pattern observed 430 

here might also correspond to a shift from a resource acquisition strategy based on hydrolytic 431 

enzymes from bacteria, to a strategy more based on oxidative enzymes from fungi. Similar 432 

work, crossing hydrolase and oxidase measurements, should shed light on such potential 433 
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trade-off. Overall, this result was consistent with the growing idea that bacteria are also 434 

important in organic matter degradation (López-Mondéjar et al. 2019). Furthermore, fungal 435 

dominance in N-poor soil observed at T0 and T2 (Table 2), associated with higher relative 436 

production of N-acquisition enzyme (Figure 5), supports the resource allocation model, which 437 

predicts higher investment in N acquisition when N is limiting (Sinsabaugh et al. 1993). 438 

Considering also the higher biomass C:N ratio of fungi compared to bacteria (Strickland and 439 

Rousk 2010), higher biomass C:N combined with lower EEC:EEN ratio seems to be two 440 

response traits associated to low N and high C availability (Mooshammer et al. 2014), likely 441 

explaining fungal dominance in such environments. However, direct measurement of 442 

microbial biomass stoichiometry would be necessary to fully validate this mechanism. 443 

Decreases of GP:GN and PCoA-1 were associated with variations in ecoenzymatic 444 

stoichiometry indicating a shift from P to C acquisition concomitant to a reduction of 445 

biomass-specific activity, consistent with our hypothesis 1. The most constant abiotic driver 446 

of GP:GN and ecoenzymatic C:P ratio was pH. pH is known to strongly influence P 447 

availability, potentially explaining why microbes invest more in P acquisition in acidic soil 448 

and shift for C acquisition under neutral conditions where pH constraint on P availability is 449 

released (Xu et al. 2017). Our results are also consistent with Gram positive bacteria having a 450 

more oligotrophic strategy (Naylor and Coleman-Derr 2018), and depict two traits that might 451 

explain their dominance in resource poor and acidic soils: a higher investment in extracellular 452 

enzymes to cope with low resource availability (Fontaine et al. 2003, Allison et al. 2007b, 453 

Malik et al. 2019b), and a preferential investment in P acquisition to cope with low P 454 

availability. Contrastingly, Gram negative bacteria showed a copiotrophic strategy, producing 455 

less enzymes (Fontaine et al. 2003), and relying on labile C from plants (Fanin et al. 2018), 456 

two traits that might explain their dominance in neutral and resource rich soils. Adding 457 

molecular characterization of the microbial communities to our approach would be very 458 
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valuable to further identify CWM traits associated with community composition at different 459 

taxonomic resolution.   460 

Ecoenzymatic EEC:EEN ratio was related to soil N at T0, and became more associated to 461 

soil moisture at T1 and T2 (Figure 4), while remaining strongly negatively associated with 462 

F:B at all sampling times (Figure 5). The relationship between ecoenzymatic EEC:EEP and 463 

GP:GN ratio was also more stable through the experiment than the relationship between 464 

ecoenzymatic EEC:EEP ratio and soil abiotic factors. This suggests that ecoenzymatic 465 

stoichiometry was tightly associated with community composition. Thus, the predicted links 466 

between ecoenzymatic stoichiometry with C and nutrient availability (Sinsabaugh et al. 1993, 467 

2009) might be limited if other factors such as soil moisture modify community composition. 468 

4.2 Total enzyme activity in soils: disentangling mechanisms. 469 

The second aim of this study was to assess the relative importance of different 470 

mechanisms to control total potential enzyme activity in soils. Our results confirm our 471 

hypothesis that biomass primarily controlled total soil enzyme activity under stable 472 

conditions, whereas biomass-specific activity (a CWM trait) became the most important 473 

factor to predict variations under altered rain regimes (Figure 6). This shows the need for a 474 

better understanding of the factors controlling microbial CWM trait variation to model and 475 

predict ecosystem level processes, and, especially their transient response to climate changes. 476 

Then, we used SEM to disentangle the predominant mechanisms controlling the variation in 477 

microbial biomass and biomass-specific activity.  478 

4.2.1 Factors controlling microbial biomass 479 

Microbial biomass was directly affected by soil-N at T0 (Figure 7). Associated with soil 480 

organic matter quantity, higher soil N represents higher amount of resources available for 481 

microbes to build up biomass. We also found an important effect through community 482 
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composition with F:B ratio having a positive effect on microbial biomass-C (Figure 7), which 483 

might be explained by a higher fungal biomass C:N (Strickland and Rousk 2010), a lower 484 

nutrient demand or a higher carbon use efficiency (Hodge et al. 2000, Keiblinger et al. 2010, 485 

Zechmeister-Boltenstern et al. 2015), indicating a higher capacity to build up microbial 486 

biomass-C for a same amount of resources. Conversely, PCoA-1, was negatively related to 487 

microbial biomass-C. This link with PCoA-1 was probably not due to a difference in biomass 488 

stoichiometry, as PCoA-1 was not associated with F:B ratio. However, oligotrophic 489 

communities as indicated by PCoA-1 were likely characterized by a lower investment in 490 

biomass production (Figure 1) (Malik et al. 2019a, 2019c). The positive effect of bacterial 491 

community composition on biomass-specific activity, translating into a negative effect on 492 

biomass suggests that oligotrophic communities invest relatively more C in non-growth 493 

products such as enzymes (Malik et al. 2019a). Such trade-off (Figure 1) needs further 494 

investigations using molecular and culturing approaches (Malik et al. 2019c, Ramin and 495 

Allison 2019). Even if such trade-off across microbial diversity could justify to interpret these 496 

SEM paths accordingly (community composition affecting biomass-C), we acknowledge that 497 

a feedback might exist between community composition and biomass-C, with high biomass-C 498 

potentially influencing community composition by favouring competitive microbes. Thus, our 499 

SEM structure should be considered as a potential causal model rather than a proof of a 500 

unique causality. To sum up, these results might depict two parallel mechanisms influencing 501 

microbial biomass-C through modifications in community composition: 1) a positive effect of 502 

fungal abundance through microbial biomass stoichiometry; 2) a negative effect of 503 

oligotrophic bacterial community through a higher investment in non-growth products. While 504 

the importance of C from microbial origin in soil organic C sequestration is increasingly 505 

recognized (Schmidt et al. 2011, Liang et al. 2017), our results provide insights on two 506 

potential microbial mechanisms controlling soil C sequestration (Trivedi et al. 2013). 507 
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4.2.2 Factors controlling biomass-specific activity  508 

Studies isolating bacteria and fungi have reported differences in enzymatic traits among 509 

microbial taxa (e.g. Lladó et al. 2016, Pierre-Emmanuel et al. 2016), supporting the possibility 510 

of a community composition effect on enzyme activity in soils. However, in empirical studies 511 

directly measuring potential enzyme activity in soil, the effect of community composition on 512 

enzyme activity has rarely been assessed after correction for the microbial biomass effect 513 

(Kivlin et al. 2013). Using biomass-specific activity to correct for the biomass effects, our 514 

results gave support to this mechanism. Indeed, microbial community composition was the 515 

first driver of variation in biomass-specific activity (Figure 7), which showed strong 516 

association with F:B, GP:GN and the first PCoA axis used as a proxy of variation in the 517 

overall community composition. It is interesting to note that PCoA-1 was a better predictor 518 

than a copiotrophic:oligotrophic indicator such as the GP:GN ratio for biomass-specific 519 

activity. This invites for further investigations of enzymatic trait variations at a lower 520 

taxonomic resolution than broad groups such as fungi, Gram positive and Gram negative 521 

bacteria (Ho et al. 2017).  522 

Direct positive effects of soil moisture on biomass-specific activity were detected at T1, 523 

suggesting other mechanisms than microbial biomass and community composition to control 524 

enzyme activity. This direct effect can be attributed to modification of biomass-specific 525 

activity without change in community composition induced by physiological acclimation of 526 

microbes, and/or evolutionary adaptation of their populations (Schimel et al. 2007, Allison et 527 

al. 2014, 2018, Lashermes et al. 2016), and/or enzyme stabilization (Nannipieri et al. 2018). 528 

Our statistical approach does not enable us to decouple these mechanisms. However, enzyme 529 

turn-over is expected to be down regulated by soil drought, thus increasing the enzyme pool 530 

in soil (Steinweg et al. 2012, Kivlin et al. 2013), though we observed a negative effect of dry 531 

conditions. Consequently, we attributed the positive effect of soil moisture on biomass-532 
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specific activity to community members’ physiological acclimation or evolutionary adaptation 533 

of their populations, whereas enzyme stabilization might be only marginal. Although we 534 

acknowledge that more studies on enzyme turnover in different environmental conditions 535 

(Schimel et al. 2017) are necessary to be fully confident in our interpretation. These 536 

community members’ acclimation/adaptation suggested by our results indicated a decrease of 537 

enzyme production under low soil moisture, and might result from a redirecting of the 538 

metabolism from resource acquisition to stress resistance (Schimel et al. 2007, Malik et al. 539 

2019a). This finding stresses the potential importance of physiological acclimation and 540 

evolutionary adaptation of microbial traits under climate changes to predict future ecosystem 541 

functioning; an open question that urgently needs further experimental and modelling 542 

investigation (Romero-Olivares et al. 2015, Allison et al. 2018, Abs et al. 2019). 543 

Overall, our results confirmed that microbial biomass is the first driver of the variation in 544 

total enzyme activity in soil under stable conditions, followed by community composition and 545 

community members’ acclimation/evolution influencing biomass-specific activity, these two 546 

last mechanisms becoming especially important under altered climate scenarios. However, it 547 

is important to repeat that our study focused on potential and not realized in situ enzyme 548 

activity, with the latter being the results of both the potential activity and the in situ conditions 549 

(e.g. temperature, substrate diffusion, pH). Thus, the development of a modelling approaches 550 

of realized in situ enzyme activity remains essential to fully link with ecosystem functioning 551 

(Wallenstein and Weintraub 2008, Steinweg et al. 2012, Allison and Goulden 2017).  552 

 553 

5 Conclusion and perspectives 554 

Our study showed that some enzymatic properties (mass-specific activity, enzymatic 555 

stoichiometry), considered as proxies of soil microbial CWM traits can be useful to assess the 556 
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microbial adaptation to environmental variations and the mechanisms controlling ecosystem 557 

level total enzyme activity (Vmax). However, other enzymatic properties should also be 558 

considered in the light of the CWM traits concept, such as half saturation constant (Km), 559 

enzyme efficiency (Kcat), enzyme temperature sensitivity (Q10) and pH optimum. Studies 560 

assessing the response to environmental variations of these ecoenzymatic CWM traits (e.g. 561 

Bárta et al. 2014 and German et al. 2012) and their relationships with microbial community 562 

composition (e.g. Tischer et al. 2015, Puissant et al. 2019), are highly valuable to move 563 

forward our understanding of microbial adaptation, community assembly and their links to 564 

ecosystem functioning. 565 

Using a functional trait framework to design our study and interpret our results, we bring 566 

new insights on the mechanisms controlling total enzyme activity in soils. Our results indicate 567 

a tight association between microbial community composition and ecoenzymatic traits with 568 

important consequences for total enzyme activity at the ecosystem level. Our results also 569 

stress the relevance of approaches disentangling the effect of biomass and biomass-specific 570 

activity on microbially-mediated ecosystem processes (Billings and Ballantyne 2013, Kivlin 571 

et al. 2013). We argue that empirical studies could develop a more mechanistic understanding 572 

by implementing this framework. Advancing our understanding of the roles of microbial traits 573 

in physiological acclimation, evolutionary adaptation, community composition changes, and 574 

ecosystem functioning should bring relevant insights to improve emerging microbial trait 575 

based models (Allison 2012).  576 
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Figures 904 

 905 

Figure 1 Response-effect trait model (Lavorel and Garnier 2002) presenting linkages between 906 

response traits (organisms response to environmental changes) and effect traits (organisms 907 

effect on ecosystem functioning), adapted for soil microbial community, demonstrating the 908 

central position of ecoenzymatic traits (enzyme production for C, N and P acquisition) and 909 

biomass stoichiometry (C/N/P) in evolutionary and/or physiological trade-off (dotted arrows) 910 

affecting fitness and community composition, and microbial community effect on ecosystem 911 

functioning.  912 

 913 

Figure 2 A priori model tested using piecewise-SEM stating: soil abiotic factors influence on 914 

microbial community composition (arrow 1) and community composition effect on biomass-915 

specific activity (arrow 2) explained by the difference in enzyme production between taxa ; 916 

community composition effect on biomass-C (arrow 3) explained by stoichiometry, growth or 917 

carbon use efficiency difference between taxa; direct abiotic effect of soil abiotic properties 918 

which influence amount and availability of resources (arrow 4); potential cost of enzyme 919 

production for biomass-C build up (arrow 5; direct effect of soil abiotic properties on 920 

biomass-specific activity representing either a community members’ acclimation/evolution 921 

(change in enzyme production without modification of community composition) or enzyme 922 

abiotic stabilization (reduction of enzyme turnover in soil induced by change in abiotic 923 

environment, arrow 6). Arrow 6 (grey) was initially not included in the model and only added 924 

according to d-sep test (Shipley 2000, 2003, Lefcheck 2016). ε represent error terms. One-925 

headed arrows represent causal relationships; double-headed arrows represent free 926 

correlations. 927 
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 928 

Figure 3 PCoA plot of the 27 identified PLFAs from the 3 sampling times (T0, T1 and T2) 929 

representing the overall variation of the microbial community composition. Colours represent 930 

microbial groups. 931 

 932 

Figure 4 Correlations between ecoenzymatic stoichiometry and soil abiotic properties (Soil-N, 933 

moisture and pH) at different sampling times (T0: green, T1: red, T2: blue) and significance 934 

tested with mixed effect model using country as random factor. NS: p> 0.05, *: p< 0.05, **: 935 

p< 0.01, ***: p< 0.001. Point shapes represent the different rain regimes (square= dry, 936 

diamond= normal, triangle= intermittent, wet= circle). 937 

 938 

Figure 5 Correlation between ecoenzymatic stoichiometry and community composition (Gram 939 

positive: Gram negative (GP:GN) and Fungal : Bacterial (F:B) ratios) at different sampling 940 

time (T0: green, T1: red, T2: blue) and significance tested using mixed effect model using 941 

country as random factor. Correlations between GP:GN and EEC:EEN and between F:B and 942 

EEC:EEP are not presented because they were not significant. NS: p> 0.05, *: p <0.05, **: p< 943 

0.01, ***: p< 0.001. Point shapes represent the different rain regimes (square= dry, diamond= 944 

normal, triangle= intermittent, wet= circle). 945 

  946 

Figure 6 Correlation between the natural logarithm of the total enzyme activity and the natural 947 

logarithm of microbial biomass-C for the three sampling times (T0: green points solid line, 948 

T1: red points, dotted line T2: blue points dashed line), left panel. Proportion of total enzyme 949 

activity explained by biomass-C (R² of the correlation between natural logarithm of the 950 
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enzyme activity and the natural logarithm of microbial biomass) and biomass-specific activity 951 

(variation not explained by biomass-C), right panel.  952 

 953 

Figure 7 Final structural equation models at T0, T1 and T2. Hypothetical causal relationships 954 

are represented by one-headed arrows and free correlations with double-headed arrows. 955 

Arrow width represents standardized effect size. Solid line represents positive effect and 956 

dashed line negative effect. Black arrows represent significant effect and grey arrow non-957 

significant effect conserved during selection process.  958 

  959 
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Tables 960 

Table 1. Characterization of the field sites from which intact soil cores were collected and their contrasting management. MAT= Mean annual 961 

temperature, MAP= Mean annual precipitation, N= Nitrogen. See Lori et al. (2020) for more details. 962 

Country 
(coordinates) 

Land use 
N Fertilizer 
(average N kg ha-1 
year-1) 

MAT, MAP Texture pH SOM WHCmax  

Switzerland 
47°30′N 
7°33′E 

Grassland in 
rotation 

Ecological-intensive: 
Slurry (120) 

 
9.7 °C, 791 mm Silt / Silt Loam 

5.01 
(±0.12) 

4.15 % 
(±0.67) 

58.91 % 
(1.89) Conventional-

intensive: Synthetic 
(140) 

 
France 
45°07′N 
5°31′E 
 

Mountain 
grassland 

Ecological-intensive: 
Cow manure (30) 
 

7.2 °C, 1483 mm 
Sandy Loam / 
Loam 

5.71 
(±0.86) 

9.34 % 
(±2.46) 

90.92 % 
(±8.93) Conventional-

intensive: Cow 
manure (70) 

 
Portugal 
38°42′N 
8°19′W 
 

Grassland in 
agroforest 

Ecological-intensive: 
None (0) 
 

16.5 °C, 1093 mm Sandy Loam 

4.62 
(±0.35) 

3.55 % 
(±0.64) 

39.18 % 
(±4.45) 

Conventional-
intensive: Synthetic 
(56) 

   

963 



 

 

 964 

Microbial 

community 

composition Time 

 Soil abiotic properties 

 Soil-N  pH  Moisture 

 Coef p  Coef p  Coef p 

F:B T0  -0.62 <0.01  -0.40 0.05  -0.68 <0.01 

  T1  -0.21 0.08  -0.17 0.13  -0.25 0.01 

  T2  -0.28 0.02  -0.33 <0.01  -0.36 <0.001 

            

GP:GN T0  -0.18 0.17  -0.14 0.22  -0.54 0.01 

  T1  -0.41 <0.001  -0.26 <0.01  -0.20 0.03 

  T2  -0.22 0.03  -0.24 <0.001  -0.21 0.05 

            

PCoA-1 T0  -0.26 <0.01  -0.18 0.03  -0.57 <0.001 

  T1  -0.40 <0.001  -0.43 <0.001  0.09 0.30 

  T2  -0.12 0.14  -0.39 <0.001  -0.02 0.83 

 Table 2 Bivariate correlations between microbial community composition and soil abiotic properties 965 

at T0, T1 and T2. Coef= standardized coefficient, p=correlation p-value. Values in bold indicate a 966 

significant p-value.  967 
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