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Genomic prediction of fruit texture and training
population optimization towards the application of
genomic selection in apple
Morgane Roth1,7, Hélène Muranty2, Mario Di Guardo3,4, Walter Guerra5, Andrea Patocchi1 and Fabrizio Costa 3,6

Abstract
Texture is a complex trait and a major component of fruit quality in apple. While the major effect of MdPG1, a gene
controlling firmness, has already been exploited in elite cultivars, the genetic basis of crispness remains poorly
understood. To further improve fruit texture, harnessing loci with minor effects via genomic selection is therefore
necessary. In this study, we measured acoustic and mechanical features in 537 genotypes to dissect the firmness and
crispness components of fruit texture. Predictions of across-year phenotypic values for these components were
calculated using a model calibrated with 8,294 SNP markers. The best prediction accuracies following cross-validations
within the training set of 259 genotypes were obtained for the acoustic linear distance (0.64). Predictions for biparental
families using the entire training set varied from low to high accuracy, depending on the family considered. While
adding siblings or half-siblings into the training set did not clearly improve predictions, we performed an optimization
of the training set size and composition for each validation set. This allowed us to increase prediction accuracies by
0.17 on average, with a maximal accuracy of 0.81 when predicting firmness in the ‘Gala’ × ‘Pink Lady’ family. Our results
therefore identified key genetic parameters to consider when deploying genomic selection for texture in apple. In
particular, we advise to rely on a large training population, with high phenotypic variability from which a ‘tailored
training population’ can be extracted using a priori information on genetic relatedness, in order to predict a specific
target population.

Introduction
Fruits undergo a complex series of genetically programmed

events contributing to their attractiveness and suitability for
human consumption. Amongst the various physiological and
physical ripening processes, texture at maturity is arguably
the most important and investigated trait, especially for
apple. The apple market is highly structured according to
fruit texture, because this feature is important for both
consumers’ preference1 and storage ability2.
Although sensory evaluations with trained panelists can

be used to assess variation in texture, these measures are

highly dependent on the scorer and limited by sample
size3. As alternative, texture can be dissected and char-
acterized through texture analyzers in a repeatable way4,5.
The most recent instruments can measure two groups of
sub-traits, mechanical and acoustic, suitable to distinguish
between firm (based on mechanical sub-traits) and crisp
(based on acoustic sub-traits) types of apples. These tex-
ture parameters have been already described and validated
in apple4,5, and have been used in QTL-mapping studies
carried out with biparental populations6, Pedigreed Based
Analysis and Genome-Wide Association Studies7. These
studies found a complex genetic basis to fruit texture in
apple, identifying a large number of QTLs distributed
across the apple genome, with the most relevant regions
located on chromosome 3, 10 and 16. This genetic com-
plexity is reflected in the regulation of the cell-wall and
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middle lamella disassembling, a physiological process
orchestrated by a myriad of cell-wall modifying enzymes8.
Such highly polygenic control can hamper the use of
marker assisted selection for improving texture. In the
QTL-mapping studies carried out to date, a major QTL
located on chromosome 10, close to the poly-
galacturonase locus MdPG1, has been identified9. This
QTL explains a high proportion (about 40%) of the tex-
ture phenotypic variance, but still leaves much unex-
plained variance that could be used to improve this trait.
As reported in the above mentioned study7, in modern
breeding programs the favorable allele at the locus
MdPG1 has been fixed through successive rounds of ad
hoc crossing and selection. Given the fixation at MdPG1,
the phenotypic variance of modern families, obtained by
crossing valuable parents for texture performance, might
now be under the control of other loci with minor effects.
However, QTL-mapping approaches cannot detect such
small effect loci, suggesting that other methods are
necessary for further improvement of apple texture10,11.
To overcome this limitation, an alternative approach for

genome-assisted breeding known as genomic selection
has been introduced (see seminal work by Meuwissen
et al.12). In contrast to marker assisted selection, genomic
selection relies on the prediction of a genetic value for a
genotype, taking into account all genome-wide markers,
making it especially relevant for complex traits13. For
establishing genomic selection, genomic predictions are
performed considering two sets of genotypes: a training
set (TS) of genotyped and phenotyped individuals to train
a prediction model, and the validation set (VS), repre-
sented by individuals only genotyped, for which genomic
estimated breeding values are predicted13,14. In principle,
the most favorable scenario for genomic predictions (and
subsequent genomic selection) is to predict highly heri-
table traits in a VS highly related to the TS. While trait
heritability can be increased (to a certain extent) by more
accurate phenotyping, relatedness between VS and TS can
be optimized with different strategies. Dedicated approa-
ches and tools have been proposed to address this issue
using optimization parameters15–17, and algorithms18,19.
Specifically, two criteria derived from the mixed model
equations used in genomic prediction, the mean of the
prediction error variance (PEVmean) and the mean of the
expected reliabilities, also called coefficients of determi-
nation (CDmean), have been proposed and tested to
optimize TS composition using the marker data of both
the TS and the VS15,16. In theory, it could thus be feasible
to acquire phenotypic and genotypic data for a highly
diverse TS and then in silico select subsets of individuals
to produce an optimal TS for a given VS.
Genomic selection has been largely applied in major

crops for primary traits such as yield14. However, due to
the long generation time of perennial tree species,

genomic selection would have a great potential for
improving breeding efficiency20. The accuracy of genomic
predictions, an important factor determining genomic
selection efficiency, has been assessed in fruit trees such as
apple, peach or citrus21–23. In apple, genomic selection
was only partially addressed for fruit texture via predic-
tions of classical fruit firmness measurements24–26 and of
sensory evaluations24. Importantly, predictions were
typically made within a set of 7–20 full-sib families21,24,25,
which necessitates a large investment for phenotyping a
limited range of families. We propose that the design of a
more ‘versatile’ training population, such as a diversity
panel, would be more efficient to predict traits of several
biparental families, and would thus better qualify for the
practical use of genomic selection in apple. To the best of
our knowledge, in apple this strategy has only been
employed to predict texture using aggregated datasets
obtained from historical observations, which has a
reduced power due to unaccounted environmental effects,
thus limiting the precise identification of the associations
between genotype and phenotype27.
In this study, we predicted 12 acoustic and mechanical

fruit traits describing fruit texture in six full-sib families
using a germplasm collection as a diverse TS. Further-
more, we were able to improve prediction accuracies by
optimizing the TS with respect to the VS of interest. In
the light of our results, we discuss the feasibility of
genomic selection for improving fruit quality through
genomics-assisted breeding programs.

Results
Fruit texture phenotypic dissection
The fruit texture phenotypic data used in this survey

were represented by four acoustic and eight mechanical
sub-traits (Table 1, Table S1). Because of our experi-
mental design, not all environmental effects could be
accounted for (tree and genotype effects were con-
founded, see Methods), and our best linear unbiased
predictors (BLUPs) of across-year phenotypic values per
genotype approximated the true genotypic values.
Assessment of repeatability (defined as the ratio between
the variance of across-year phenotypes and total variance)
found medium to high values spanning from 0.64 to 0.81
when considering the entire population (collection and
families) and from 0.59 to 0.75 when considering only the
genotypes included in the collection (Table 1). With a
principal component analysis (PCA) on BLUPs for the 12
textural sub-traits, we identified the main fruit texture
profiles, and found contrasted contributions of each trait
to variation in fruit texture (Fig. 1a, b). We also found
overlapping regions between offspring in biparental
families and their parents (Fig. 1c). In this analysis, the
PC1 axis, explaining 80.5% of phenotypic variation, and
thus comprehensively summarized the general variability
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of the 12 phenotypic variables. The PC2 axis mainly dif-
ferentiated the acoustic from the mechanical sub-traits,
explaining a smaller, but substantial portion of the phe-
notypic variability (12.7%, Fig. 1a). However, one
mechanical variable, the number of force peaks (FNP),
was more correlated with acoustic sub-traits (mean cor-
relation 0.77) than with the rest of the mechanical ones
(mean correlation 0.69, Fig. 1a).
Using the texture analyzer, high fruit firmness should be

reflected by high mechanical values and high fruit crisp-
ness should be reflected by high acoustic values. Based on
the interpretation of the distribution of acoustic and
mechanical variables in the PCA, different types of texture
were identified in the different quadrants (Fig. 1a). Indi-
viduals with mealy or soft fruits should be represented by
negative PC1 values, while individuals with firm fruits
should be represented by positive PC1 values. Besides,
individuals with crisp fruits should be more specifically
located in the positive PC1 and positive PC2 quadrant,
while individuals with firm and non-crisp fruits are
expected to fall into the positive PC1 and negative PC2
quadrant (Fig. 1a). Accordingly, as shown by the plot of
individuals (Fig. 1b), the distribution of texture profiles on
the different quadrant indicated that the collection is
mainly composed of individuals with low to moderate
crispness and firmness (Fig. 1b). It is also important to

note that variation on the PC2 axis decreased with
decreasing PC1 values, which reflects that high crispness
implies a relatively high firmness performance (Fig. 1b).
We found that the six parental genotypes, which are

cultivars known to have different texture profiles, were
plotted on different quadrants of the PCA 2D-plot (Fig.
1c). ‘Delearly’ and ‘Golden Delicious’ were plotted in the
area corresponding to the mealy type of apple, while
‘Royal Gala’ was grouped with moderately firm apples. We
found that ‘Fuji’, ‘Pink Lady’ and ‘Pinova’ were positioned
in the positive quadrant for both PC1 and PC2, corre-
sponding to the expected crisp type of apple. These
positions confirmed the expected texture profile of these
six genotypes. The families originating from crossing
these genotypes were also distributed over the PCA plot
with specific orientations (Fig. 1b, c). In particular, ‘FjPL’
offspring were mostly projected in the ‘firm area’, while
‘GDFj’ offspring were mostly represented in the ‘crisp
quadrant’ (Fig. 1b). Moreover, the segregation of the
families was very variable with regard to their corre-
sponding parental profiles (Fig. 1c). While ‘GDFj’ was the
only family showing a classic type of segregation (inter-
mediate between the parents), the distributions of the
other families were more similar to one of the two parents
(‘FjDe’ and ‘GaPi’), with a varying number of offspring
showing transgressive phenotypes (‘FjDe’, ‘GaPL’, ‘FjPi’
and ‘FjPL’). In particular, while ‘Fuji’ and ‘Pink Lady’
showed a very similar texture profile on PC1 (2.99 and
3.14, respectively), a larger difference was observed on
PC2 (1.6 and 0.51, respectively, Fig. 1c, Table S1). Varia-
tion in the texture characteristics of ‘FjPL’ offspring was
also observed on the PC2 axis, although with a much
broader variation than the difference between ‘Fuji’ and
‘Pink Lady’. Accordingly, apples of this family were gen-
erally firm to very firm while having a very low to very
high crispness (Fig. 1c, Table S1, Fig. S1).

Additive relationship and genetic clustering in the
population
In general, the accuracy of genomic prediction is highly

correlated to the level of relatedness between the training
and the validation sets (TS and VS), and we found here
varying levels of relatedness between the collection (our
TS) and the families (our 6 VS), which can be visualized
with a clustering approach and a heatmap on Fig. 2. The
parental cultivar ‘Royal Gala’ was found to be the most
related to the rest of the collection (mean additive realized
relationship −6.32 × 10−4), while ‘Fuji’ was the most dis-
tantly related (mean additive realized relationship −0.102,
Table S2). Accordingly, ‘Royal Gala’-related families were
more closely related to the collection than the four
‘Fuji’-related families (Fig. 2). Mean additive realized
relationship values for each family reflected the patterns
observed on the heatmap, namely higher values for ‘GaPi’

Table 1 Summary of texture traits assessed in the whole
population

Trait Mean SD R̂ R̂COLL

ALD 5094 2049 0.751 0.679

ANP 50.4 39.1 0.713 0.630

APMax 65.2 4.38 0.709 0.590

APMean 49.6 3.12 0.795 0.641

Area 813 273 0.798 0.726

FF 10.1 3.98 0.781 0.721

FLD 101 5.78 0.812 0.747

FMax 11.8 4.02 0.783 0.709

FMean 9.6 3.31 0.799 0.723

FNP 17.9 4.16 0.746 0.726

IF 9.94 3.29 0.742 0.659

YM 1.19 0.353 0.637 0.616

PC1 1672.9 564.2 0.782 0.711

PC2 1783.7 714.2 0.730 0.657

For comparison, R̂ values are also given considering measurements in the
collection (R̂COLL). SD standard deviation, R̂ repeatability, ALD acoustic linear
distance, ANP number of acoustic peaks, APMax acoustic maximum pressure,
APMean acoustic mean pressure, FF final force, FLD force linear distance, FMax
maximal force, FMean mean force, FNP number of force peaks, IF initial force, YM
young module, PC1 principal component 1 (synthetic trait), PC2 principal
component 2 (synthetic trait)
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and ‘GaPL’ (−0.021 to −0.020) and lower for ‘Fuji’-related
families (−0.056 to −0.078, Tables 2 and S2).
A discriminant analysis of principal component (DAPC)

using the entire SNP set (8,294 SNPs) identified the pat-
tern of genetic structure in the collection. Using the
Bayesian information criterion value (BIC), the most
probable genetic structure comprised six clusters and was
described by five principal genetic components derived
from the marker data (see Methods, Fig. S2). All parental
cultivars were assigned to cluster 5, except ‘Fuji’ that was
assigned to cluster 2 (Fig. 3a, Table S3). Cluster 5 was the
largest group of genotypes (N= 66), whilst cluster 6 was
the smallest (N= 25, Tables 2 and S3). The cluster
assignment of the six full-sib families was predicted using

the principal components derived by the DAPC analysis
carried out on the collection. Most of the genotypes were
assigned to the parental clusters 2 and 5, although 8
genotypes of ‘FjDe’ and one of ‘FjPi’ were assigned to
cluster 1 (Table 2, Fig. 3b, c, Table S3).
Overall, clusters 2 and 5 contained the largest part of the

whole population, while clusters 1, 3, 4, and 6 contained
the fewest genotypes (Fig. 3c, Table S3). However, while
the DAPC analysis suggested this genetic clustering as the
most probable in the diversity panel represented by the
collection, the pairwise Fst-values between clusters indi-
cated low levels of genetic differentiation (values varying
between 0.002 and 0.018, Table S4). The Fst value between
clusters 2 and 5, containing the parents and most of their

Fig. 1 Principal component analysis (PCA) of 12 texture sub-traits using BLUPs of across-year phenotypic values. a PCA 2D-plot of variables,
with acoustic traits in blue and mechanical traits in red with 1, number of acoustic peaks; 2, acoustic linear distance; 3, acoustic maximum pressure;
4, acoustic mean pressure; 5, number of force peaks; 6, force linear distance; 7, final force; 8, Young module; 9, area; 10; mean force; 11, maximum
force; 12, initial force. b PCA 2D-plot of individuals with collection genotypes represented as dots and families as ellipses. c PCA 2D-plot of individuals
showing family offspring and their respective parents
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offspring, was for instance 0.013. The phenotypic dis-
tributions across clusters revealed that individuals assigned
to clusters 2 and 5 had elevated values for all traits, except
for the synthetic trait PC2, compared to individuals
assigned to other clusters (Fig. S3), indicating a possible
correlation between genetic clustering and texture traits.

Cross-validations within the collection
The prediction of marker effects on each trait was

obtained with an additive rrBLUP model, where the

BLUPs of across-year phenotypic values and the synthetic
traits PC1 and PC2 represented the explained variables.
The estimated genetic variance, calculated as the variance
of the genomic estimated breeding values using this
model in the entire collection, represented 35–86% of the
phenotypic variance, depending on the trait. When run-
ning cross-validations within the collection with this
model on the 14 traits, the highest mean prediction
accuracy was obtained for the acoustic linear distance
(ALD, mean cor= 0.64, Fig. S4), and the second highest

Fig. 2 Heatmap representing patterns of relatedness in the population of study. Pairwise realized additive relationship was calculated among
the 537 genotypes with 8,294 SNPs, and the distribution of these values appears on the top left corner. The position of families is indicated in black
with brackets and the position of parents is indicated with their names in red

Table 2 Description of the whole population and experimental design used for genomic prediction of texture

Cluster assignments (# of IDs)

Name Mother Father Location Evaluated years # IDs 1 2 3 4 5 6 Relationship to collection

FjDe Fuji Delear FEM 2012–13 50 8 20 0 0 22 0 −0.056

FjPi Fuji Pinova RCL 2012–14 70 1 30 0 0 39 0 −0.078

FjPL Fuji Pink Lady FEM 2012–13 80 0 50 0 0 30 0 −0.071

GaPi Royal Gala Pinova RCL 2012–14 36 0 0 0 0 36 0 −0.021

GaPL Royal Gala Pink Lady RCL 2012–14 15 0 0 0 0 15 0 −0.020

GDFj Golden Delicious Fuji RCL 2012–14 27 0 6 0 0 21 0 −0.057

Collection – – FEM 2012–13–15 259 45 37 31 55 66 25

Maternal and paternal cultivars are indicated for full-sib biparental families. Cluster assignments as given by the discriminant analysis of principal components on
8,294 markers. Relationship to collection is the mean additive relationship of progenies relative to collection
FEM Foundation Edmund Mach, RCL Research Center Laimburg
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accuracy was found for the number of force peaks (FNP,
mean cor= 0.63, Fig. S4, Table S5). While FNP yielded a
relatively high accuracy compared to its repeatability (R̂=
0.75, Table 1), the overall mean accuracies among traits
did not follow the ranking of repeatability obtained within
the collection phenotypes (Wilcoxon signed-rank-test, p-
value= 2.44 × 10−4). The synthetic traits PC1 and PC2
were moderately predictable with accuracies of 0.59 and
0.42 respectively.

Genomic prediction in families without training population
optimization
In practice, traits can be predicted in families with any

available related genetic material that has been genotyped
and phenotyped. For this reason, three different scenarios
of training population design were tested: either with or

without genotypes from the predicted family (‘TS_coll’
and ‘TS_coll_sibs’), or from a half-sib family (‘TS_coll_-
half-sibs’; see Methods, “Prediction models”), resulting in
near-zero to high accuracies, depending on the family,
trait, and scenario considered.
Texture could be predicted with low to high accuracies

in three families, ‘FjPi’, ‘GaPi’ and ‘GaPL’; accuracy values
ranging from 0.08 for PC2 in ‘GaPi’ to 0.73 for PC1 in
‘GaPL’. Among these three families, the best predicted
trait was PC1 (mean for ‘TS_coll’: 0.50, Fig. 4). The three
other families showed either accuracies close to zero
(‘FjPL’), or negative accuracies (‘FjDe’ and ‘GDFj’, mean
accuracies between −0.29 and 0.30, Fig. 4). XY-plots of
the observed vs. predicted values for each genotype and
for all traits and families are depicted in Fig. S5 with the
‘TS_coll’ scenario.

Fig. 3 Discriminant analysis of principal components and cluster assignments of genotypes based on 8,294 SNPs. Clusters were identified
with a k-means algorithm. a Projection on principal component (PC) 1 and 3 of the cluster assignments of genotypes in the collection with parents of
families indicated with their names. Black lines correspond to the PCs defining clusters. b Predicted cluster assignments of progenies of the six full-sib
families projected on PC1 and PC3 axes and represented by dots, with collection genotypes in the six genetic clusters represented as ellipses (same
color legend as in part a). c Distribution of genotypes across the six genetic clusters in each population
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The addition of related genotypes to the collection did
not systematically improve predictions. In ‘GaPL’ off-
spring for instance, predictions were more accurate in
the ‘TS_coll’ scenario than with ‘TS_coll_sibs’ and
‘TS_coll_half-sibs’ scenarios, where the TS is enriched
with sibs and half-sibs respectively (mean prediction
accuracies of 0.60, 0.56, and 0.53 respectively for ‘TS_coll’,
‘TS_coll_sibs’ and ‘TS_coll_half-sibs’ scenarios, respec-
tively). ‘TS_coll_sibs’ particularly improved the accuracies
in ‘FjPi’ (mean accuracies of 0.32 in ‘TS_coll_sibs’ vs. 0.26
with ‘TS_coll’), as it better predicted 12 out of 14 traits.
‘TS_coll_half-sibs’ was the lowest performing scenario
overall, although it increased the prediction accuracy of
seven traits in ‘GaPi’ (increase of 0.01 to 0.09 compared to
‘TS_coll’ scenario, Fig. 4, Table S6).

Genomic prediction in families with training population
optimization
We tested the hypothesis that retaining only the most

related genotypes or clusters in the TS might maximize
prediction accuracies, and obtained accuracy values for
each family and trait using TSs with different sizes and
compositions. We observed strong variation in accuracy
when genotypes were added in the TS in order of
decreasing relatedness until the size of the entire collec-
tion was reached (Table S7). When considering four traits
selected for their practical relevance (ALD, FNP, PC1, and
PC2), we also found different accuracy distributions
depending on the enrichment criteria used (Table 3, Fig. 5
and Fig. S6). The highest accuracy for each of the 24 (6 × 4)

family-trait combinations was in most cases obtained with
the addition of single genotypes based on their relation-
ship to the family (in ten cases using the maximum
relationship and in ten cases using the mean relationship,
Fig. 5a, b, Table 3). The mean optimal population size was
92 genotypes with a minimum size of 10 and a maximum
size of 202 genotypes (Tables 3 and S7), meaning that the
entire collection should not be considered as the optimal
TS for predicting texture in the studied families. The
maximal accuracies ranged from 0.01 to 0.81, which
corresponded to a mean increase in accuracy of 0.17 when
comparing to predictions of traits within families using
the entire collection as TS (minimum increase: 0.02;
maximum increase: 0.40 – compared to ‘TS_coll’). The
highest accuracy of 0.81 was obtained for PC1 in the
‘GaPL’ family with only 129 genotypes in the TS, i.e.,
nearly half of the collection size. When investigating the
distribution of accuracies with increasing TS size in each
family for the four focal traits, we observed overall similar
trends across traits within a family. In families ‘GaPL’ and
‘GaPi’, which had the highest relatedness to the collection
(Table 2), the accuracy was moderate to high using as few
as 100 genotypes for the traits ALD, FNP and PC1, and
remained relatively stable with further increases in TS size
(Fig. 5a–d).
‘FjPi’ was the only family for which increasing TS up to

200 genotypes resulted in a clear accuracy improvement,
and this result was consistent across the four approaches
we implemented (Fig. 5a–d). In families with low overall
accuracies, such as ‘FjDe’, ‘FjPL’ and ‘GDFj’, the highest

Fig. 4 Mean and standard deviation of accuracies obtained with three training population design rules. In ‘TS_coll’ scenario, each family was
predicted using only the collection. In ‘TS_coll_sibs’ scenario, 30% of genotypes of the predicted family were added to the collection in the TS, while
the remaining 70% corresponded to the VS. In ‘TS_coll_half-sibs’ scenario, a single half-sib family was added to the collection to build the TS
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accuracy was in most cases obtained with as few as 10–70
genotypes and declined or remained stable with increas-
ing TS size (Fig. 5a–d). In ‘GDFj’, for example, accuracies
above 0.2 were found with a TS of 10–66 genotypes (Fig.
5a–c, Table S7). Moreover, while FNP was not predictable
in ‘GDFj’ with the entire collection (cor= 0.08 for N=
259), an accuracy of 0.32 was observed with as few as 15
highly related genotypes (based on maximum relation-
ship, Fig. 5b).

Discussion
Family-dependent fruit texture profiles and fruit texture
prediction
The twelve texture “sub-traits” showed moderate to

high repeatability and the magnitude of genetic variation

in traits differed between families, with frequent trans-
gressive segregation patterns. The lower repeatability
obtained for traits in the collection could be explained by
the larger biological variation caused by the sampling of
five fruits across trees (three trees/genotype, i.e., 1.67
fruit/tree), in contrast to genotypes of the families for
which the five fruits were sampled within single trees (and
where the tree effect is confounded with the genotypic
effect). Using BLUPs and marker data only, we could
predict texture features with moderate to high accuracy
within the collection (accuracies between 0.42 and 0.64),
which indicates that, despite the experimental and sta-
tistical limitations imposed by our design (pseudo-repli-
cation, different sampling design in families and collection
orchards), substantial genotypic effects were assessed with
our approach.
The collection was further used as main training

population to predict texture in families. As we have
observed, prediction accuracies were quite heterogeneous
between biparental families. Without TS optimization,
texture could be accurately predicted for ‘GaPL’ (mean
accuracy of 0.57), while ‘GaPi’ and in ‘FjPi’ showed a
moderate prediction accuracy (mean accuracy of 0.30). In
contrast, near-zero or negative accuracies were obtained
for ‘FjDe’, ‘FjPL’ and ‘GDFj’ across all traits (mean accu-
racy of −0.05). The large negative accuracy values
repeatedly obtained in ‘FjDe’ and ‘GDFj’ could reveal an
opposite linkage phase at markers closely linked to the
relevant QTLs between these families and the collection28.
They could also reflect a systematic bias caused in the
calculation of the Pearson correlation coefficient itself, in
particular when the means of the TS and the means of the
VS for the predicted trait are negatively correlated over
the sampling procedure29. The low accuracies suggest that
genomic selection for fruit texture in families ‘FjDe’, ‘FjPL’
and ‘GDFj’ would be ineffective using the present
experimental design.
Our results also highlight considerable variability in the

prediction accuracies across texture components. In par-
ticular, we found large differences in accuracy between
firmness (as approximated by PC1) and crispness (as
approximated by PC2), the two main components of
texture dissected with our PCA (Fig. 1). PC1 was among
the most predictable traits (accuracy of 0.59 in collection
and highest accuracy among traits and family: 0.73 in
GaPL), while PC2 showed generally low prediction
accuracies. The high phenotypic variability explained by
PC1 in the collection (80.5% of total phenotypic varia-
bility, while PC2 accounted only for 12.7%, Fig. 1), toge-
ther with a higher repeatability (Table 1), are both factors
likely to contribute to these higher accuracies in PC1
relative to PC2. As a comparison, our repeatability esti-
mates are in line with the medium to high heritability
obtained when measuring firmness with texture analyzers

Table 3 Maximum accuracies obtained among four
training set optimization methods in predictions made for
each combination of trait and family

Family Trait Accuracy TS size Method

FjDe ALD 0.23 77 Mean relationship

FNP 0.18 21 Max relationship

PC1 0.26 77 Mean relationship

PC2 0.36 56 Max relationship

FjPi ALD 0.36 189 Mean relationship

FNP 0.59 174 Max relationship

PC1 0.36 178 Max relationship

PC2 0.26 202 Mean relationship

FjPL ALD 0.10 130 CDmean-opt

FNP 0.16 22 Max relationship

PC1 0.20 120 Max relationship

PC2 0.22 10 CDmean-opt

GaPi ALD 0.46 156 Mean relationship

FNP 0.40 13 Max relationship

PC1 0.54 191 Clusters

PC2 0.28 19 Mean relationship

GaPL ALD 0.72 136 Clusters

FNP 0.78 37 Max relationship

PC1 0.81 129 Mean relationship

PC2 0.40 140 Max relationship

GDFj ALD 0.21 66 Mean relationship

FNP 0.32 15 Max relationship

PC1 0.19 31 Mean relationship

PC2 0.01 10 Mean relationship

TS training set, ALD acoustic linear distance, ANP number of acoustic peaks, FNP
number of force peaks, PC1 principal component 1 (synthetic trait), PC2 principal
component 2 (synthetic trait)
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and the low to medium heritability obtained in sensory
evaluations for crispness24,25,30,31.
The prediction design and strategy we adopted involves

the phenotyping of one single training population (col-
lection) to predict texture within multiple families. Pre-
vious works on texture prediction have mainly focused on
firmness, and generally showed low accuracies when
predicting unobserved genotypes in a set of families or in
a collection (between 0.15 and 0.35)24,26,27. A much higher
accuracy of 0.83 was found for firmness in the work of
Kumar et al.25 when performing cross-validations within a
4 × 2 factorial design, with 1080 and 120 genotypes ran-
domly assigned to the TS and VS, respectively. This
strategy is expected to yield higher prediction accuracies,
but phenotyping such large numbers of genotypes to
make accurate predictions for only a few families would

be unfeasible in a commercial breeding program. More-
over, relying on a training population derived from a small
number of parents makes such an approach less suitable
for making predictions across a broad range of breeding
material. To this end, the design we proposed is more
versatile and enables the user to share the costs of phe-
notyping the TS on a larger scale, which should be more
suitable for the practical use of genomic selection.
Beyond firmness, we also investigated variables highly

correlated to sensory crispness, a trait which strongly
influences the sensory experience of consumers and thus
determines the commercial success of a cultivar. To our
knowledge, predictions for crispness have only been
reported for sensory crispness with an accuracy around
0.224. In the populations considered in our study, crisp-
ness (as obtained by PC2) could be predicted with a
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reasonable accuracy of 0.42 in the collection, and in most
of the families we could achieve accuracy values above 0.2
(except family ‘GDFj’, with 0.01 maximum accuracy).

Impact of genetic clustering and relatedness on prediction
accuracy
Through the implementation of the DAPC method, six

significant, yet marginally differentiated genetic clusters
were observed. Families were assigned to one or two
specific clusters, reflecting the assignment of their par-
ental genotypes. Our results confirm the weak genetic
structure characteristic of the cultivated apple32,33.
Although some degree of correlation was apparent
between the genetic clustering of genotypes and their
phenotypic distribution (Fig. S3), TS optimization based
on clustering was the lowest performing among the four
methods that we tested. One important result revealed by
the clustering patterns was that the two families ‘GaPL’
and ‘GaPi’, whose parents originated from the same highly
represented genetic cluster in the collection (Cluster 5),
yielded the best predictions.
The genetic parameter having the largest impact on

predictions was genetic relatedness, with texture traits
being much better predicted in the two families most
related to the collection (‘GaPL’ and ‘GaPi’) compared to
the remaining ‘Fuji’-related families. This observation
confirms that genetic relatedness is a fundamental para-
meter in genomic prediction34. The addition of closely
related genotypes from the same family (‘TS_coll_sibs’) or
from a complete half-sib family (‘TS_coll_half-sibs’) to the
collection did not improve the prediction accuracy for five
of the six families studied. This result suggests that either
the collection already contains ‘enough’ diversity to pre-
dict families, or that the excess of unrelated genotypes in
the collection cannot be corrected by adding more related
genotypes. Thus, ‘TS_coll_sibs’ and ‘TS_coll_half-sibs’
scenarios do not seem to effectively improve the TS.
To resolve this uncertainty, we used an alternative

optimization strategy, which involved gradually increasing
the TS size using a priori information on genetic relat-
edness derived from marker data. TS optimization based
on a priori information on relatedness between genotypes
improved the accuracy of predictions relative to other
composition rules ‘TS_coll’, ‘TS_sibs’, ‘TS_half-sibs’, with
a minimal increase of 0.2 and maximal increase of 0.4 in
accuracy (Figs. 5 and S6, Tables 3 and S7). Importantly,
the maximum accuracies were never reached by using the
entire set of 259 genotypes as TS, especially for families
with the lowest genetic relatedness to the collection. For
genomic selection, it is usually recommended to use a
large and diverse training population35 that includes at
least one closely related genotype in the TS for each
genotype in the VS36. However, in the present study this
was not sufficient to maximize accuracies when genotype

with low relatedness to the VS were retained for training
the model. Our results are consistent with previous
findings in barley37 showing the detrimental effects of
adding genotype unrelated to the VS into the TS. In the
present design, highly related ‘ad hoc’ training populations
are more suitable for predicting biparental populations
than larger ones where mean relatedness is reduced, a
finding that has also been reported in maize biparental
populations38.

Improving the genomic selection strategy for apple
texture
The improvement of fruit texture is still limited by the

time-consuming and expensive process of phenotyping
with texture analyzers. Thus, even though our predictions
demonstrate the potential of genomic selection for apple
texture, its practical application will be profitable if
accurate predictions can compensate for the costly and
laborious phenotyping of the TS. Texture analyzers
should be preferred over sensory assessments because
their measurements are highly repeatable, giving higher
heritability estimates for texture traits5. To make its use
more affordable and appropriate for real breeding pro-
grams dealing with high number of genotypes, one pos-
sibility could be to select a single but fundamental
parameter to measure. In this regard, the mechanical trait
FNP, the number of mechanical peaks observed in the
mechanical profile generated by fruit compression on the
texture analyzer, was found to be highly correlated to
acoustic variables and associated to crispness (PC2) in this
study. As mechanical traits are easier to measure than
acoustic ones, FNP could in practice replace acoustic
traits to assess crispness. Since we also obtained high
prediction accuracy for FNP (0.63 in collection and max-
imum of 0.78 in optimized family prediction), we propose
this sub-trait as the most valuable descriptor for fruit
texture, minimizing the effort needed to phenotype
that trait.
Identifying the principal components of texture profiles

allowed us to capture the fruit texture phenotypic varia-
bility hidden within the twelve measured sub-traits. We
exploited the high correlations between sub-traits and
PC1 to facilitate and improve the prediction of firmness.
This simplified multiple-trait approach could be further
exploited by using proper multiple-trait models (see for
instance in rye39, where the prediction accuracy of protein
content was improved by using a two-trait model invol-
ving yield).
In the experimental design presented here, the perfor-

mance of genomic predictions and thus the applicability
of genomic selection for texture depended highly on the
target family, and more generally on the relatedness
between TS and VS. Considering the constrained resource
allocation proper to the design of fruit trees experiments,

Roth et al. Horticulture Research           (2020) 7:148 Page 10 of 14



we propose three strategies ranked by order of priority for
increasing prediction accuracies towards the application
of genomic selection, which are (i) to increase marker
density to better harness relatedness at causal loci and
address potential linkage phase inversions between TS
and VS; (ii) to broaden the genotypic diversity of the main
TS to better represent the material of interest for breeding
(especially for crispness); (iii) to increase the heritability
estimates for fruit texture by assessing this trait in the TS
using both more replicates and different environments. In
the future, the use of reference populations (or so called
“REFPOPs”) with high replication, high density genotyp-
ing, and high genetic diversity should help address these
limitations40,41.

Materials and methods
Plant material
The plant material and phenotyping strategies used in

this work have been described previously5–7. Two types of
plant materials were used in this study: a collection of
apple genotypes, expected to represent the diversity in the
cultivated apple and thus serving as main TS, and six
biparental families, which are typical examples of the
material used for selection in apple breeding programs,
thus serving as six different VS. The apple collection
consisted of 259 distinct genotypes, each represented by a
single plot of three adjacent trees (clones), at the experi-
mental orchard of the Fondazione Edmund Mach
(Trento) in the Northern part of Italy. The six biparental
families contained a total of 278 genotypes. Two (‘FjDe’:
‘Fuji’ × ‘Delearly’ and ‘FjPL’: ‘Fuji’ × ‘Pink Lady’) were
located at the Fondazione Edmund Mach (in the same
orchard as the collection), while the other four (‘GaPL’:
‘Royal Gala’ × ‘Pink Lady’, ‘GaPi’: ‘Royal Gala’ × ‘Pinova’,
‘FjPi’: ‘Fuji’ × ‘Pinova’ and ‘GDFj’: ‘Golden Delicious’ × ‘
Fuji’) were planted at the experimental orchard of the
Laimburg Research Center (Bolzano), located in the same
area with near-identical climatic and pedological condi-
tions. In contrast to the collection, each genotype from the
six families was represented by a single tree. At the time of
the analysis, all plants (from both the collection and
families) were in a productive and adult phase. Fruit
texture was phenotyped in 2012, 2013, and 2015 for the
collection, in 2012 and 2013 for ‘FjDe’ and ‘FjPL’, and in
2012 and 2014 for the four remaining families (Table 2).
Plants from both the collection and families, were grafted
on ‘M9’ rootstock and grown according to conventional
horticultural management for plant training system,
pruning, and pest-disease control.
Fruits were harvested from each genotype at the physio-

logical ripening stage, established according to standard
horticultural fruit quality parameters, such as the change in
color of the skin, seeds and flesh, fruit firmness value and the
iodine coloration index indicating the level of internal starch

degradation. Fruit from different trees of the same plot were
harvested the same day. After harvest, fruits were stored for
2 months at 2 °C with 95% relative humidity.

Texture phenotyping
The texture of the apple fruit was assessed via

mechanical and acoustic measurements with the use of a
texture analyzer TA.XTplus (Stable MicroSystems Ltd.,
Godalming, UK) equipped with an acoustic envelop
device AED (Stable MicroSystems Ltd., Godalming, UK),
as previously described5. From the harvested apples, a
single, homogeneous set of five apples was chosen for
each genotype (i.e., the set of five apples came from a
single tree for families and from different trees for the
collection). Four identical discs were taken per fruit,
avoiding seeds, seed cavity tissues or skin, for a total of 20
measurements per genotype (five biological replicates, and
four technical replicates per biological replicate). Each
texture profile was then digitally converted to 12 texture
measurements (i.e., ‘sub-traits’), four related to the
acoustic performance and eight to the mechanical force-
displacement. In brief, the mechanical sub-traits were
coded as: initial, final, maximum, and mean force (related
to the different force values associated with different parts
of the force-displacement profile), area, force linear dis-
tance (derived length of the profile), Young’s module (also
known as elasticity module) and number of force peaks.
The four acoustic sub-traits were the maximum measure
of acoustic pressure, the mean of acoustic pressure mea-
sures, the acoustic linear distance and the number of
acoustic peaks obtained with the texture analyzer. A more
detailed description of the texture sub-traits has been
previously reported5.

SNP genotyping
The DNA used for SNP-genotyping in this survey was

extracted from young leaves collected from a tree of each
genotype at the beginning of the vegetative phase with the
Qiagen DNeasy Plant Kit and further quantified with a
Nanodrop ND-8000 (ThermoScientific, USA). The SNP
marker data were obtained with the HiScan (Illumina,
USA) and the apple 20K SNP chip Infinium array (Illu-
mina, USA); the chip was assembled within the frame-
work of the European project FruitBreedomics42. The
genotyping output was initially analyzed with the software
GenomeStudio and further re-edited with ASSiST43.
SNPs with minor allele frequencies lower than 0.05 and
call rate below 0.2 were filtered out with the package
‘snpStats’44. The final set of markers successfully recov-
ered in the population consisted of 8,294 biallelic SNPs.

Analysis of the fruit texture sub-traits
For each trait, we used a mixed linear model to get the

BLUP of across-years phenotypic value for each genotype.
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These BLUPs were used to explore the phenotypic dis-
tributions via a PCA and were subsequently employed in
the two-step genomic prediction scheme described below
(‘Prediction models’ section). We first calculated the mean
of the four technical replicates for each apple to retain
only the biological replication level in the model (i.e., a
single apple). For genotypes of the collection, the biolo-
gical variation represented by individual apples encom-
passes the variation within and between trees of the same
genotype. However, it was not possible to account for the
effect of individual trees as apples were bulked without
recording the specific tree identifiers. Variation in each of
the 12 mechanical or acoustic sub-traits, considered as ‘Y’,
was modeled using the genotype as a random effect, the
trial (location-by-year) as fixed effect and a random effect
of error: Yi;j;k ¼ μþ genotypei þ trialj þ ei;j;k (1). Each
phenotypic datapoint Yi,j,k is explained by the mean μ, the
genotype i, the trial j and the error for each combination
of genotype, trial and replicate (k, i.e., a single apple). To
note, apples correspond here to pseudo-replications of the
genotype levels and the across-year phenotypic values
represented by BLUPs encompass the effect of individual
trees. This model was fitted separately for all traits with
the ‘lme4’ R-package45. As our design did not allow to
calculate heritability precisely, the repeatability was cal-
culated instead, as defined by the ratio between the var-
iance of genotypes as assessed by across-year phenotypes
and the total phenotypic variance.
A PCA was performed on BLUPs with the ‘FactorMiner’

R-package46. The values from the collection were used to
create the principal components, while the individuals
from the families were plotted as supplementary indivi-
duals. Coordinates of individuals on the first and the
second PCs (‘PC1’ and ‘PC2’) were used for prediction and
named ‘synthetic’ traits. The loadings of PC1 and PC2
were used on the raw, replicated data to compute the
repeatability estimates of both synthetic traits.

Kinship and clustering analyses
The realized additive relationship47 was calculated with

the entire SNP dataset with the VanRaden method
described in ref. 48 implemented in the ‘A.mat’ function of
the ‘rrBLUP’ package49, and depicted in a heatmap plot
using the R-function ‘heatmap.2’ (package ‘gplots’50).
Genetic clustering was further assessed in the collection to
identify potential genetic groups having an impact on the
prediction results for texture. To this aim, we performed a
DAPC51, carried out with the R-package ‘adegenet’52

using the entire set of 8294 markers. In the first step, six
significant clusters were retained with the function ‘find.
clusters’ using 300 principal components and selecting the
number of clusters with the highest likelihood (based on
the BIC, Fig. S1). Out of these principal components, 150
were retained and employed in the clustering computed

with the ‘dapc’ function, which created five principal
components that maximized the distance between clus-
ters while minimizing the distance between genotypes
within each cluster. The assignment of offspring to clus-
ters was obtained with the function ‘predict_dapc’. Pair-
wise FST values between clusters were then computed
with the entire SNP set using the function ‘pairwise.
WCfst’ from the R-package ‘hierfstat’53.

Prediction models
Genomic predictions were computed through a model

implemented in the rrBLUP framework49, Y ¼ μþ Zuþ e
(3). Y is the vector of BLUPs of the across-year phenotypic
values (n × 1), μ is the mean of the phenotype, Z is the n ×
p incidence matrix linking the marker data (additive
coding −1,0,1) to observations of Y, u the p × 1 vector of
random marker effects with u � N 0; Iσ2u

� �
, and e is a n ×

1 vector of random errors. For the predictions of marker
effects, the incidence matrix Z contained the observations
from the TS, and observations from the VS were masked.
In a second step, the predicted marker effects were
employed to obtain the genomic estimated breeding
values in the VS.
While the ultimate goal was to predict texture in

biparental families with the collection as main TS, we first
performed fivefold cross-validations, repeated 100 times,
within the collection. These results served as a baseline to
interpret the subsequent predictions of texture in families,
using the collection (or part of it) as TS.
When predicting texture within each family (considered

as VS), different TS composition rules were tested. In the
first approach, the design was made using the information
on relatedness known before genotyping between TS and
VS (i.e., without using marker data). There, we used three
composition rules: in scenario ‘TS_coll’, the simplest case,
each family was predicted using the collection only. In
scenario ‘TS_coll_sibs’, 30% of genotypes of the predicted
family were added to the collection in the TS, while the
remaining 70% formed the VS. In scenario ‘TS_coll_half-
sibs’, a single half-sib family (e.g., ‘GaPL’ is half-sib with
‘FjPL’ and ‘GaPi’) was added to the collection to form the
TS, leading to two to four TS possibilities (and accuracy
values). To give an example focusing on the family ‘GaPi’,
we tested the three following scenarios: scenario ‘TS_coll’
corresponded to [TS= collection // VS= ‘GaPi’] (one
accuracy estimation only); ‘TS_coll_sibs’ corresponded to
[TS= 30% ‘GaPi’ offspring+ collection // VS= 70%
remaining offspring of ‘GaPi’] (sampling of the 30%
repeated 100 times, giving 100 estimations of the accu-
racy); and ‘TS_coll_half-sibs’corresponded to [TS= ‘GaPL’
or ‘FjPi’+ collection // VS= ‘GaPi’] (resulting in the esti-
mation of two accuracy values).
In the second approach, we performed TS optimization

with the use of information on genetic relatedness
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between TS and VS as inferred by marker data. There, we
looked for the optimal TS size and composition with a
relatedness-driven and a principal component-driven
approach. The relatedness-driven approach was tested
in three different ways: (i) by starting with the ten most-
related genotypes and adding single genotypes with
decreasing mean relationship to the family; (ii) with
decreasing maximum relationship to the family (N= 10 to
N= 259 for (i) and (ii)); or (iii) by starting with a TS
composed of the most related cluster and adding less and
less related clusters successively (final TS size N= 259). In
the principal component-driven approach, TS individuals
were selected to constitute several TS with increasing size
using the ‘CDmean’ criterion to choose individuals (R-
package ‘STPGA’54). The CDmean criterion utilizes the
generalized coefficient of determination between con-
trasts of genotypes16, as a measure of the reliability of
prediction, to build the optimal TS via an iterative pro-
cess. This criterion was selected because it should allow
maximizing prediction accuracy without decreasing the
genetic variance in the TS15,17. Specifically, the optimal TS
was allowed to vary from 10 genotypes to 259 in incre-
ments of 20 genotypes, and was chosen based on the five
principal components obtained with DAPC analysis with
the algorithm implemented in the function ‘GenAlgFor-
SubsetSelection’ (R-package ‘STPGA’54). Here, genotypes
were chosen independently for each TS size, meaning that
we did not proceed to a gradual enrichment of the TS.
All accuracy values were based on Pearson correlation

coefficients calculated between observed values (i.e.,
BLUPs of across-year phenotypic values) and predicted
values of the VS genotypes. When standard deviations
were not available, we calculated an ~95% confidence
interval of the correlation coefficient with a Fisher’s
Z-transformation (‘cor.test’ function in base R). Calcula-
tions were performed in R statistical software55 and
graphs were created with the R-package ‘ggplot2’56. The
R-scripts used for this study are available at https://github.
com/MorganeRoth/GS_apple_texture.
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