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Abstract

We revisit two-step mass-balance models of biological processes as met to describe
numerous biological systems including the anaerobic digestion or the nitrification
process in view of its global stabilization. We show that when a bi-stability occurs,
it can be possible to globally stabilize the dynamics toward an unique positive equi-
librium by increasing the dilution rate. We give sufficient conditions on the growth
functions of the model for this situation to appear. This illustrates that for biologi-
cal multi-step reactional systems, increasing the residence time (e.g. decreasing the
input flow rate) may not be the only way to stabilize the dynamics.

Key words: Anaerobic digestion, nitrification, chemostat, multi-stability,
stabilization.

1 Introduction

In most of continuous cultures, it is well known that increasing the dilution
rate (or equivalently reducing the residence time inside the reactors) can desta-
bilize the dynamics, in the sense that it enlarges the attraction basin of the
wash-out equilibrium. This can be easily shown on the classical mathematical
model of the chemostat, whatever the kinetics includes inhibition or not (see
[6]). For growth inhibited by the substrate, bi-stability systematically occurs
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for large values of the input concentration of substrate. This feature has prac-
tical impacts on positive equilibrium (when it exists) because it cannot be
globally stable, and the dynamics can conduct the system to the wash-out of
the biomass, when the state belongs to the attraction basin of the washout
equilibrium. Ways to guarantee a global stability is either to fix a lower dilu-
tion rate, which is penalizing for the performance of the process, or to control
the dilution rate with a feedback loop, which temporarily diminishes the di-
lution rate when the state is far from the positive steady state [1, 8, 9, 17]. In
any case, the removal has to be reduced at a certain stage.

Here we consider a more complex reaction scheme that are two-step systems, as
met for instance in many models representing the anaerobic digestion process
[4] or the nitrification process [20]. For these systems we show that there exist
situations presenting a bi-stability for which increasing (and not decreasing)
the dilution rate also leads the system to a globally asymptotically stable
steady state, in opposition to classical stabilizing practices. In such a way, we
can treat more matter per unit time during the transient than when decreasing
the dilution rate.

In the paper, we denote by R+ the set of non-negative numbers and by R+,?

the set of positive numbers.

Let us consider the general mathematical model of a two-step mass-balance
biological process, given by the following equations:

ẋ1 = µ1(s1)x1 − αDx1

ṡ1 = −µ1(s1)x1 +D(sin1 − s1)

ẋ2 = µ2(s2)x2 − αDx2

ṡ2 = −µ2(s2)x2 + µ1(s1)x1 +D(sin2 − s2)

(1)

where the parameter D denotes the dilution rate.

This model is presented under the original form proposed in [4]. The first
reaction involves a microbial species of concentration x1 which grows on a
substrate of concentration s1 with a monotonic specific rate µ1. The incoming
flow fed the culture with substrate of concentration sin1 . The second reaction
involves a second microbial species of concentration x2 which grows on an-
other substrate of concentration s2, with a specific growth rate denotes µ2.
This reaction is also fed by the first one which produces the second substrate.
In addition, the incoming flow rate may contain (or not) substrate of concen-
tration sin2 . The parameter α ∈ (0, 1] reflects the fact that the effective dilution
rate of the biomass is impacted by a retention inside the tank, differently to
the abiotic resource. Here, the yield coefficients of the transformations of sub-
strate si into biomass xi (i = 1, 2), and of the production of substrate for the
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second reaction by the first one, have been all kept equal to 1 (this is always
possible without any loss of generality, by a right choice of the concentration
units).

In many biological systems, such as the anaerobic digestion or the nitrifica-
tion processes, it is often reported in the literature that the second reaction
is inhibited by large values of s2, which amounts to consider the following
hypotheses.

Assumption 1 The functions µ1, µ2 belong to C1(R+,R+) and fulfill the
following properties.

(i) µ1 is increasing on R+ with µ1(0) = 0.

(i) There exists ŝ2 > such that µ2 is increasing on [0, ŝ2) and decreasing on
(ŝ2,+∞), with µ2(0) = 0 and µ2(+∞) = 0.

The model (1) has a cascade structure: the first reaction is independent of the
second one and the (x1, s1) sub-system follows the classical (mono-specific)
chemostat model. However, the (x2, s2) sub-system is more complex to study
as it receives substrate from the first reaction and µ2 is non-monotonic. This
model and some of its variants has been already well studied in the literature
[3, 4, 14], depending on the operating parameters (sin1 , s

in
2 , D). In particular,

it has been shown that the dynamics may exhibit a multiple-stability, and the
complete operating diagram has been established in [15, 20]. The purpose of
the present work is to complement those studies, investigating how to adapt
the value of the dilution rate D to ensure a global stability of the dynamics.
For sake of completeness, we first recall in the next section the set of possible
asymptotic behaviors of the model.

2 Stability analysis

Let us first denote, for convenience,

µm1 := sup{µ1(s1) ; s1 ∈ R+)} , µm2 := sup{µ2(s2) ; s2 ∈ R+)} = µ2(ŝ2).

We define the break-even concentration λ1 associated to the first reaction as
the function

λ1(D) := µ−1
1 (αD), αD < µm1 . (2)
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Then, we define the following quantity

sin2 (D) := sin2 +

 sin1 − λ1(D) , αD < µ1(sin1 )

0 , αD ≥ µ1(sin1 )
(3)

that is playing an important role in the analysis of the equilibria, as an ”ef-
fective” input concentration for the second reaction.

As plotted in Figure 1, we define also the break-even concentrations λ−2 , λ+
2

associated to the second reaction as functions such that

[λ−2 (D), λ+
2 (D)] := {s2 ∈ R+ ; µ2(s2) ≥ αD}, αD ≤ µm2 . (4)

    → 𝜇  

aD 

l2
-(D) l2

+(D) 

s2 

s2 s2 

𝜇2
m 

𝑠 2 

Fig. 1. Definition of λ−2 (D) and λ+
2 (D)

These numbers represent thresholds on the substrate concentration for which
a microbial species cannot survive outside the interval of values delimited by
these numbers, because their growth is not high enough to compensate the
dilution rate. This limiting values are often called ‘break-even concentrations’
in the microbial ecology literature (see for instance [10]).

One has the following result about equilibria of system (1) and their stability.

Proposition 1 The asymptotic behavior of the solutions of system (1) with
initial condition in (R+∗ × R+)2 is given by one of the following cases.

(1) When αD > max(µ1(sin1 ), µm2 ), any solution converges to the ”double
wash-out” steady-state E0,0 := (0, sin1 , 0, s

in
1 ).
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(2) When max(µ1(sin1 ), µ2(sin2 )) ≤ αD ≤ µm2 , the solution converges either to
E0,0 or to the equilibrium E0,? := (0, sin1 , (s

in
2 −λ−2 (D))/α, λ−2 (D)), except

for initial conditions on a set of null measure

(3) When µ1(sin1 ) < αD ≤ µm2 and sin2 ≤ λ+
2 (D), any solution converges to

E0,?.

(4) When µ1(sin1 ) > αD > µ2(s2) for any s2 < sin2 (D), any solution converges
to E?,0 := ((sin1 − λ1(D))/α, λ1(D), 0, sin2 (D)).

(5) When αD < µ1(sin1 ), αD ≤ µm2 and sin2 (D)) > λ+
2 (D), the solution

converges either to E?,0 or to the positive equilibrium E?,? := ((sin1 −
λ1(D))/α, λ1(D), (sin2 (D) − λ−2 (D))/α, λ−2 (D)), except for initial condi-
tions on a set of null measure.

(6) When αD < µ1(sin1 ), αD ≤ µm2 and λ−2 (D) < sin2 (D) ≤ λ+
2 (D), any

solution converges to E?,?.

This result has already been proved in [3, 4, 14], and we recall quickly here
the arguments of the proof based on the study of the single chemostat model,
for which the classical results are recalled in the appendix. Let us stress that
the statement of Proposition 1 does not distinguish the number of unstable
equilibria nor the hyperbolic characteristics of the equilibria, differently to
[3]. Our goal here is simply to characterize the possible asymptotic behaviors
towards a stable equilibrium, up to a set of initial conditions of null measure.

PROOF. Let us first note that one has ẋ1 = 0 when x1 = 0, and ẋ2 = 0 when
x2 = 0. By uniqueness of the solutions of the system of differential equations
(1), we deduce that the solutions verify x1(t) > 0, x2(t) > 0 for any t > 0.
At s1 = 0 and s2 = 0, one has ṡ1 = Dsin1 > 0 and ṡ2 > Dsin2 > 0, which
shows that the hyperplanes s1 = 0, s2 = 0 are repulsive. We deduce that the
solutions verify s1(t) > 0, s2(t) > 0 for any t > 0. This shows that a wash-out
of species 1 or both species cannot be reached in finite time.

Consider the variables z1 = x1 + s1 and z2 = s1 +x2 + s2. From equations (1),
one obtains

ż1 ≤ D(sin1 − αz1), ż2 ≤ D(sin1 + sin2 − αz2)

from which one deduces that z1 and z2 are bounded. This shows that the
non-negative solutions of (1) are bounded.

The (x1, s1) dynamics is independent of the variables x2, s2 and follows the
classical chemostat model with monotonic growth function, whose steady state
analysis is recalled in the Appendix (Proposition 4). Two cases are distin-
guished:
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• case A: αD ≥ µ1(sin1 ): any solution of the (x1, s1) sub-system converges to
the wash-out state E0

1 := (0, sin1 ).

• case B: αD < µ1(sin1 ): any solution of the (x1, s1) sub-system with x1(0) > 0
converges to the positive state E?

1 := ((sin1 − λ1(D))/α, λ1(D)).

Then, the cascade structure of the dynamics (1), along with the boundedness
of its solutions and the asymptotic behavior of the (x1, s1) sub-system allows
to proceed with the stability analysis of the system on the reduced dynamics
of the (x2, s2) subsystem:

 ẋ2 = µ2(s2)x2 − αDx2

ṡ2 = −µ2(s2)x2 + µ1(seq1 )xeq1 +D(sin2 − s2)
(5)

where (xeq1 , s
eq
1 ) is the steady state of the (x1, s1) sub-system (i.e. E0

1 or E?
1

when it exists, according to Proposition 4).

In case A, the subsystem (5) is the classical chemostat model with non-
monotonic growth, whose steady state analysis is recalled in Proposition 5
(see Appendix). Three cases are then possible depending on the value of αD
with respect to µm2 and µ2(sin2 ), which are exactly the cases (1), (2), (3) given
of the Proposition statement.

In case B, notice that one has µ1(seq1 )xeq1 = D(sin1 − λ1(D)) which allows to
rewrite the reduced (x2, s2) dynamics as

 ẋ2 = µ2(s2)x2 − αDx2

ṡ2 = −µ2(s2)x2 +D(sin2 (D)− s2)
(6)

where sin2 (D) is defined in (3). This is again the classical chemostat model but
with non-monotonic growth and the effective input concentration sin2 (D), for
which the steady state analysis given in Proposition 5 of the Appendix applies.
This gives straightforwardly the cases (4), (5), (6) of the statement. 2

In practice, only case (6) is desirable because it guarantees that in any situ-
ation the wash-out of both species is avoided. Usually, the dilution rate D is
the operating parameter that can be easily manipulated. In the next section,
we study how to change the value of D to be in case (6) when the original
operating conditions are not in this case.
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3 Wash-out avoidance

In this section, we consider situations for which the attraction basin of equi-
libria with wash-out of biomass 1 or 2 or both is non empty. According to
Proposition 1, this happens in cases (1) to (5). We study now how to play
only with the value of the dilution rate D to move to case (6).

Consider the domains

D5 := {(sin1 , sin2 , D) ∈ R3
+ ; αD < µ1(sin1 ), αD ≤ µm2 , s

in
2 (D) > λ+

2 (D)}

D6 := {(sin1 , sin2 , D) ∈ R3
+ ; αD < µ1(sin1 ), αD ≤ µm2 , λ

−
2 (D) < sin2 (D) ≤ λ+

2 (D)}

which are the sets of operating parameters (sin1 , s
in
2 , D) that correspond to

cases (5) and (6) of Proposition 1.

Consider the interval
I := (0,min(µm1 , µ

m
2 )/α)

and introduce the functions defined on I:

ν−(D) := λ1(D) + λ−2 (D), ν+(D) := λ1(D) + λ+
2 (D), D ∈ I

(that are such that ν− < ν+ on I), which allow to describe the domains D5,
D6 as follows, using the expression (3) of sin2 (D) when αD < µ1(sin1 ).

D5 = {(sin1 , sin2 , D) ∈ R2
+ × [0, µm2 /α] ; αD < µ1(sin1 ); ν+(D) < sin1 + sin2 }

D6 = {(sin1 , sin2 , D) ∈ R2
+ × [0, µm2 /α] ; αD < µ1(sin1 ); ν−(D) < sin1 + sin2 ≤ ν+(D)}

Note from expressions (2) and (4) that the functions λ1 and λ−2 are increas-
ing, while λ+

2 is decreasing. The function ν− is thus increasing. One has also
ν−(0) = 0 and ν−(D)→ +∞ when D → min(µm1 , µ

m
2 )/α. One can then define

the inverse function
η−(s) := (ν−)−1(s), s > 0

The function ν+ is not necessarily monotonic but one has ν+(D)→ +∞ when
D → 0+. Denote

sm := min
D∈Ī

ν+(D)

and one can define the function

η+(s) := max{D ∈ I ; ν+(D) ≤ s}, s > sm.

Note that ν− < ν+ on I implies that one has η−(s) > η+(s) for any s > sm.

Our main result is the following.
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Proposition 2 Consider a triplet (sin1 , s
in
2 , D) with sin1 > 0, sin2 ≥ 0 and

D > 0, that do not belong to D6.

(i) For other operating conditions (sin1 , s
in
2 , D) with D lower than D and suf-

ficiently small, (sin1 , s
in
2 , D) belongs to D6.

(ii) If (sin1 , s
in
2 , D) belongs to D5 with the condition

α η+(sin1 + sin2 ) < µ1(sin1 ) (7)

fulfilled, then any D ∈ (η+(sin1 +sin2 ),min(µ1(sin1 )/α, η−(sin1 +sin2 )) is such
that D > D and (sin1 , s

in
2 , D) belongs to D6.

PROOF. Fix sin1 > 0 and sin2 ≥ 0.

Note first that ν−(0) = 0 and ν+(0+) = +∞ imply that one has ν−(D) <
sin1 + sin2 ≤ ν+(D) for D > 0 small enough. Therefore, for any D > 0, there
exists D ∈ (0, D) such that (sin1 , s

in
2 , d) ∈ D6 for any d ≤ D. This shows (i).

Let us now study if it possible to have (sin1 , s
in
2 , D) ∈ D6 with D > D when

D > 0 is such that (sin1 , s
in
2 , D) /∈ D6.

According to Proposition 1, in cases (1), (2) or (3), one has αD ≥ µ1(sin1 ) and
D has then to be reduced to fulfill the condition αD < µ1(sin1 ) required in
case (6).

In case (4), either one has αD > µm2 , and D has to be reduced to fulfill the
condition αD ≤ µm2 of case (6), or one has sin2 (D) ≤ λ−2 (D). This latter situa-
tion amounts to write sin1 + sin2 ≤ ν−(D) and as the function ν− is increasing,
D has again to be reduced to obtain the condition sin1 + sin2 > ν−(D) of case
(6).

In case (5), one has sin1 + sin2 > ν+(D) which implies D < η+(sin1 + sin2 )
by definition of η+. If α η+(sin1 + sin2 ) < µ1(sin1 ), then any D̄ in the interval
(η+(sin1 + sin2 ), µ1(sin1 )/α) verifies sin1 + sin2 ≤ ν+(D̄). If moreover one has D̄ <
η−(sin1 + sin2 ) (recall that η+ < η−), one guarantees the inequality sin1 + sin2 <
η−(D̄). This proves the point (ii). 2

The surprising fact, when compared to the usual chemostat model, is that
increasing the dilution rate D can bring stability in certain situations given in
(ii). Indeed, increasing the dilution rate amounts to reduce the residence time,
which is usually a factor of instability. Here, the key point for such a phe-
nomenon to occur relies on the possible non monotonicity of the function ν+,
which implies that the function η+ is non identically equal to min(µm1 , µ

m
2 )/α.

Let us show that the conditions of case (ii) of Proposition 2 can be really met.
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Proposition 3 Assume one has µm2 ≥ µm1 . Let

Dm := max{D ∈ I ; ν+(D) = sm}.

(i) Any triplet (sin1 , s
in
2 , D) such that sin1 + sin2 > sm and D > Dm with

ν+(D) < sin1 + sin2 belongs to D5 and verifies the inequality (7), provided
that sin2 is sufficiently small.

(ii) Any triplet (sin1 , 0, D) that belongs to D5 satisfies the inequality (7).

PROOF.

Notice first that when µm2 ≥ µm1 , µm1 is necessarily finite and one has I =
(0, µm1 /α).

Take any s > sm and denote D̃ = η+(s). For any D > Dm in I such that
ν+(D) < s, one has

λ1(D) < s− λ+
2 (D).

As D < D̃ and λ+
2 is decreasing, one has also

λ1(D) < s− λ+
2 (D̃). (8)

Consider now any sin2 < min(s, λ+
2 (D̃)) and take sin1 = s− sin2 . For this choice

of sin1 and sin2 , inequality (8) gives

λ1(D) < sin1

(along with ν+(D) < sin1 + sin2 ). As the interval I is equal to (0, µm1 /α) and
the function µ1 is increasing, having λ1(D) < sin1 is equivalent to have αD <
µ1(sin1 ). This shows that the triplet (sin1 , s

in
2 , D) belongs to D5 (notice that one

has necessarily αD < µm2 as µm1 ≤ µm2 ).

For D = D̃, one has ν+(D̃) = s. In the same manner, one obtains λ1(D̃) < sin1
for the former choice of sin1 and sin2 , or equivalently αD̃ < µ1(sin1 ). This shows
that the inequality

αη+(sin1 + sin2 ) < µ1(sin1 )

is necessarily fulfilled.

For the particular case sin2 = 0, note that ν+(D) < sin1 implies λ1(D) < sin1
which, in turns, implies αD < µ1(sin1 ). From the definition of ν+, this shows
that the inequality αη+(sin1 ) < µ1(sin1 ) is verified. 2
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4 Numerical illustrations

4.1 Simulations

Typical instances of functions that fulfill Assumption 1 are given by the Monod
expression for the first reaction

µ1(s1) =
µm1 s1

K1 + s1

. (9)

and the Haldane one for the second

µ2(s2) =
µ̄2s2

K2 + s2 +
s22
Ki

(10)

for which one has

ŝ2 =
√
K2Ki.

Then, the break even concentrations defined in Section 2 have the expressions

λ1(D) =
αDK1

µm1 − αD
, αD < µm1

for the Monod function (9), and for the Haldane function (10)

λ±2 (D) =
µ̄2 − αD ±

√
(µ̄2 − αD)2 − 4(αD)2K2

Ki

2αD
Ki

, αD ≤ µm2

Figure 2 gives the values of the parameters chosen for the numerical com-
putation, along with the graphs of the corresponding functions µ1, µ2. The
numerical values of the parameters were chosen such that the graphical rep-
resentations be very clear and the phenomenon very well put in evidence. We
will come back on this point in the discussion at the end of this section but the
phenomenon appears for several parameter sets reported in the literature even
if it may be less obvious and more difficult to represent graphically (cf. for
instance [14]) as well as for more complicated models, (cf. [7, 20] for example).

For these values, one has ŝ2 ' 2.646 and µm2 ' 0.626. So, we are in the case
µm2 > µm1 of Proposition 3.

Figure 3 gives the graphs of the associated break-even concentrations λ1, λ±2
and the functions ν±.
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µm1 K1 µ̄2 K2 Ki α

0.6 0.4 1.1 1 7 0.7

(a) Parameters values. (b) Graphs of µ1 and µ2.

Fig. 2.

Fig. 3. Graphs of the functions λ±i (left) and ν± = λ1 + λ±2 (right).

Remind that λ1 and λ−2 are increasing while λ+
2 is decreasing. The function ν+

is always above ν− (which is increasing) and ν+ tends to +∞ on the boundary
of the interval I = (0, µm1 /α) when µm1 ≤ µm2 .

As it is not always easy to grasp domains in R3, we fix values of sin2 and depict
the cross-sections of the domains D5, D6 in the (sin1 , D) plane. For a fixed
value of sin2 , these cross-sections are

C5(sin2 ) := {(sin1 , D) ∈ R+ × I , αD < µ1(sin1 ); ν+(D) < sin1 + sin2 }

C6(sin2 ) := {((sin1 , D) ∈ R+ × I , αD < µ1(s1)in); ν−(D) < sin1 + sin2 ≤ ν+(D)}

It can be simply interpreted in terms of intersections of epigraphs or hy-
pographs of the functions λ1, ν+ − sin2 and ν− − sin2 in the (D, sin1 ) symmetric
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plane:

C5(sin2 ) := {sin1 > λ1(D)} ∪ {sin1 > ν+(D)− sin2 }

C6(sin2 ) := {sin1 > λ1(D)} ∪ {sin1 ≤ ν+(D)− sin2 } ∪ {sin1 > ν−(D)− sin2 }

Accordingly to Proposition 2, the complementary of C5(sin2 ) ∪ C6(sin2 ) in the
domain {(sin1 , D) ∈ R+ × I ; αD < µ1(sin1 )} corresponds to case (4) and the
complementary {(sin1 , D) ∈ R2

+ ; αD ≥ µ1(sin1 )s} is covered by cases (1), (2)
and (3).

In Figure 4, one can see that for sin2 = 0, C5 and C6 cover almost but not all the
domain {αD < µ1(sin1 )} (which is below the red curve), and that it is always
possible to reach the domain C6 (in green) from C5 (in pink) by increasing D
(for fixed sin1 ), in accordance with Proposition 3. The red curve, which is the
graph of the function µ1/α, is above the domain C5.

Fig. 4. Cross-sections of the domains D5 and D6 for sin2 = 0. From any operating
point (sin1 , D) ∈ C5 it is possible to reach C6 by simply increasing D.

For sin2 = 2 or sin2 = 5, C5 and C6 cover all the domain {D < µ1(sin1 )/α} and
the graph of the red curve touches the boundary C5 (see Figure 5). However,
it still possible to reach C6 from C5 by increasing D only if sin1 is close enough
to the value sm − sin2 (remind that sm is the minimum of the function ν+).

Increasing the values of sin2 slides further the cross-section C5 to the left on
the (sin1 , D) plane and it is no longer possible to reach C6 from C5 by simply
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Fig. 5. Cross-sections of the domains D5 and D6 for sin2 = 2 and sin2 = 5. From an
operating point (sin1 , D) ∈ C5 with sin1 not too far from sm − sin2 , it is possible to
reach C6 by simply increasing D.

increasing D (see Figure 6), exactly when the extreme point (sm − sin2 , Dm)
of C5 does no longer lie in the domain {αD < µ1(sin1 )} (i.e. when it is no
longer located below the red curve). Then, the only way to stabilize the system
playing only with the dilution rate D is to decrease its value such that (sin1 , D)
is below the green curve (which is the graph of the function ν+ − sin2 ).

Notice that this interesting property of two-step processes was already visi-
ble in certain figures of some papers of the literature, notably in relation to
the analysis of the anaerobic digestion process (cf. for instance the Figure 4
of the paper by Sbarciog et al., 2010, [14]). However, the property was not
underlined in the paper as a way to stabilize the system. It should be noticed
that this property obviously appears in more complex models. In [7], which
studied a model of the anaerobic digestion of micro-algae, this property was
highlighted. In particular, when comparing the two models of the anaerobic
digestion initially proposed in [4] and [5], it was first noticed that the inhi-
bition coefficient identified in the first model, ([4]) was too large to play a
role in the system dynamics (recall that having a large inhibition coefficient
in the Haldane function amounts to considering a Monod kinetics). Then, in
modifying this coefficient (increasing the inhibition of the second step kinetics
in decreasing the value of the inhibition coefficient in the Haldane kinetics), it
was possible to show that the region in which the biogas is maximum exhibits
a bi-stability. Comparing these results with those obtained when studying the
second model (from [5]) yielded to plot the Figure 11 of [7] where this property
is visible (but not further discussed). Finally, this property has been described
in [13] for two-step biological systems with density-dependent kinetics in the
first step, but again without giving any condition to test it nor proposing a
control strategy to take advantage of it. Here we give sufficient conditions that
can easily be tested for the phenomenon to appear.
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Fig. 6. Cross-sections of the domains D5 and D6 for sin2 = 7 and sin2 = 9. From any
operating point (sin1 , D) ∈ C5 it it not possible to reach C6 by simply increasing D.

Fig. 7. Dynamical simulation of the two-step system. The trajectories of the system
with a constant dilution rate (D = 0.7) are plotted in red: the washout of X2 is
globally attracting. In blue, with the same initial conditions, the dilution rate is
changed to 0.8 at t = 100 and then switched back to D = 0.7 at t = 400: the system
is now globally attracted by a positive steady state. In green, again for the same
initial conditions, the trajectories are plotted when the classical strategy is used:
the dilution rate is changed to 0.6 at t = 100 and then switched back to D = 0.7 at
t = 400.
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Fig. 8. Graph of µ2 with horizontal lines representing the value αD and the vertical
ones s2 = sin2 (D) for D = 0.7 (left) and D = 0.8 (right).

To illustrate the approach, we simulated the two-step system with the pa-
rameter values considered here-above over a time T = 600. For the initial
conditions X1(0) = 10, S1(0) = 3, X2(0) = 0.1, S2(0) = 20 and for a constant
dilution rate D = 0.7, the results are plotted in red in Figure 7. It can be seen
that X2 is washed out. We can check in the first picture of Figure 8 that the
system exhibits bi-stability for this value of D since sin2 (D) is larger than λ+

2 .
Let us apply our control strategy: for the same initial conditions, the system
is simulated again but, at t = 100, D is increased from 0.7 to 0.8 and then
switched back to 0.7 at t = 400. It can be seen in the second picture of Figure
8 that for D = 0.8, the only positive equilibrium is the one for which s2 = λ−2
(λ+

2 being this time larger than sin2 (D) and is thus no longer a possible value
for s2 at steady-state). The counter-intuitive result is that X2 will not finally
be washed out while it may become very small during the transient. In the
proposed simulations however, it was checked that the minimum of X2 over
time is 0.017, which sounds acceptable from a biological point of view. Finally,
the performances of the new strategy may be compared to more classical ones.
To do so, we consider an additional simulation that consists in simulating the
system under the same conditions but instead of increasing the dilution rate
at t = 100, we decrease it at D = 0.6, before switching back it at D = 0.7
at t = 400. The value D = 0.6 has been chosen because it is the symmetric
one of D = 0.8 with respect to D = 0.7 : the corresponding steady states
- both in C6 are practically at the same distance from C5. Thus both strate-
gies can be said to be comparable in terms of stability. The reader may check
in Figure 4 that with D = 0.6 the system is indeed operating in C6). The
corresponding trajectories are plotted in green in Figure 8. The index perfor-
mances that are compared are the absolute quantity of matter processed (that
is

∫ T
0 D(τ)Sin1 dτ) and the output concentrations (pollutants) S1 and S2 over

500 units of time. For the classical strategy, the total matter processed over
this time period is 3200 while it is equal to 3800 for the new proposed strategy.
As explained above, the actual strategy allows to process much more matter
than the classical one. The price to pay is the washout risk taken during the
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transient. Concerning the output substrate concentrations, since the new ap-
proach considers a higher dilution rate, these index performances cannot be
better than with the classical approach. It may be seen in Figure 7 that the
index is indeed significantly degraded for S1. However, note that this takes
place only during the transient and that it is almost equivalent for S2: we
have treated much more matter with the new strategy than with the classical
one while the performance in terms of treatment only affected transiently one
substrate.

4.2 About practical implementation of the proposed control strategy

The proposed strategy consists in decreasing the residence time (in increas-
ing the dilution rate) and not increasing it as usually done to stabilize bio-
processes. This has some practical advantages: it allows to treat a larger quan-
tity of matter and for industrial plants that impose a minimal flow rate to be
processed, it does not require any upstream storage. Of course, increasing the
residence time increases the output concentration at steady-state, but once
close to the nominal steady-state one may reduce the flow rate to its nominal
value.

For a number of reasons, it may appear to be risky to apply this control strat-
egy on a real plant. Indeed, it should be noted that the range of dilution rate
allowing to globally stabilize the process in increasing it (going from C5 to
C6 in Fig 3 or 4) is quite narrow although the model parameters were chosen
to highlight the phenomenon. The property which is highlighted is the con-
sequence of model parameter values and conditions under which the process
is operated (values of inputs: the dilution rate and the input substrate con-
centration). We take advantage of this property to propose a way to globally
stabilize the system but - unless the exact model of the system be known -
the value of the dilution rate to apply to effectively stabilize the system is un-
known. In other words, there is not an adaptive strategy. In practice, there is
obviously a non negligible risk to not increase the dilution rate enough (resp.
a little bit too much) such that the process be in a situation where it continues
towards the washout - it remains in C5 (resp. the washout is the only global
stable steady state - it directly goes over C6). In other words, the study of the
robustness of the control with respect to model parameters and inputs should
be carefully investigated before testing it in practice. From Figures 4 or 5,
it may be seen that this robustness is all the greater as Sin1 remains close to
Sm− Sin2 (while being greater) where Sm is the minimum of ν+. To avoid any
problem, some implementation precautions could be taken. For instance, some
tolerance index such as that one proposed in [3] in revisiting the index initially
proposed by Hess and Bernard (cf. [24]), could be used. Such tolerance index
was precisely proposed to estimate the distance between the actual operating
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conditions and the washout. Of course additional work would be needed to be
able to estimate on-line such index but for sure its monitoring would greatly
help to manage the process within the narrow region of interest. Another pos-
sibility would be to adapt the strategy initially proposed by Steyer et al., 1999
for the optimization of the anaerobic digestion process, cf. [26]. This strategy,
which was further shown to be optimal with respect to a time criterion (cf.
[25]), is based on a ‘dialogue’ between the user and the process. Initially, it is
supposed that an overproduction of biogas should be observed after a shock
load. If not, it means that inter-metabolites have accumulated and the pro-
cess is operating in a bad manner. If yes, the process is working well and
the dilution rate can be increased. Here, the idea would be adapted (imagine
the system goes towards washout). Instead of decreasing the dilution rate, it
would be increased slightly. Monitoring carefully the response of the system to
this change would certainly help us in applying such a counter-intuitive con-
trol strategy. Finally, an relevant challenge would be to find a robust control
feedback that would stabilize the system under the constraint that the control
remains larger or equal to its nominal value, despite some uncertainties on
the knowledge of the growth functions. In such a way we should be able to
synthesis the right control in C6. The adaptive character of such a feedback,
which is already used to stabilize the model of the classical chemostat with
non-monotonic growth, for example using a PI (cf. [9], the integral term al-
lowing to learn the nominal value of D necessary to maintain the system at a
desired equilibrium state), would make the strategy robust both with respect
to the model and with respect to disturbances. This question is beyond the
present work and part of perspectives.

5 Conclusion

This study reveals the role played by the sum of the break-even concentrations,
as the function D 7→ λ1(D) + λ+

2 (D), in the counter-intuitive phenomenon of
increasing the dilution rate to stabilize a two-steps bio-process model. More
precisely, we show that when this function is non-monotonic on its domain,
this phenomenon occurs provided that the input concentration sin2 of substrate
of the second reaction is null of not too large. This result provides a new way to
stabilize such processes in certain situations, without increasing the residence
time, as it is often done which may be penalizing in an industrial context.

17



Appendix

We recall here the classical results about the chemostat model ẋ = µ(s)x− αDx

ṡ = −µ(s)x+D(sin − s)
(11)

when µ is a monotonic or non-monotonic function.

Proposition 4 Assume that the function µ is increasing on (0, sin) and define
the break-even concentration λ(D) such that

µ(λ(D)) = αD, αD ∈ (0, µ(sin))

• When αD ≥ µ(sin), the system (11) has an unique equilibrium E0 := (0, sin)
(”wash-out”), which is moreover globally asymptotically stable on R2

+.
• When αD < µ(sin), the system (11) admits an unique positive equilibrium
E+ := ((sin − λ(D))/α, λ(D)) (in addition to the equilibrium E0), which is
moreover globally asymptotically stable on the domain R?

+ × R+.

Proposition 5 Assume that there exists ŝ ∈ (0, sin) such that the function µ
is increasing on (0, ŝ) and decreasing on (ŝ, sin). Define the break-even con-
centrations λ−(D), λ+(D) as follows

λ−(D) = min{s ∈ [0, ŝ] ; µ(s) ≥ αD}, αD ∈ [0, µ(ŝ)]

λ+(D) = max{s ∈ [ŝ, sin] ; µ(s) ≥ αD}, αD ∈ [µ(sin), µ(ŝ)]

• If αD > µ(ŝ), the system (11) has the unique equilibrium E0 := (0, sin),
which is globally asymptotically stable on R2

+.
• If αD < µ(sin), the system (11) admits an unique positive equilibrium E− :=

((sin−λ−(D))/α, λ−(D)) which is globally asymptotically stable on R?
+×R+.

• If αD ∈ [µ(sin), µ(s?)], the system (11) presents a bi-stability between E−

and E0. From any initial condition in R?
+ × R+ excepted on a set of null

measure, the solution converges asymptotically to E− or E0.
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