. **-p, , p.0

. ***, Effect of a high concentration of fenofibrate (450 µM) on HepaRG cells. Data were obtained with 18 replicates. Amino acids, energy metabolites were quantified using the 12 C/ 13 C ratio. Concentrations were obtained in nM using an external calibration. Relative abundance was obtained using only 12 C/ 13 C ratios for polar metabolites and ratio with their corresponding unlabeled internal standard for lipids. Bars represent mean ± SD (n = 5). t-tests were performed for each metabolite, Figure S3

. **-p, , p.0

. ***, isoleucine (Ile), serine (Ser), threonine (Thr), tryptophan (Trp), phenylalanine (Phe), arginine (Arg), histidine (his), asparagine (Asn), lysine (Lys), methionine (Met), proline (Pro), tyrosine (Tyr), valine (Val), 2,3-bisphosphoglycerate (2_3PG), 6_phosphogluconate (6-PG), a-ketoglutarate (a-KG), adenosine 5 -monophosphate (AMP), cytidine diphosphate (CDP), cytidine 5 -monophosphate (CMP), N-acetylglucosamine-1-phosphate (GlucNac-1P), N-acetylglucosamine-6-phosphate (GlucNac-6P), fructose-6-phosphate (Fru6P), fructose-1-phosphate (Fru1P), fructose bisphosphate (FruBP) guanosine diphosphate (GDP), guanosine diphosphate mannose (GDP-Man), glucose-6-phosphate (Glc6P), Triglycerides (TG), ceramides (Cer), phosphatidylcholines (PC), phosphatidylethanolamines (PE), sphingomyelins (SM), phosphatidylinositols (PI), alanine (Ala), aspartate (Asp), glutamine (Gln), glutamate (Glu), glycine (Gly), leucine (Leu)

, phosphoenolpyruvate (PEP), uridine diphosphate (UDP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), cytidine triphosphate (CTP), phosphoserine (P-Ser), sedoheptulose-7-phosphate (sed-7P), uridine diphosphate acetylglucosamine (UDP-AcGlcN), uridine diphosphate glucose (UDP-Glc), uridine 5 -monophosphate (UMP), mannose-6-phosphate (Man6P), pyridoxal-5-phosphate (P5P)

T. D. Veenstra, Metabolomics: The final frontier, Genome Med, 2012.

C. Damiani, D. Gaglio, E. Sacco, L. Alberghina, and M. Vanoni, Systems metabolomics: From metabolomic snapshots to design principles, Curr. Opin. Biotechnol, vol.2020, pp.190-199

G. J. Patti, O. Yanes, and G. Siuzdak, Metabolomics: The apogee of the omics trilogy, Nat. Rev. Mol. Cell Biol, vol.13, pp.263-269, 2012.

G. A. Gowda, S. Zhang, H. Gu, V. Asiago, N. Shanaiah et al., Metabolomics-based methods for early disease diagnostics, Expert Rev. Mol. Diagn, vol.8, pp.617-633, 2008.

T. Ramirez, M. Daneshian, H. Kamp, F. Y. Bois, M. R. Clench et al., Metabolomics in toxicology and preclinical research, vol.30, pp.209-225, 2013.

N. J. Cabaton, N. Poupin, C. Canlet, M. Tremblay-franco, M. Audebert et al., An untargeted metabolomics approach to investigate the metabolic modulations of HepG2 cells exposed to low doses of bisphenol A and 17?-estradiol, Front. Endocrinol, vol.9, 2018.

N. Poupin, M. Tremblay-franco, A. Amiel, C. Canlet, D. Rémond et al., Arterio-venous metabolomics exploration reveals major changes across liver and intestine in the obese Yucatan minipig, Sci. Rep, vol.9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02282295

R. Kumar, A. Bohra, A. K. Pandey, M. K. Pandey, and A. Kumar, metabolomics for plant improvement: Status and prospects. Front, Plant Sci, 1032.

W. B. Dunn, N. J. Bailey, and H. E. Johnson, Measuring the metabolome: Current analytical technologies, Analyst, vol.130, pp.606-625, 2005.

D. Vuckovic, Improving metabolome coverage and data quality: Advancing metabolomics and lipidomics for biomarker discovery, Chem. Commun, vol.54, pp.6728-6749, 2018.

R. Wawrzyniak, A. Kosnowska, S. Macioszek, R. Bartoszewski, and M. J. Markuszewski, New plasma preparation approach to enrich metabolome coverage in untargeted metabolomics: Plasma protein bound hydrophobic metabolite release with proteinase K, Sci. Rep, vol.8, p.9541, 2018.

J. Zhang, Y. Hong, L. Jiang, X. Yi, Y. Chen et al., Global metabolomic and lipidomic analysis reveal the synergistic effect of bufalin in combination with cinobufagin against HepG2 Cells, J. Proteome Res, vol.19, pp.873-883, 2020.

A. Lebkuchen, V. M. Carvalho, G. Venturini, J. S. Salgueiro, L. S. Freitas et al., Metabolomic and lipidomic profile in men with obstructive sleep apnoea: Implications for diagnosis and biomarkers of cardiovascular risk, Sci. Rep, vol.8, pp.1-12, 2018.

Z. Yang, Z. Song, Z. Chen, Z. Guo, H. Jin et al., Metabolic and lipidomic characterization of malignant pleural effusion in human lung cancer, J. Pharm. Biomed. Anal, vol.180, 2020.

P. Giesbertz, I. Padberg, D. Rein, J. Ecker, A. S. Höfle et al., Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes, Diabetologia, vol.58, pp.2133-2143, 2015.

A. Acharjee, Z. Ament, J. A. West, E. Stanley, and J. L. Griffin, Integration of metabolomics, lipidomics and clinical data using a machine learning method, BMC Bioinform, vol.17, pp.440-449, 2016.

E. S. Nakayasu, C. D. Nicora, A. C. Sims, K. E. Burnum-johnson, Y. Kim et al., MPLEx: A robust and universal protocol for single-sample integrative proteomic, metabolomic, and lipidomic analyses. mSystems, vol.1, pp.43-59, 2016.

Y. Li, Z. Zhang, X. Liu, A. Li, Z. Hou et al., A novel approach to the simultaneous extraction and non-targeted analysis of the small molecules metabolome and lipidome using 96-well solid phase extraction plates with column-switching technology, J. Chromatogr. A, pp.277-281, 1409.

J. Godzien, M. Ciborowski, L. Whiley, C. Legido-quigley, F. J. Rupérez et al., In-vial dual extraction liquid chromatography coupled to mass spectrometry applied to streptozotocin-treated diabetic rats. Tips and pitfalls of the method, J. Chromatogr. A, pp.52-60, 1304.

L. Whiley, J. Godzien, F. J. Rupérez, C. Legido-quigley, and C. Barbas, In-vial dual extraction for direct Lc-ms analysis of plasma for comprehensive and highly reproducible metabolic fingerprinting, Anal. Chem, vol.84, pp.5992-5999, 2012.

S. Chen, M. Hoene, J. Li, Y. Li, X. Zhao et al., Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry, J. Chromatogr. A, vol.1298, pp.9-16, 2013.

C. Rombouts, M. De-spiegeleer, L. Van-meulebroek, W. H. De-vos, and L. Vanhaecke, Validated comprehensive metabolomics and lipidomics analysis of colon tissue and cell lines, Anal. Chim. Acta, vol.1066, pp.79-92, 2019.

L. D. Roberts, A. L. Souza, R. E. Gerszten, and C. B. Clish, Targeted metabolomics. Curr. Protoc. Mol. Boil, 1924.

C. Coman, F. A. Solari, A. Hentschel, A. Sickmann, R. P. Zahedi et al., Simultaneous metabolite, protein, lipid extraction (SIMPLEX): A combinatorial multimolecular omics approach for systems Biology, Mol. Cell. Proteom, vol.15, pp.1453-1466, 2016.

E. Rampler, D. Egger, H. Schoeny, M. Rusz, M. P. Pacheco et al., The power of LC-MS based multiomics: Exploring adipogenic differentiation of human mesenchymal stem/stromal cells, Molecules, vol.24, 2019.

N. J. Serkova, T. J. Standiford, and K. A. Stringer, The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses, Am. J. Respir. Crit. Care Med, vol.184, pp.647-655, 2011.

M. Heuillet, P. Millard, M. Y. Cissé, L. K. Linares, F. Letisse et al., Simultaneous measurement of metabolite concentration and isotope incorporation by mass spectrometry, Anal. Chem, vol.92, pp.5890-5896, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02563842

L. Wu, M. R. Mashego, J. C. Van-dam, A. M. Proell, J. L. Vinke et al., Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13 C-labeled cell extracts as internal standards, Anal. Biochem, vol.336, pp.164-171, 2005.

B. D. Bennett, J. Yuan, E. H. Kimball, and J. D. Rabinowitz, Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach, Nat. Protoc, vol.3, pp.1299-1311, 2008.

P. Millard, S. Massou, C. Wittmann, J. Portais, and F. Létisse, Sampling of intracellular metabolites for stationary and non-stationary 13 C metabolic flux analysis in Escherichia coli, Anal. Biochem, vol.465, pp.38-49, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268941

A. Ribbenstedt, H. Ziarrusta, and J. P. Benskin, Development, characterization and comparisons of targeted and non-targeted metabolomics methods, PLoS ONE, vol.13, 2018.

L. Smith, J. Villaret-cazadamont, S. P. Claus, C. Canlet, H. Guillou et al., Ellero-Simatos, S. Important considerations for sample collection in metabolomics studies with a special focus on applications to liver functions, vol.10, 2020.

F. Pinu, S. G. Villas-boas, and R. Aggio, Analysis of intracellular metabolites from microorganisms: Quenching and extraction protocols, vol.7, p.53, 2017.

G. Martano, N. Delmotte, P. Kiefer, P. Christen, D. Kentner et al., Fast sampling method for mammalian cell metabolic analyses using liquid chromatography-mass spectrometry, Nat. Protoc, vol.10, pp.1-11, 2014.

C. Sellick, R. Hansen, G. Stephens, R. Goodacre, and A. J. Dickson, Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling, Nat. Protoc, vol.6, pp.1241-1249, 2011.

Z. León, J. C. García-cañaveras, M. Donato, and A. Lahoz, Mammalian cell metabolomics: Experimental design and sample preparation, Electrophoresis, vol.34, pp.2762-2775, 2013.

S. G. Villas-boas, J. Højer-pedersen, M. Åkesson, J. Smedsgaard, and J. Nielsen, Global metabolite analysis of yeast: Evaluation of sample preparation methods, Yeast, vol.22, pp.1155-1169, 2005.

P. Gripon, S. Rumin, S. Urban, J. Le-seyec, D. Glaise et al., Nonlinear partial differential equations and applications: Infection of a human hepatoma cell line by hepatitis B virus, Proc. Natl. Acad. Sci, vol.99, pp.15655-15660, 2002.

J. Legler, D. Zalko, F. Jourdan, M. Jacobs, B. Fromenty et al., The GOLIATH project: Towards an internationally harmonised approach for testing metabolism disrupting compounds, Int. J. Mol. Sci, vol.2020
URL : https://hal.archives-ouvertes.fr/hal-02638423

B. A. Merrick, R. S. Paules, and R. Tice, Intersection of toxicogenomics and high throughput screening in the Tox21 program: An NIEHS perspective, Int. J. Biotechnol, vol.14, pp.7-27, 2015.

M. M. Houck and . Siegel, Chapter 6-Separation methods, Fundamentals of Forensic Science, pp.121-151, 2015.

C. F. Poole and S. K. Poole, Extraction of organic compounds with room temperature ionic liquids, J. Chromatogr. A, pp.2268-2286, 2010.

L. Humbert, G. Hoizey, and M. Lhermitte, Chapter 7-Drugs involved in drug-facilitated crimes (DFC): Analytical aspects: 1-Blood and urine, Toxicological Aspects of Drug-Facilitated Crimes

P. Kintz and . Ed, , pp.159-180, 2014.

J. D. Rabinowitz and E. Kimball, Acidic acetonitrile for cellular metabolome extraction from Escherichia coli, Anal. Chem, vol.79, pp.6167-6173, 2007.

M. V. Brown, J. E. Mcdunn, P. R. Gunst, E. Smith, M. V. Milburn et al., Cancer detection and biopsy classification using concurrent histopathological and metabolomic analysis of core biopsies

, Genome Med, vol.4, p.33, 2012.

A. D. Panopoulos, O. Yanes, S. Ruiz, Y. S. Kida, D. Diep et al., The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming, Cell Res, vol.22, pp.168-177, 2011.

R. Mandal, A. C. Guo, K. K. Chaudhary, P. Liu, F. S. Yallou et al., Multi-platform characterization of the human cerebrospinal fluid metabolome: A comprehensive and quantitative update

, Genome Med, 2012.

S. Ma, S. Liu, Q. Wang, L. Chen, P. Yang et al., Fenofibrate-induced hepatotoxicity: A case with a special feature that is different from those in the LiverTox database, J. Clin. Pharm. Ther, vol.45, pp.204-207, 2019.

A. Soria, C. Bocos, and E. Herrera, Opposite metabolic response to fenofibrate treatment in pregnant and virgin rats, J. Lipid Res, vol.43, pp.74-81, 2002.

Y. Lu, M. V. Boekschoten, S. Wopereis, M. Muller, and S. Kersten, Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice, Physiol. Genom, vol.43, pp.1307-1318, 2011.

Q. Yang, T. Nagano, Y. Shah, C. Cheung, S. Ito et al., The PPAR?-Humanized Mouse: A model to investigate species differences in liver toxicity mediated by Ppar?, Toxicol. Sci, vol.101, pp.132-139, 2007.

M. Croyal, Z. Kaabia, L. León, S. Ramin-mangata, T. Baty et al., Fenofibrate decreases plasma ceramide in type 2 diabetes patients: A novel marker of CVD?, Diabetes Metab, vol.44, pp.143-149, 2018.

J. Shepherd, Mechanism of action of fibrates, Postgrad. Med J, vol.69, pp.34-41, 1993.

F. Yan, Q. Wang, C. Xu, M. Cao, X. Zhou et al., Peroxisome proliferator-activated receptor ? activation induces hepatic steatosis, suggesting an adverse effect, PLoS ONE, vol.9, 2014.

A. Rogue, S. Antherieu, A. Vluggens, T. Umbdenstock, N. Claude et al., PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells, Toxicol. Appl. Pharmacol, vol.276, pp.73-81, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01020611

Y. Harano, K. Yasui, T. Toyama, T. Nakajima, H. Mitsuyoshi et al., Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver shionogi mice with hereditary fatty liver, Liver Int, vol.26, pp.613-620, 2006.

M. Tsoko, F. Beauseigneur, J. Gresti, J. Demarquoy, and P. Clouet, Hypolipidaemic effects of fenofibrate are not altered by mildronate-mediated normalization of carnitine concentration in rat liver, Biochimie, vol.80, pp.943-948, 1998.

M. E. Franco, M. T. Fernandez-luna, A. J. Ramirez, and R. Lavado, Metabolomic-based assessment reveals dysregulation of lipid profiles in human liver cells exposed to environmental obesogens, Toxicol. Appl. Pharmacol, vol.398, 2020.

M. H. Oosterveer, A. Grefhorst, T. H. Van-dijk, R. Havinga, B. Staels et al., Fenofibrate simultaneously induces hepatic fatty acid oxidation, synthesis, and elongation in mice, J. Biol. Chem, vol.284, pp.34036-34044, 2009.

T. Ohta, N. Masutomi, N. Tsutsui, T. Sakairi, M. W. Mitchell et al., Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in fischer 344 male rats, Toxicol. Pathol, vol.37, pp.521-535, 2009.

S. S. Chachad, M. Gole, G. Malhotra, and R. Naidu, Comparison of pharmacokinetics of two fenofibrate tablet formulations in healthy human subjects, Clin. Ther, vol.36, pp.967-973, 2014.

J. Heindel, B. Blumberg, M. Cave, R. Machtinger, A. Mantovani et al., Metabolism disrupting chemicals and metabolic disorders, Reprod. Toxicol, vol.68, pp.3-33, 2016.

M. Heuillet, F. Bellvert, E. Cahoreau, F. Létisse, P. Millard et al., Methodology for the validation of isotopic analyses by mass spectrometry in stable-isotope labeling experiments, Anal. Chem, vol.90, pp.1852-1860, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886456