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A B S T R A C T   

Marbling and rib composition are important attributes related to carcass yields and values, beef quality, con-
sumer satisfaction and purchasing decisions. An open-access computer image analysis method based on a fresh 
beef rib image captured under nonstandardized and uncontrolled conditions was developed to determine the 
intramuscular, intermuscular and total fat content. For this purpose, cross-section images of the 5th-6th rib from 
130 bovine carcasses were captured with a Galaxy S8 smartphone. The pictures were analyzed with a program 
developed using ImageJ open source software. The 17 processed image features that were obtained were mined 
relative to gold standard measures, namely, intermuscular fat, total fat and muscles dissected from a rib and 
weighed, and intramuscular fat content (IMF - marbling) determined by the Soxhlet method. The best predictions 
with the lowest prediction errors were obtained by the sparse partial least squares method for both IMF percent 
and rib composition and from a combination of animal and image analysis features captured from the caudal face 
of the 6th rib captured on a table. These predictions were more accurate than those based on animal and image 
analysis features captured from the caudal face of the 5th rib on hanging carcasses. The external-validated 
prediction precision was 90% for IMF and ranged from 71 to 86% for the total fat, intermuscular and muscle 
rib weight ratios. Therefore, an easy, low-cost, user-friendly and rapid method based on a smartphone picture 
from the 6th rib of bovine carcasses provides an accurate method for fat content determination.   

1. Introduction 

Marbling can be defined as white flecks of intramuscular fat (IMF) 
distributed between muscle fibers. Marbling is one of the major attri-
butes that determines the meat-eating qualities of beef and contributes 
to the economic value of carcasses and meat [1–3]. For example, the 
grading of carcasses in Asia and North America is influenced by the 
amount of marbling within certain limits; the more marbling there is, 
the higher the grade [4]. Thus, in the meat industry, a rapid, noninvasive 
and nondestructive evaluation and prediction of marbling is desired. 
The gold standard for marbling evaluation is the chemical analysis of 
intramuscular lipid content. However, the major drawbacks of this gold 
standard method are the destruction of a piece of muscle required for 

analyses as well as the time and cost of the analyses. Thus, alternative 
instrumental methods have been developed to manage and predict beef 
marbling, such as the application of tomography, ultrasound and visi-
ble–near-infrared spectroscopy to carcasses or muscles/meat as recently 
reviewed [5]; most of these methods are not cost-effective and require 
sophisticated instruments. Several imaging solutions have also been 
developed and applied to muscles to predict the marbling of beef breeds 
with high potential [6–10]. Imaging solutions have also been developed 
to predict the carcass yield from the morphometry of some muscles and 
major fat regions assayed from pictures of a rib cut [11–13]. Thus, im-
aging solutions have been suggested to provide accurate estimations of 
marbling and carcass composition, which are two major drivers of the 
economy for the beef industry. The prerequisite for these algorithm- 
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based imaging solutions was, however, the quality of the pictures 
captured in controlled conditions in terms of the geometry, illumination 
and background to counteract the poor performances of the camera 
available and the difficulty of capturing images without artifacts. In 
recent years, smartphone image sensors have greatly progressed in 
terms of sensitivity, color precision and resolution and can now compete 
with professional cameras [14]. At the same time, the computation ca-
pacity of these devices has become similar to personal computers, which 
provides opportunities to develop computer vision apps. To date and to 
the best of our knowledge, imaging solutions have rarely been used from 
smartphone-based image processing to determine meat-eating quality 
attributes. Smartphone-based imaging solutions have been rarely 
developed for the evaluation of beef tenderness of fresh meat [15] or for 
the determination of fat content in deli products [16]. The main objec-
tive of this study is to report an open-access computer image analysis 
(CIA) method based on a fresh beef rib image captured with a smart-
phone under nonstandardized and uncontrolled conditions for esti-
mating not only marbling but also rib composition in terms of muscle, 
total fat, intermuscular fat, intramuscular fat (i.e., marbling) and sub-
cutaneous fat. The performances of the algorithms developed with open 
source tools were evaluated for measuring the multiscale fat distribution 
over the entire cross-section of a bovine rib photographed with a single 
smartphone in uncontrolled conditions such as on the carcass or after 
sampling. The obtained image analysis features were compared with 
gold standard methods, namely, IMF content and muscle and fat weight 
after rib dissection. Finally, data mining of all the features obtained 
provided prediction equations for the IMF in longissimus thoracis (LT) 
muscle, the total or intermuscular fat weight within the rib and the 
weight of LT muscle. 

2. Material and methods 

2.1. Animals 

To produce the biological material required for good representa-
tiveness of the biological variability in marbling as well as the variability 
in the surface and shape of bovine ribs, 130 bovine ribs were collected 
from 7 dairy (mean slaughter age 20.4 months) and 31 beef (mean 
slaughter age 16.9 months) young bulls as well as 85 dairy (mean 
slaughter age 65.6 months) and 7 beef (mean slaughter age 73.0 
months) cull cows, heifers or steers slaughtered in two slaughterhouses 
(Villers-Bocage, France, license number FR 14.752.10 CE and the 
experimental slaughterhouse of INRAE - UE1414 Herbipole, Theix, 
France). All animal trials described herein were conducted according to 
relevant international guidelines (European Union procedures on ani-
mal experimentation – Directive 2010/63/EU) for the use of production 
animals in animal experimentation. After slaughtering, carcasses were 
graded for conformation and fatness according to the EUROP grading 

system (Directive 1308/2013 UE), and hot carcass weight was recorded 
(Table 1). Carcasses were stored at 2–4  degreesC immediately after the 
slaughtering procedures, and carcasses were cut at the 5-6th rib at 24 or 
48 h postmortem, which is the standard procedure for carcass man-
agement in France. 

2.2. Image acquisition 

Cross-section images of the 6th rib were captured with a Galaxy S8 
smartphone (® Samsung Electronics Co., South Korea) using the default 
settings except for the strobe, which was always active (Fig. 1-A). To 
reduce the specular reflexion [10], the smartphone was equipped with a 
protective cover on which two linear polarizers (® Edmund optics, 
United States of America) were fixed orthogonally, the first in front of its 
camera and the second in front of its strobe. A homemade laminated 
scale of 5 × 5 cm2 (Fig. 1-B) was designed for calibrating the image 
geometrically. Each operator had to place the scale flat on the rib bone 
extremity, and he was instructed to photograph the rib perpendicularly 
to the cross-section. This operation was facilitated by the large display of 
the smartphone. Two pictures of each animal were captured. The cranial 
face of the 6th rib cross-section corresponding to the caudal face of the 
5th rib (CAF5R) was captured directly on the front carcass, as it is 
traditionally hung in the slaughtering house (Fig. 1-C). The caudal face 
of the 6th rib (CAF6R) cross-section was captured on a red or white table 
available in the slaughterhouse (Fig. 1-D) once the rib was separated 
from the hindquarter (prepared rib, according to the United Nations 
Economic Commission for Europe (UNECE) code 1604). Each RGB (red, 
green, blue) image of 4032 × 3024 pixels was saved in the default JPEG 
format. With such recommendations, the spatial resolution would reach 
100 µm, which is adapted for sampling even the small marbling flecks 
[6], and the perspective effect would be reduced. 

2.3. Image analysis 

A dedicated program was developed in macro language using open 
source ImageJ v1.52i image processing software [17] enriched with two 
packages (Auto_Threshold.jar, Fast_Morphology.jar). An operator was 
trained, and the operations concerning fat detection were automated to 
make the analysis more rapid and reproducible. The resulting images 
from each step of the following algorithm are illustrated in Fig. 1. The 
specific ImageJ functions are in italics. 

2.3.1. Image preprocessing 
After loading and zooming on the scale of the raw RGB image (Fig. 1- 

C), the operator precisely spots the four corners of the 5 × 5 cm2 scale. 
Then, perspective correction is carried out (Landmark Correspondences) 
followed by the geometrical calibration (Set Scale) of the image (Fig. 1- 
E). The most contrasted green (G) and blue (B) components are averaged 
to produce a grayscale image (Fig. 1-F). The commonly used median 
filter is then applied to eliminate the remaining noise. 

2.3.2. Semiautomatic segmentation of the anatomic areas of interest 
Regardless of the slaughterhouse, the visible cross-section area from 

the prepared rib (UNECE code 1604) is often incomplete and relatively 
variable in size due to the way the hindquarters are cut. With the aim of 
realizing standardized area measurements, we propose to cut the rib 
again at seventy degrees (Fig. 1-E). This approach was preferred to a cut 
using anatomic landmarks [12] that were difficult to identify in a sig-
nificant number of our images. Using a polygon pen, the operator 
roughly draws a large area around the intermuscular fat and the sub-
cutaneous fat area adjoining the M. trapezius thoracis (Fig. 1-E). Then, he 
precisely draws (1) the rib portion, including M. spinalis, M. multifidus, 
M. longissimus, M. iliocostalis, M. semispinalis capitis, and M. rhomboideus 
and (2) the rib eye (or M. longissimus) (Fig. 1-F). Both areas are labeled to 
be analyzed geometrically (Fig. 1-G). The rib eye area is automatically 
(1) reduced (Erode) to 1.5 mm thickness (using successive erosion) to 

Table 1 
Carcass characteristics (mean ± standard deviation) of the 130 bovines used in 
the study.   

Dairy young 
bulls 

Beef young 
bulls 

Dairy 
others1 

Beef 
others1 

Number of bovine 7 31 85 7 
Slaughter age 

(month) 
20.4 ± 1.9 16.9 ± 3.7 65.6 ±

25.1 
73.0 ±
39.9 

Hot carcass weight 
(kg) 

369 ± 37 336 ± 83 352 ± 57 372 ± 42 

Conformation 
score2 

P+ R= P+ R−

Fat score2 3.0 ± 0.0 2.9 ± 0.3 2.9 ± 0.4 3.0 ± 0.0  

1 Others: cull cows, heifers, steers. 
2 Conformation and fat scores according to the EUROP scale: from P- (poor) to 

E+ (excellent) for the carcass conformation and from 1 (very low) to 5 (very 
high) for the degree of carcass fatness. 
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avoid the presence of intermuscular fat in the dissected rib eye area and 
(2) enlarged (Enlarge) by 25% (in proportion to the rib eye radius, cor-
responding to 65% in proportion to the rib eye area) to capture a pro-
portional area of intermuscular fat all around the rib eye. 

2.3.3. Automatic segmentation of fat and lean region in the anatomic areas 
of interest 

With the aim of detecting areas related to the intramuscular 
(marbling), intermuscular and subcutaneous fat, which correspond to 
the brightest pixels in the grayscale image (Fig. 1-F), we evaluated 
several local or global thresholding methods available under ImageJ in a 
previous study. First, we retained those segmentation methods based on 
the image histogram analysis inside the rib eye enlarged by 25%. This 
area appeared optimal to maximize the chance of obtaining a significant 

proportion of the brightest pixels, even in lean animals. Then, we 
compared (1) the Otsu [18] and the MaxEntropy [19] methods, which 
have already been suggested to perform well for the automatic detection 
of marbling flecks [9], and (2) the Li [20] method, which, in our con-
ditions, appeared to be intermediate in terms of over- or under- 
segmentation of the fat areas. According to visual inspection, the Li 
method (Auto Threshold) was proven to be more powerful, and its 
grayscale threshold was applied to detect (1) the intramuscular fat in the 
rib eye and intermuscular fat in the rib eye enlarged by 25% (Fig. 1-G), 
(2) the total fat in the rib portion and (3) the intermuscular fat and the 
subcutaneous fat area adjoining the M. trapezius thoracis in both drawn 
areas (Fig. 1-H). Manual thresholding by the operator was also achieved 
for the intramuscular fat in the rib eye [21]. 

Fig. 1. Image acquisition (A-D) and processing (E- 
H). (A) General view of the shooting conditions on 
one hanging carcass. (B) Laminated scale of 5 × 5 
cm2 prepared for the carcass identified as ID51. (C) 
Caudal face of the 5th rib (CAF5R) captured on the 
hanging ID51 carcass. (D) Caudal face of the cut 6th 
rib (CAF6R) captured on the table. (E) ID51-CAF5R 
image corrected for perspective effects, geometri-
cally calibrated (Scale bare = 5 cm) and cut at 70 
degrees. The intermuscular fat (green polygon) and 
the subcutaneous fat (dashed green polygon) area 
adjoining the M. trapezius thoracis (green arrow) and 
starting from the bone were roughly drawn by the 
operator. (F) Rib portion area cut at 70 degrees 
(dashed white lines) excluding the bone and the M. 
trapezius thoracis and converted to grayscale. The rib 
eye was precisely drawn (green dashed polygon). Rib 
eye area automatically enlarged by 25% (green 
polygon). (G-H) Labeled image of automatically 
detected fat regions. (G) Intramuscular fat (yellow) 
in the rib eye (red) and intermuscular fat (cyan) in 
the rib eye area enlarged by 25%. (H) Total fat (cyan) 
in the rib portion (blue). Intermuscular fat area 
(pink) and the piece of subcutaneous fat area (yel-
low) adjoining the M. trapezius thoracis. (For inter-
pretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   

B. Meunier et al.                                                                                                                                                                                                                                



Methods 186 (2021) 79–89

82

2.3.4. Image analysis and feature extraction 
The entire segmented image was labeled (Fig. 1-G plus Fig. 1-H). The 

geometrical measurements (area, Feret diameter, perimeter and number 
of particles) were processed (Analyze Particles), and features were 
calculated mainly as area proportions [7] and were reported (Table 2). 
The boundaries of all segmented areas were placed in the overlay of the 
original image corrected for perspective effects, which was saved for 
further visual validation by an external expert. 

2.4. Gold standard assays 

The sixth ribs were cut using the thoracic vertebras as reference. The 
resulting rib thicknesses varied from approximately 4 to 6 cm depending 
on the bovine morphology and was not precisely recorded in this study. 
After the ribs were prepared (UNECE code 1604) and photographed, 
they were weighed (RibW) and dissected. Intermuscular fat, total fat, 
muscles and bones were separated from each other and weighed. 
Therefore, the fat to rib weight ratio (RibFatWR), muscle to rib weight 
ratio (RibMuscWR), intermuscular fat to rib weight ratio (RibInterWR) 
and intermuscular fat to LT weight ratio (RibInterWM) were calculated 
(Table 2). The weight of the LT muscle (LTW), also called the rib eye, 
was also recorded. The LT of the 6th rib was ground to obtain homog-
enous samples used for chemical analysis of marbling. The IMF content 
was assayed according to the Soxhlet method after acid hydrolysis. A 
well-defined and weighted amount (approximately 5 ± 0.001 g) of 
ground meat was hydrolyzed with 4 N hydrochloric acid for 1 h at 100 
degreesC and then washed with water. Lipid extraction was achieved 
using an accelerated solvent extractor with 150 mL petroleum ether. 
After evaporation of the solvent, the flasks with the fat were dried for 3 h 
at 103  degreesC, cooled to room temperature in a desiccator and then 
weighed (±0.001 g) to determine the amount of IMF in the meat sample. 
The results were expressed as the % of IMF in fresh meat. 

2.5. Data analysis 

Statistical analysis was performed using R 3.5.1 software (https://r 
-project.org). Pearson correlation matrices between all 26 numerical 
parameters assayed on 130 bovines were processed and visualized. 
Prediction models were developed to predict the 7 gold standard pa-
rameters using two animal or carcass traits (age and HCW) and seven-
teen image analysis features for a total of 19 quantitative variables. To 
consider the qualitative animal variables, breed types («dairy» and «beef 
cattle» modalities) and maturity («young bull» and «others» modalities) 
were combined in a single variable according to four modalities («dairy 
young», «dairy others», «beef young», «beef others»). Due to the di-
vergences among the number of bovines within the four modalities, 
virtual bovine’s samples were then generated based on Synthetic Mi-
nority Oversampling Technique (SMOTE algorithm). SMOTE algorithm 
allowed oversampling the minority classes and redressing the class 
imbalance problem. This allowed reaching about 84 bovines by mo-
dality. The method was also very useful for splitting data into training 
(75% of the entire dataset) and validation sets (25% of the entire 
dataset) with an equilibrium among the four modalities. A total of 252 
(84 bovines × 4 modalities × 75%) samples were used for training the 
prediction model. The remaining 84 samples were used for external 
validation. 

Three machine learning approaches were compared to develop pre-
dictive models: sparse partial least squares (SPLS), random forest (RF) 
and the combination of clustering of variables and multiple linear 
regression (ClustOfVar + MLR). Unlike partial least squares regression, 
which reduces the dimensions and employs all predictors regardless of 
their relevance, the SPLS method allows both variable selection and 
dimension reduction. This method was thus chosen for its good pre-
dictive performance and was launched using the mixOmics R package 
[22]. Furthermore, the RF technique was also employed for the same 
purpose. A random forest consists of a large number of individual 

Table 2 
Animal characteristics and overview of all measurements (mean ± standard 
deviation) carried out on the 130 bovines used in this study and their images, (1) 
the cranial face of the 6th rib cross-section corresponding to the caudal face of 
the 5th rib (CAF5R - on carcass) and (2) the caudal face of the 6th rib (CAF6R - 
on table).  

Features Description Unit Statistics  

Animal and 
carcass traits    

Type Breed type (dairy / 
beef cattle)    

Mat Maturity (young 
bull / others)    

Age Slaughter age months 51.9 ± 31.4 
HCW Hot carcass weight kg 350.2 ± 62.7  

Gold standard 
parameters    

IMF Intramuscular fat in 
M. longissimus 
thoracis (rib eye) 

% 6.6 ± 3.6 

RibFatWR Rib Fat Weight 
Ratio (Rib fat 
weight divided by 
the rib weight) 

% 12.3 ± 4.8 

RibMuscWR Rib Muscle Weight 
Ratio (Rib muscle 
weight divided by 
the rib weight) 

% 66.1 ± 4.5 

RibInterWR Rib Intermuscular 
fat Weight Ratio 
(Rib intermuscular 
fat weight divided 
by the rib weight) 

% 8.8 ± 3.9 

RibInterWM Rib intermuscular 
fat weight divided 
by the muscle 
weight 

% 11.7 ± 5.1 

RibW Rib weight g 2417.1 ± 579.2 
LTW Weight of M. 

longissimus 
thoracis 

g 579.2 ± 74.6  

Image analysis 
parameters  

CAF5R CAF6R 

RibPortionArea Rib Portion Area 
(Cut at 70 Degree) -  
Fig. 1-G 

cm2 177.2 
± 28.7 

179.6 
± 31.5 

RibEyeArea Rib Eye Area (hand 
drawn) - Fig. 1-G 

cm2 31.3 ±
7.1 

38 ±
9.1 

RibEyeDissArea Dissected Rib Eye 
Area (minus a 
thichness of 1.5 mm 
similar to the real 
dissection) 

cm2 30.5 ±
7.1 

37.1 ±
9.1 

TrapezInterArea Trapezius 
Intermuscular Fat 
Area (Under M. 
trapezius thoracis) - 
Fig. 1-H 

cm2 1.5 ±
1.3 

2 ± 1.3 

TrapezInterThick Trapezius 
Intermuscular Fat 
Thickness (Under 
M. trapezius 
thoracis) processed 
as the Area divided 
by the Feret 
diameter- Fig. 1-H 

cm 0.4 ±
0.2 

0.4 ±
0.2 

TrapezSubThick Trapezius 
Subcutaneous Fat 
Thickness (Over M. 
trapezius thoracis) 
processed as the 
Area divided by the 
Feret diameter-  
Fig. 1-H 

cm 0.5 ±
0.3 

0.4 ±
0.3 

RibEyeFAR Fat Area Ratio in 
the Rib Eye 

% 4.5 ±
2.9 

4.9 ±
3.7 

(continued on next page) 
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decision trees at training time and outputs the mean prediction of the 
individual trees (regression analysis). The party R package was 
employed because it was shown to be more efficient for predictions 
using highly correlated data [23]. Finally, the combination of the 
ClustOfVar and MLR methods was also used to predict gold standard 
parameters. The ClustOfVar method was performed using the ClustOfVar 
R package [24]. This technique was developed specifically for identi-
fying the synthetic variables that summarize the homogenous clusters. 
Each cluster is synthesized by one variable. The most relevant synthetic 
variables were then introduced in the MLR prediction model. 

To evaluate the prediction models, we compared the mean and 
standard deviation (SD) of the predicted and measured values. We 
calculated the coefficient of determination (R2), the root mean square 
error of prediction (RMSEP) and the ratio performance deviation (RPD) 
in both the calibration and validation sets. Models with the highest R2 

and RPD values and the lowest RMSEP were considered the most ac-
curate. Karoui [25] used the R2 values to define four robustness classes: 
poor (R2 < 0.66), approximate (0.66<=R2<=0.81), good 
(0.82<=R2<=0.90), and excellent (R2>=0.91). Models with an RPD >
2 provide predictions with good accuracy [26–28]. 

To discuss the parameters identified as important for the prediction 
models, the variable importance (VIP) criterion was used for both the 
SPLS and RF methods. Interest is mainly focused on these two methods 
that conserve the original variables and also provide the best predictive 
results. For SPLS, this VIP criterion must exceed 1. For the RF method, 

there is no predefined threshold. We calculated the cumulative ordered 
variable importance (decreasing order) to provide an increasing curve, 
and we selected the features that contributed to a significant increase in 
VIP values. The variables that occurred beyond the chosen threshold did 
not provide meaningful information in terms of prediction. For the 
ClustOfVar + MLR method, we chose the significant synthetic variables 
identified by the MLR model. 

3. Results 

3.1. IMF and rib weight results 

Statistics of the slaughtered animals and their carcass traits are 
presented in Table 1. Bovines were chosen to represent the beef market 
in France and Europe in terms of marbling and rib composition with a 
wide range of data distributions from very lean to very fat ribs or LT. 
Consequently, even though the average age at slaughter ranged from 
16.9 to 73 months, the hot carcass weight (average of 350 kg) and de-
gree of adiposity of carcasses (average of 2.9) assayed by the EUROP 
grading system were within a similar range of values among the four 
classes of bovines. The conformation scores were, however, different 
between the four classes of bovines with the following class order: beef 
young bulls > beef other > dairy young bulls = dairy others. Statistics of 
the gold standard features assayed by chemical analysis or by rib 
dissection and weighting are presented in Table 2 and Fig. 2. The 
average IMF content was 6.6% in LT (Table 2), with a distribution of the 
animals around this average (Fig. 2), with both very lean (less than 2%) 
and very fat LT muscle (>16%). The total rib fat and muscle ratios 
averaged 12.3 and 66.1%, respectively with a range of approximatively 
39% and 7%. Of the 12.3% total rib fat ratio, 8.8% was composed of 
intermuscular fat. The average weights of the rib and LT were 2.42 kg 
and 287.7 g, respectively. These data followed a normal distribution 
around the means (Fig. 2). 

3.2. Performances of the developed open-access computer image analysis 
(CIA) method 

The rib images from 130 half carcasses (29 right side, 101 left side) 
were captured by six operators (only one operator per each day of image 
acquisition) in two slaughterhouses from January 2018 to January 
2019. None of the 130 CAF5R images and 129 CAF6R images (one 
forgotten) were unanalyzable (blurry, saturated or poorly framed). A 
first expert operator processed all the images, using the ImageJ program, 
in 4.3 and 4.7 min on average per image for the CAF5R and CAF6R 
images, respectively. A second expert operator visually validated all the 
saved images resulting from the overlay of a segmented image on the 
original image. Among the 259 analyzed images, one needed to be 
entirely reanalyzed, nine needed to be prefiltered because the polarizer 
was forgotten, and forty-two CAF6R images had poor subcutaneous fat 
detection because the algorithm failed to distinguish white fat from the 
white table. The image resolution ranged from 85 µm/pixel (±23%) to 
97 µm/pixel (±20%) for the CAF5R and CAF6R images, respectively. 
Statistics of the image analysis parameters are presented in Table 2. All 
values are comparable between CAF5R and CAF6R except for the ribeye 
area, which is greater on CAF6R (38 cm2 on average) than on CAF5R 
(32 cm2 on average). This result is consistent with the fact that the LT 
muscle cross section is smaller in the cranial than in the caudal direction. 

3.3. Correlations between gold standards and image analysis features for 
IMF and rib composition 

Correlation matrices between all 26 quantitative data listed in the 
same order as Table 2 and including the three groups of measurements 
(the animal and carcass traits, the gold standard parameters and the 
image analysis parameters) were produced from data assayed on the 
CAF5R and CAF6R rib faces (Fig. 3). First, both matrices are visually 

Table 2 (continued ) 

Features Description Unit Statistics 

(marbling) - Fig. 1- 
G 

RibEyeDissFAR Fat Area Ratio in 
the Dissected Rib 
Eye (marbling) 

% 4.7 ± 3 5.1 ± 4 

RibEyeDissFARCor Fat Area Ratio in 
the Dissected Rib 
Eye with density 
correction (d = 0.9 
for marbling and d 
= 1.1 for lean) 

% 3.9 ±
2.5 

4.2 ±
3.4 

RibEyeFARMt Fat Area Ratio in 
the Rib Eye 
(manual threshold) 

% 5.4 ± 4 5.7 ±
4.3 

RibEyePlus25InterFAR Intermuscular Fat 
Area Ratio in the 
Rib Eye area + 25% 
portion - Fig. 1-G 

% 18.5 ±
6.5 

18.3 ±
6.3 

RibEyePortion25InterFAR Intermuscular Fat 
Area Ratio in the 
25% area around 
the Rib Eye - Fig. 1- 
G 

% 43.2 ±
14.4 

45.6 ±
15.1 

RibEyePlus25InterFARCor Intermuscular Fat 
Area Ratio in the 
Rib Eye area + 25% 
portion, with 
density correction -  
Fig. 1-G 

% 15.7 ±
5.7 

15.5 ±
5.6 

RibPortionFAR Fat Area Ratio in 
the Rib portion - 
without distinction 
of intra or 
intermuscular -  
Fig. 1-H 

% 23.1 ±
6.1 

25.5 ±
6.5 

FleckArea Average marbling 
flecks area in the rib 
eye 

mm2 1.6 ±
0.9 

1.9 ±
1.1 

FleckPeri Average marbling 
flecks perimeter in 
the rib eye 

mm 4.4 ±
1.3 

4.8 ±
1.4 

FleckNum Number of 
marbling flecks in 
the rib eye  

90.8 ±
49.6 

93.5 ±
53.9  
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similar, indicating similar relationships between (1) the rib faces and (2) 
the measurements and group of measurements regardless of the rib face, 
even if both faces may be visually different (Fig. 1-C and D). 

The correlation coefficients were high between the gold standard and 
the image analysis data. Indeed, the correlations between IMF content 
and marbling percentage assayed by CIA methods are reported in Fig. 3. 
The values ranged from r = 0.76 when marbling was assayed auto-
matically (RibEyeFAR, RibEyeDissFAR, RibEyeDissFARCor) to r = 0.79 
when a manual threshold (RibEyeFARMt) was added for the analyses of 
the CAF5AR pictures. The correlations were better when the IMF content 
was compared to the intramuscular fat areas assayed on the pictures 
from the CAF6AR side and ranged from 0.85 to 0.87. The best correla-
tions between the lean rib ratio estimated by dissection and image fea-
tures were negative correlations (r = -0.61 to − 0.64) between 
RibMuscWR and the intermuscular fat areas (RibEyePlus25InterFAR, 
RibEyePortion25InterFAR, RibEyePlus25InterFARCor). The correlation 
coefficients obtained between the fat tissue areas (RibEyePlu-
s25InterFAR, RibEyePortion25InterFAR, RibEyePlus25InterFARCor, 
RibPortionFAR) and weights (RibFatWR) ranged from 0.50 to 0.54 and 
from 0.65 to 0.67 when assayed on the CAF5AR and CAF6AR pictures. 
Unexpectedly, the correlations were close when the areas assayed in the 
25% enlarged area surrounding the muscle rather than the entire rib 
were considered. Last, high correlation values appeared between the 
different ways the fat area ratios were expressed: r = 0.87 to 1 for the 
intramuscular fat area ratio (RibEyeFAR, RibEyeDissFAR, RibEye-
DissFARCor, RibEyeFARMt) and r = 0.76 to 1 for the intermuscular fat 

area ratio (RibEyePlus25InterFAR, RibEyePortion25InterFAR, RibEye-
Plus25InterFARCor, RibPortionFAR). The two categories of fat area ra-
tios (intramuscular and intermuscular) were positively correlated (r =
0.49 to 0.65). In contrast, the negative correlations logically concerned 
the lean proportion. We have noted that the coefficients of correlation 
were generally lower/similar for young bulls or higher for “others” 
bovines than for the total population (130 bovines) of the study. We 
chose to present the correlation coefficients for the total population in 
order to keep the highest robustness provided by the high variation 
range considered. 

3.4. Prediction of IMF and rib composition thanks to image and animal 
features 

Tables 3 and 4 show the prediction results for the IMF and rib 
composition from the cranial (CAF6R) and caudal (CAF5R) faces of the 
6th rib cut estimated by image analysis. The data obtained from the 
image analysis features of the CAF6R provide a prediction accuracy 
higher than that provided by the image analysis features of the CAF5R, 
for both IMF percent and rib fat composition. Moreover, the prediction 
accuracies and errors of prediction were very similar regardless of the 
methods of prediction used to predict one gold standard feature, i.e., 
IMF content, RibFatWR, RibMuscWR, RibInterWR, and RibInterWM. By 
combining the animal and image analysis features of the CAF5R, the best 
predictions with the lowest prediction errors were obtained by SPLS 
with a good precision of the prediction, since the R2 was 0.77, RPD > 2, 
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Fig. 2. Distributions (%) of (A) intramuscular fat in the longissimus thoracis muscle (IMF), (B) rib fat weight ratio (RibFatWR), (C) rib muscle weight ratio (Rib-
MuscWR), (D) rib intermuscular fat weight ratio (RibInterWR) and (E) rib intermuscular fat weight divided by the muscle weight (RibInterWM). 
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and the RMSEP value was 1.44% for IMF. Random forest modeling for 
the rib composition features provided approximate predictions with R2 

values ranging from 0.72 to 0.75, RPD ranging from 1.87 to 1.98 and 
RMSEP ranging from 2 to 2.7% for RibFatWR, RibMuscWR, RibInterWR, 

and RibInterWM (Table 3). By combining the animal and image analysis 
features of the CAF6R, the best predictions with the lowest prediction 
errors were obtained by SPLS for both IMF percent and rib composition. 
The predictions were very good with an R2 value of 0.90, an RPD value 
of 3.14, and an RMSEP value equal to 0.92% for IMF. Regarding rib 
composition, the R2 values ranged from 0.72 to 0.86, the RPD values 
ranged from 2.12 to 2.68, and the RMSEP values ranged from 1.9 to 
2.1% for RibFatWR, RibMuscWR, RibInterWR, and RibInterWM 
(Table 4). 

Fig. 4 shows a list of variables ranked according to their importance 
in the prediction models, with both SPLS and RF methods. Of the 6 and 
17 features related to animal or image analyses, 3, namely, Tra-
pezInterArea, TrapezInterThick and FleckNum, did not provide any 
improvement regardless of the method used for the prediction of IMF or 
rib composition. Among the most used features for the prediction of IMF 
(Fig. 4), 5 features (RibEyeDissFARCor, RibEyeFARMt, RibEyePlu-
s25InterFARCor, RibEyeDissFAR, RibEyeFAR) related to the fat area 
ratio within the LT of the pictures contributed the most to the best 
models for both methods (SPLS or Random Forest) and the two sides of 
the rib (CAF5R and CAF6R); however, the variables presented a different 
order. Regardless of the models and the sides of the rib analyzed, 
RibEyePortion25InterFAR, TrapezSubThick, RibPortionFAR, and Beef-
YoungBulls were the animal and image analysis features used to predict 
the total rib fat ratio, and they logically combined areas for total, 
intermuscular and subcutaneous fat tissues. Four animal and image 
analysis features used in the four model results were considered the most 
representative features for evaluating the rib muscle ratio (Rib-
MuscWR), namely, RibEyePlus25InterFAR, RibEyePortion25InterFAR, 
HCW, and RibPortionFAR related to carcass weight and mainly inter-
muscular fat areas (Fig. 4). Two animal features (BeefYoungBulls, HCW) 
plus two image analysis features (RibEyePortion25InterFAR, RibPor-
tionFAR) appeared in the best models to predict either the rib inter-
muscular fat ratio related to the rib weight (RibInterWR) or the muscle 
weight (RibInterWM). 

4. Discussion 

An original computerized image analysis method was developed 
under open source software used the image analysis settings previously 
described for the classification of marbling [9,29] and rib composition 
[12,13] with new settings and conditions for image acquisition. Of the 
new settings for image analysis, we added simultaneous automatic 
detection of intra- and intermuscular areas using the Li segmentation 
method [20] but applied it to a specific area around the LT muscle 
enlarged by 25%. This method was proven efficient for marbling and rib 
composition analyses, considering the very good correlation and pre-
diction results. Of note, relatively few studies published to date have 
reported CIA data and the correlation between the areas of fat or muscle 
tissue and the values assayed by gold standard methods (Soxlhet method 
or rib dissection), and most of these previous studies were carried out 
under calibrated and controlled conditions for image acquisition. Thus, 
the choice to develop a CIA method with very few fixed conditions in 
picture acquisition adds additional difficulties for image computeriza-
tion, which were overcome to produce accurate quantification of areas 
as good predictors of marbling or rib composition. The choices of new 
settings for image acquisition to overcome such difficulties were the use 
of (1) a small and light squared scale usable even directly on a carcass 
and (2) two polarizing filters adaptable to a smartphone and a digital 
camera. Based on the lack of noninterpretable images, these solutions 
were proven to overcome the main problems of rib photography, which 
are the light reflection from wet tissue and the geometrical calibration of 
the image to be analyzed. With a recent smartphone (>10 Mpixels) 
equipped with such a polarized strobe, almost all pictures were 
analyzable even in a slaughterhouse with low lighting and hanging 
carcasses that moved. Nevertheless, this solution also has the following 
three limitations: (1) the ambient direct lighting level needs to be 

Fig. 3. Correlation matrix of all measurements. Animal and carcass traits, gold 
standard parameters and image analysis parameters for (A) CAF5R and (B) 
CAF6R. The scale on the right indicates the correlation level from red (r = -1) to 
blue (r=+1), which is graphically enhanced by the size of each colored disk. For 
instance, the IMF is highly and positively correlated with most of the image 
analysis parameters that rely on fat area measurements. In contrast, the Rib-
MusWR is negatively correlated with most of the measurements except for both 
anatomic areas of interest (the rib eye and the rib portion). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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moderate, (2) the rib must be cut cleanly and flat and (3) a red table is 
preferred to a white table to help with the automatic detection of sub-
cutaneous fat. This study used a high-end smartphone that naturally 
became a mid-range model at the end of the image acquisition period. 
Thus, today, this phone would be easily replaceable by any smartphone. 
With a good imager that was enriched with only polarizing filters and a 
small laminated scale, we proved that it was possible to capture an 
image that could be quantitatively analyzed by an algorithm, even under 
real industrial conditions, while most past studies needed more 
controlled conditions. Only the ergonomics of the smartphone in a 
slaughterhouse was problematic and should be improved. Last, the use 
of a smartphone as a marbling sensor brings many advantages over 
dedicated instruments for fat quantification, such as NIRS, ultrasound or 
tomography. First, this method is a cost-effective solution since there is 
no need to develop a specific device. Measurement is reduced to soft-
ware image analysis that can be embedded in the smartphone. Then, a 

smartphone-based measurement tool would be easy for most people to 
approach since most people have experience using a smartphone and 
have one. 

In addition to the originality of the material used, including the 
developed image acquisition and CIA methods, the present publication 
is original due to the use of a large number of ribs with a wide range of 
marbling variability, which complements the results obtained by 
comparing extreme groups [29]. An additional originality is the 17 
features produced in less than 5 min by a semiautomatic method that 
should minimize the analyst variability as well as errors related to 
human visual perception of marbling, which have already been pointed 
out as a major drawback for a true evaluation of marbling from images 
[10]. Regarding the application domain of the present CIA method, the 
accuracy of the method is high for lean meat, which thus complements 
the very few publications reporting IMF [29,30] or rib composition [13] 
CIA data in European breeds. Indeed, the present CIA method was 

Table 3 
Measured means and standard deviations (Sd), predicted means and standard deviations, mean bias, residual standard deviation (Sd res), coefficient of determination 
(R2), ratio of performance to deviation (RPD), residual root mean square error of prediction (RMSEP) for IMF, RibFatWR, RibMuscWR, RibInterWR, RibInterWM, using 
sparse partial least squares (SPLS) analysis, random forest (RF) analysis, and multiple linear regression on clusters of variables (Clust. MLR) on the validation dataset of 
84 CAF5R images.    

n Measured mean Measured Sd Predicted mean Predicted Sd Bias Sd res. R2 RPD RMSEP 

IMF (%)  
SPLS 84 5.66 2.97 5.50 2.56 − 0.17 1.44 0.77 2.06 1.44  
RF 84 5.66 2.97 5.51 2.21 − 0.15 1.56 0.73 1.91 1.59  
Clust. MLR 84 5.66 2.97 5.57 2.50 − 0.09 1.45 0.77 2.05 1.45 

RibFatWR (%)  
SPLS 84 11.777 4.50 11.51 3.67 − 0.26 2.52 0.69 1.78 2.52  
RF 84 11.77 4.50 11.67 3.08 − 0.10 2.28 0.75 1.98 2.40  
Clust. MLR 84 11.77 4.50 11.51 3.70 − 0.26 2.58 0.67 1.74 2.58 

RibMuscWR (%)  
SPLS 84 67.52 3.81 67.48 3.00 − 0.04 2.22 0.67 1.72 2.21  
RF 84 67.52 3.81 67.47 2.62 − 0.05 1.96 0.74 1.95 2.05  
Clust. MLR 84 67.52 3.81 67.54 2.66 0.02 2.43 0.60 1.57 2.43 

RibInterWR (%)  
SPLS 84 8.43 3.85 8.07 3.04 − 0.36 2.21 0.67 1.74 2.23  
RF 84 8.43 3.85 8.19 2.55 − 0.24 2.06 0.72 1.87 2.18  
Clust. MLR 84 8.43 3.85 8.16 3.02 − 0.26 2.21 0.68 1.74 2.22 

RibInterWM (%)  
SPLS 84 11.03 4.89 10.72 3.92 − 0.31 2.70 0.70 1.81 2.70  
RF 84 11.03 4.89 10.80 3.29 − 0.23 2.56 0.73 1.91 2.71  
Clust. MLR 84 11.03 4.89 10.75 3.90 − 0.28 2.76 0.69 1.77 2.76  

Table 4 
Measured means and standard deviations (Sd), predicted means and standard deviations, mean bias, residual standard deviation (Sd res), coefficient of determination 
(R2), ratio of performance to deviation (RPD), residual root mean square error of prediction (RMSEP) for IMF, RibFatWR, RibMuscWR, RibInterWR, RibInterWM, using 
sparse partial least squares (SPLS) analysis, random forest (RF) analysis, and multiple linear regression on clusters of variables (Clust. MLR) on the validation dataset of 
84 CAF6R images.    

n Measured mean Measured Sd Predicted mean Predicted Sd Bias Sd res. R2 RPD RMSEP 

IMF (%)  
SPLS 84 5.69 2.91 5.64 2.82 − 0.06 0.93 0.90 3.14 0.92  
RF 84 5.69 2.91 5.60 2.37 − 0.09 0.97 0.89 2.99 1.04  
Clust. MLR 84 5.69 2.91 5.65 2.75 − 0.05 0.95 0.89 3.06 0.94 

RibFatWR (%)  
SPLS 84 11.92 4.54 11.62 3.95 − 0.29 1.80 0.84 2.52 1.83  
RF 84 11.92 4.54 11.61 3.22 − 0.31 1.98 0.81 2.29 2.17  
Clust. MLR 84 11.92 4.54 11.72 3.93 − 0.20 2.07 0.79 2.19 2.07 

RibMuscWR (%)  
SPLS 84 67.26 3.93 67.24 3.08 − 0.02 2.12 0.71 1.85 2.12  
RF 84 67.26 3.93 67.30 2.71 0.04 2.23 0.68 1.76 2.28  
Clust. MLR 84 67.26 3.93 67.26 3.04 0.00 2.20 0.69 1.78 2.20 

RibInterWR (%)  
SPLS 84 8.54 3.89 8.25 3.34 − 0.29 1.48 0.86 2.63 1.52  
RF 84 8.54 3.89 8.27 2.78 − 0.28 1.58 0.84 2.46 1.78  
Clust. MLR 84 8.54 3.89 8.28 3.25 − 0.26 1.76 0.80 2.21 1.78 

RibInterWM (%)  
SPLS 84 11.23 5.03 10.89 4.30 − 0.33 1.88 0.86 2.68 1.93  
RF 84 11.23 5.03 10.88 3.51 − 0.34 2.07 0.83 2.42 2.35  
Clust. MLR 84 11.23 5.03 10.97 4.22 − 0.26 2.18 0.81 2.30 2.21  
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developed from bovines with IMF contents in LT and total rib fat that 
ranged from 1.56 to 17.59% and from 2.08 to 24.45%, respectively. The 
dataset comprised young bulls, steers, heifers and cows, mostly from 
continental beef (Angus × Salers, Charolais, Rouge des Près, Salers as 
well as beef crossbreeds) and dairy (Prim’Hosltein, Normande, Mon-
tbéliarde as well as dairy crossbreeds) breeds. The high accuracy of the 
present CIA method is testified by the good to high correlations between 
the gold standard and the image analysis measures. Indeed, the present 
correlation coefficients obtained for marbling values (from 0.79 to 0.87) 
between the reference Soxhlet method and image analysis were higher 
than those obtained for Italian crossbred or Angus heifers (r = 0.62; 
[29]). Moreover, these correlations were similar or lower than those 
previously reported from fatter breeds typically found in US (r = 0.82 to 
0.85, [6]) or Asian (r = 0.93 to 0.96 [7,8]) markets. The lower corre-
lations repeatedly reported in slightly marbled European breeds than 
those in highly marbled American or Asian breeds may be explained by a 
more difficult and less accurate quantification of marbling by both 
image processing and chemical methods, as well as by a lower range of 
adiposity variation in European breeds, by a differences among the 
number of bovines included in the studies compared or by the rib 

number. Moreover, the present CIA methods evaluated the lean or fat 
proportion within a rib with good precision, as indicated by the good 
correlation coefficients between the percentages of separable lean and 
fat tissues assayed by CIA and rib dissection. The present correlation 
coefficients obtained between the image analysis information and rib 
dissection, both for fat and lean rib proportions, were higher (from 0.54 
to 0.66) than those reported by Santos [13] in European lean bulls (from 
0.41 to 0.59, n = 180, 9-10th and 12-13th rib interfaces) but similar or 
lower (from 0.68 to 0.82, n = 44, 12-13th rib interface) than those re-
ported by Cross et al. [31] in early and late maturing American bulls and 
steers. Most of the correlations were positive, which confirms a de-
pendency between the fat deposited in the different anatomic regions 
mainly related to the age at slaughtering [32,33]. Last, as already stated 
by Santos et al. [13], the assayed areas differed between the sides of the 
rib because the cross-sectional areas were not constant along the cranial- 
caudal axis of the ribs. Collectively, these very good correlations be-
tween areas and gold standard values, as well as the expected good in-
verse correlations (from − 0.61 to − 0.64) between muscle and fat areas, 
highlighted the accuracy of the image features produced by the present 
method to simultaneously evaluate IMF content and rib composition. 

Fig. 4. Animal and image features used to predict IMF or lean and fat rib composition using sparse partial least squares (SPLS) analysis and random forest (RF) 
analysis on the validation dataset of 84 CAF5R images and 84 CAF6R images. Animal and image features retrieved for prediction. 
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With the aim of designing a complete computer vision device, we 
thus used the aforementioned image features to produce predictive 
models for IMF content and rib composition. The combination of fea-
tures from image analyses and animals was powerful to provide pre-
dictive models with high accuracy, which is in line with the results of the 
predictions already developed for carcass composition [12,34]. Using 
RMSEP and RPD as indicators of the prediction accuracy (R2) of the 
models, the developed models predicted the IMF content and the pro-
portion of total or intermuscular fat better than the muscle (or lean) 
proportion. This difference may be explained by the larger variations in 
IMF or rib fat proportion than those in muscle proportion within our 
datasets, as already reported by Pabiou et al. [34], depicting less accu-
rate predictions of features with limited variations than those of features 
with large phenotypic variations. Moreover, the best predictions as 
measured by a high accuracy (R2), low RMSEP and high RPD were ob-
tained from CAF6R data. For IMF prediction, 4 out of the 5 features 
retrieved in the four models were related to the proportions of the 
segmented intramuscular fat area within the rib eye areas. This result is 
consistent with the generally admitted fact that IMF content is associ-
ated with the characteristics (surface, numbers…) of marbling flecks 
measured by image analysis [6,7,29]. More surprisingly, an additional 
feature related to the intermuscular fat area within the 25% surrounding 
area was shown to contribute to the prediction of IMF content. The 
reason for the contribution of this feature may be that marbling depo-
sition is strongly related to intermuscular fat deposition [33]. The co-
efficients of determination obtained with data from the CAF6R face for 
predicting the percentage of fat (0.79 to 0.86 for total and intermuscular 
fat tissues) and lean (from 0.68 to 0.71) are similar or higher than those 
reported by Santos [13] in European lean bulls (lean, 0.53; fat 
0.68–0.76). To the best of our knowledge, the unique CIA method that 
was developed to predict rib composition produced 6 image features 
[13], which made comparative analysis of the best reported predictors 
difficult. In the present study, regardless of the face of the rib and the 
predictive method, the best predictors of the rib lean proportion were 3 
features related to the intermuscular fat areas and the HCW. In the study 
by Santos [13], the best predictors for the rib lean proportion were 
related to either muscle or bone areas depending on the face of the rib 
that was analyzed, and predictions were improved when the values for 
carcass weight were used. These results are consistent with the well- 
known close relations between muscle, fat and bone mass in bovines 
[32,33]. The four predictors for the total fat rib proportion revealed that 
regardless of the face of the rib and the predictive method that was used, 
there were areas that were logically related to intermuscular, subcu-
taneous and total fat in combination with the indication of the type of 
bovine, such as beef young bulls. Four predictors for the intermuscular 
fat rib proportion were also found regardless of the face of the rib and 
the predictive method that was used, and they were related to inter-
muscular and total areas, the HCW and again the indication of the type 
of bovine, such as beef young bulls. The reason for the contribution of 
the beef young bulls feature to the predictive models for total and 
intermuscular fats can probably be explained by the fact that beef young 
bulls are very lean and thus very different from the other bovine types. 
Overall, the very good performances of the prediction models obtained 
by combining several features and both animal and CIA data are in line 
with previously published results [13,34,35]. This finding is consistent 
with the fact that the deposition of fats relative to muscle is strongly 
dependent on the age, sex and breed of the animals [33]. The increase in 
performance by adding animal features that are easy to assay and at low 
costs is thus a strategy that could be chosen to predict meat or carcass 
characteristics. 

5. Conclusions 

The results of this study showed that both marbling and rib 
composition evaluations and predictions are feasible using inexpensive 
technologies, which would be easy to implement for industry purposes. 

The best prediction results were obtained by combining image analysis 
features related to the total, intermuscular, subcutaneous or intramus-
cular fat areas assayed over the entire rib surface or only the loin rib eye 
plus 25%, plus animal features, mainly HCW and the type of bovine 
(beef young bulls). For the beef industry, the convenience of working on 
either the carcass or the 6th rib sampled or analyzing the entire rib 
surface or only the loin rib eye plus 25% should be evaluated depending 
on the time cost relative to the prediction purposes. This method and the 
features provided are thus accurate enough to develop algorithms 
compatible with smartphone applications. 

The ability to accurately predict IMF or rib fat composition has 
multiple applications. First, it provides an opportunity for slaughter-
houses to quantify the value of the LT based on its marbling content, a 
major driver of consumer satisfaction. Second, the 6th rib composition is 
strongly related to the carcass composition; thus, the predicted rib 
composition could be used to quantify the value of the carcass, which 
may subsequently be used to pay the producer. Third, genetic variation 
exists in marbling deposition and rib composition; thus, the routine 
availability of data produced by the present CIA method should facilitate 
the routine estimation of bovine breeding values according to fat 
deposition. Finally, accurate prediction of marbling and rib composition 
aids in the evaluation of production systems or diets without the asso-
ciated expenses of chemical analysis or dissection. 
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