W. M. Johnson and H. Lior, Response of Chinese hamster ovary cells to a Cytolethal Distending Toxin (CDT) of Escherichia coli and possible misinterpretation as heat-labile (LT) enterotoxin, FEMS Microbiol. Lett, vol.43, pp.19-23, 1987.

W. M. Johnson and H. Lior, A new heat-labile Cytolethal Distending Toxin (CLDT) produced by Campylobacter spp, Microb. Pathog, vol.4, pp.115-126, 1988.

M. P. Mayer, L. C. Bueno, E. J. Hansen, and J. M. Dirienzo, Identification of a Cytolethal Distending Toxin gene locus and features of a virulence-associated region in Actinobacillus actinomycetemcomitans, Infect. Immun, vol.67, pp.1227-1237, 1999.

M. Sugai, T. Kawamoto, H. Komatsuzawa, T. Fujiwara, H. Kurihara et al., The cell cycle-specific growth-inhibitory factor produced by Actinobacillus actinomycetemcomitans is a Cytolethal Distending Toxin, Infect. Immun, vol.66, pp.5008-5019, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02686328

L. D. Cope, S. Lumbley, J. L. Latimer, J. Klesney-tait, M. K. Stevens et al., A diffusible cytotoxin of Haemophilus ducreyi, Proc. Natl. Acad. Sci, vol.94, pp.4056-4061, 1997.

R. N. Jinadasa, S. E. Bloom, R. S. Weiss, and G. E. Duhamel, Cytolethal distending Toxin: A conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages, Microbiology, vol.157, pp.1851-1875, 2011.

J. Okuda, M. Fukumoto, Y. Takeda, and M. Nishibuchi, Examination of diarrheagenicity of Cytolethal Distending Toxin: Suckling mouse response to the products of the cdtABC genes of Shigella dysenteriae, Infect. Immun, vol.65, pp.428-433, 1997.

J. G. Fox, A. B. Rogers, M. T. Whary, Z. Ge, N. S. Taylor et al., Gastroenteritis in NF-B-Deficient Mice Is Produced with Wild-Type Camplyobacter jejuni but Not with C. jejuni Lacking Cytolethal Distending Toxin despite Persistent Colonization with Both Strains, Infect. Immun, vol.72, pp.1116-1125, 2004.

Z. Ge, Y. Feng, M. T. Whary, P. R. Nambiar, S. Xu et al., Cytolethal Distending Toxin is essential for Helicobacter hepaticus colonization in outbred Swiss Webster mice, Infect. Immun, vol.73, pp.3559-3567, 2005.

D. Jain, K. N. Prasad, S. Sinha, and N. Husain, Differences in virulence attributes between cytolethal distending toxin positive and negative Campylobacter jejuni strains, J. Med. Microbiol, vol.57, pp.267-272, 2008.

J. S. Pratt, K. L. Sachen, H. D. Wood, K. A. Eaton, and V. B. Young, Modulation of host immune responses by the Cytolethal Distending Toxin of Helicobacter hepaticus, Infect. Immun, vol.74, pp.4496-4504, 2006.

V. B. Young, K. A. Knox, J. S. Pratt, J. S. Cortez, L. S. Mansfield et al., In vitro and in vivo characterization of helicobacter hepaticus Cytolethal Distending Toxin mutants, Infect. Immun, vol.72, pp.2521-2527, 2004.

Z. Ge, A. B. Rogers, Y. Feng, A. Lee, S. Xu et al., Bacterial Cytolethal Distending Toxin promotes the development of dysplasia in a model of microbially induced hepatocarcinogenesis, Cell. Microbiol, vol.9, pp.2070-2080, 2007.

Z. Ge, Y. Feng, L. Ge, N. Parry, S. Muthupalani et al., Helicobacter hepaticus cytolethal distending toxin promotes intestinal carcinogenesis in 129 ag2 -deficient mice, Cell. Microbiol, vol.19, pp.1-11, 2017.

Z. He, R. Z. Gharaibeh, R. C. Newsome, J. L. Pope, M. W. Dougherty et al., Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin, Gut, vol.68, pp.289-300, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02627995

V. Gelfanova, E. J. Hansen, and S. M. Spinola, Cytolethal Distending Toxin of Haemophilus ducreyi induces apoptotic death of Jurkat T cells, Infect. Immun, vol.67, pp.6394-6402, 1999.

M. Ohguchi, A. Ishisaki, N. Okahashi, M. Koide, T. Koseki et al., Actinobacillus actinomycetemcomitans toxin induces both cell cycle arrest in the G2/M phase and apoptosis, Infect. Immun, vol.66, pp.5980-5987, 1998.

T. Frisan, X. Cortes-bratti, E. Chaves-olarte, B. Stenerlow, and M. Thelestam, The Haemophilus ducreyi Cytolethal Distending Toxin induces DNA double-strand breaks and promotes ATM-dependent activation of RhoA, Cell. Microbiol, vol.5, pp.695-707, 2003.

Y. Fedor, J. Vignard, M. Nicolau-travers, E. Boutet-robinet, C. Watrin et al., From single-strand breaks to double-strand breaks during S-phase: A new mode of action of the Escherichia coli Cytolethal Distending Toxin: A new mode of action for CDT, Cell. Microbiol, vol.15, pp.1-15, 2013.

E. Bezine, Y. Malaisé, A. Loeuillet, M. Chevalier, E. Boutet-robinet et al., Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms, Sci. Rep, vol.6, pp.1-15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602345

L. Li, A. Sharipo, E. Chaves-olarte, M. G. Masucci, V. Levitsky et al., The Haemophilus ducreyi Cytolethal Distending Toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells, Cell. Microbiol, vol.4, pp.87-99, 2002.

C. Comayras, C. Tasca, E. Oswald, and J. D. Rycke, Escherichia coli Cytolethal Distending Toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation, Infect. Immun, vol.65, pp.508-5095, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02695472

S. Y. Peres, O. Marches, F. Daigle, J. Nougayrede, F. Herault et al., A new Cytolethal Distending Toxin (CDT) from Escherichia coli producing CNF2 blocks HeLa cell division in G2/M phase, Mol. Microbiol, vol.24, pp.1095-1107, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02648882

D. Nesic, Y. Hsu, and C. E. Stebbins, Assembly and function of a bacterial genotoxin, Nature, vol.429, pp.429-433, 2004.

C. L. Pickett, D. L. Cottle, E. C. Pesci, and G. Bikah, Cloning, sequencing, and expression of the Escherichia coli Cytolethal Distending Toxin genes, Infect. Immun, vol.62, pp.1046-1051, 1994.

D. A. Scott and J. B. Kaper, Cloning and sequencing of the genes encoding Escherichia coli Cytolethal Distending Toxin, Infect. Immun, vol.62, pp.244-251, 1994.

M. Damek-poprawa, J. Y. Jang, A. Volgina, J. Korostoff, and J. M. Dirienzo, Localization of Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin subunits during intoxication of live cells, Infect. Immun, vol.80, pp.2761-2770, 2012.

T. Frisan, Bacterial genotoxins: The long journey to the nucleus of mammalian cells, Biochim. Biophys. Acta -Biomembr, vol.1858, pp.567-575, 2016.

J. Song, X. Gao, and J. E. Galan, Structure and function of the Salmonella Typhi chimaeric A 2 B 5 typhoid toxin, Nature, vol.499, pp.350-354, 2013.

C. Elwell, K. Chao, K. Patel, and L. Dreyfus, Escherichia coli CdtB mediates Cytolethal Distending Toxin cell cycle arrest, Infect. Immun, vol.69, pp.3418-3422, 2001.

N. P. Liyanage, R. P. Dassanayake, C. A. Kuszynski, and G. E. Duhamel, Contribution of Helicobacter hepaticus Cytolethal distending toxin subunits to human epithelial cell cycle arrest and apoptotic death in vitro, Helicobacter, vol.18, pp.433-443, 2013.

L. A. Mcsweeney and L. A. Dreyfus, Carbohydrate-binding specificity of the Escherichia coli Cytolethal Distending Toxin CdtA-II and CdtC-II subunits, Infect. Immun, vol.73, pp.2051-2060, 2005.

C. Wising, M. Magnusson, K. Ahlman, L. Lindholm, and T. Lagergard, Toxic activity of the CdtB component of Haemophilus ducreyi cytolethal distending toxin expressed from an adenovirus 5 vector, APMIS, vol.118, pp.143-149, 2010.

B. J. Pons, E. Bezine, M. Hanique, V. Guillet, L. Mourey et al., Cell transfection of purified cytolethal distending toxin B subunits allows comparing their nuclease activity while plasmid degradation assay does not, PLoS ONE, vol.14, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02346660

E. Haghjoo and J. E. Galan, Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway, Proc. Natl. Acad. Sci, vol.101, pp.4614-4619, 2004.

M. Lara-tejero and J. E. Galan, A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein, vol.290, pp.354-357, 2000.

X. Mao and J. M. Dirienzo, Functional studies of the recombinant subunits of a cytolethal distending holotoxin, Cell. Microbiol, vol.4, pp.245-255, 2002.

S. Nishikubo, M. Ohara, Y. Ueno, M. Ikura, H. Kurihara et al., An N-terminal segment of the active component of the bacterial genotoxin Cytolethal Distending Toxin B (CDTB) directs CDTB into the nucleus, J. Biol. Chem, vol.278, pp.50671-50681, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02682070

T. Yamada, J. Komoto, K. Saiki, K. Konishi, and F. Takusagawa, Variation of loop sequence alters stability of cytolethal distending toxin (CDT): Crystal structure of CDT from Actinobacillus actinomycetemcomitans, Protein Sci, vol.15, pp.362-372, 2006.

C. A. Elwell and L. A. Dreyfus, DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest, Mol. Microbiol, vol.37, pp.952-963, 2000.

M. Dlakic, Functionally unrelated signalling proteins contain a fold similar to Mg 2+ -dependent endonucleases, Trends Biochem. Sci, vol.25, pp.272-273, 2000.

J. S. Hontz, M. T. Villar-lecumberri, B. M. Potter, M. D. Yoder, L. A. Dreyfus et al., Differences in crystal and solution structures of the Cytolethal Distending Toxin B subunit, J. Biol. Chem, vol.281, pp.25365-25372, 2006.

C. Q. Pan and R. A. Lazarus, Engineering hyperactive variants of human deoxyribonuclease i by altering its functional mechanism, Biochemistry, vol.36, pp.6624-6632, 1997.

P. Avenaud, M. Castroviejo, S. Claret, J. Rosenbaum, F. Mégraud et al., Expression and activity of the cytolethal distending toxin of Helicobacter hepaticus, Biochem. Biophys. Res. Commun, vol.318, pp.739-745, 2004.

R. P. Dassanayake, M. A. Griep, and G. E. Duhamel, The cytolethal distending toxin B sub-unit of Helicobacter hepaticus is a Ca 2+ -and Mg 2+ -dependent neutral nuclease, FEMS Microbiol. Lett, pp.219-225, 2005.

J. Fahrer, J. Huelsenbeck, H. Jaurich, B. Dörsam, T. Frisan et al., Cytolethal Distending Toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts, DNA Repair, vol.18, pp.31-43, 2014.

F. Grasso and T. Frisan, Bacterial genotoxins: Merging the DNA damage response into infection biology, vol.5, pp.1762-1782, 2015.

B. J. Shenker, M. Dlakic, L. P. Walker, D. Besack, E. Jaffe et al., A novel mode of action for a microbial-derived immunotoxin: The Cytolethal Distending Toxin subunit B exhibits phosphatidylinositol 3,4,5-triphosphate phosphatase activity, J. Immunol, vol.178, pp.5099-5108, 2007.

B. J. Shenker, K. Boesze-battaglia, M. D. Scuron, L. P. Walker, A. Zekavat et al., The toxicity of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin correlates with its phosphatidylinositol-3,4,5-triphosphate phosphatase activity: Cdt toxicity is dependent on PIP 3 phosphatase activity, Cell. Microbiol, vol.18, pp.223-243, 2015.

D. Obradovi?, R. Ga?per?i?, S. Caserman, A. Leonardi, M. Jamnik et al., A Cytolethal Distending Toxin variant from Aggregatibacter actinomycetemcomitans with an aberrant CdtB that lacks the conserved catalytic Histidine 160, PLoS ONE, vol.11, 2016.

S. D. Rabin, J. G. Flitton, and D. R. Demuth, Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin induces apoptosis in non-proliferating macrophages by a phosphatase-independent mechanism, Infect. Immun, vol.77, pp.3161-3169, 2009.

L. Trésaugues, C. Silvander, S. Flodin, M. Welin, T. Nyman et al., Structural basis for phosphoinositide substrate recognition, catalysis, and membrane interactions in human inositol polyphosphate 5-phosphatases, Structure, vol.22, pp.744-755, 2014.

A. Lahm, Suck, D. DNase I-induced DNA conformation, J. Mol. Biol, vol.222, pp.645-667, 1991.

L. Guerra, K. Teter, B. N. Lilley, B. Stenerlöw, R. K. Holmes et al., Cellular internalization of cytolethal distending toxin: A new end to a known pathway: Internalization of bacterial toxin, Cell. Microbiol, vol.7, pp.921-934, 2005.

B. J. Pons, J. Vignard, and G. Mirey, Cytolethal Distending Toxin subunit B: A review of structure-function relationship, Toxins, vol.11, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02618477

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, J. Biol. Chem, vol.273, pp.5858-5868, 1998.

D. Jullien, J. Vignard, Y. Fedor, N. Béry, A. Olichon et al., Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells, J. Cell Sci, vol.129, pp.2673-2683, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602858

D. Purdy, S. A. Leach, A. E. Hodgson, C. M. Buswell, I. Henderson et al., Characterisation of cytolethal distending toxin (CDT) mutants of Campylobacter jejuni, J. Med. Microbiol, vol.49, pp.473-479, 2000.

K. S. Tan, K. Song, and G. Ong, Cytolethal distending toxin of Actinobacillus actinomycetemcomitans. Occurrence and association with periodontal disease, J. Periodontal Res, vol.37, pp.268-272, 2002.

Y. Posor, M. Eichhorn-gruenig, D. Puchkov, J. Schöneberg, A. Ullrich et al., Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate, Nature, vol.499, pp.233-237, 2013.

N. Seiwert, C. Neitzel, S. Stroh, T. Frisan, M. Audebert et al., AKT2 suppresses pro-survival autophagy triggered by DNA double-strand breaks in colorectal cancer cells, Cell Death Dis, vol.8, pp.1-14, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02735083

C. Péré-védrenne, M. Prochazkova-carlotti, B. Rousseau, W. He, L. Chambonnier et al., The Cytolethal Distending Toxin subunit CdtB of Helicobacter hepaticus promotes senescence and endoreplication in xenograft mouse models of hepatic and intestinal cell lines, Front. Cell. Infect. Microbiol, vol.7, pp.1-14, 2017.

Y. Wang, A. Hariharan, G. Bastianello, Y. Toyama, G. V. Shivashankar et al., DNA damage causes rapid accumulation of phosphoinositides for ATR signaling, Nat. Commun, 2017.

H. Hu, L. A. Shiflett, M. Kobayashi, M. V. Chao, A. C. Wilson et al., TOP2?-dependent nuclear DNA damage shapes extracellular growth factor responses via dynamic AKT phosphorylation to control virus latency, Mol. Cell, vol.74, 2019.

J. G. Viniegra, N. Martínez, P. Modirassari, J. H. Losa, C. P. Cobo et al., Full Activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM, J. Biol. Chem, vol.280, pp.4029-4036, 2005.

S. Liu, Z. Wang, Y. Hu, Y. Xin, I. Singaram et al., Quantitative lipid imaging reveals a new signaling function of phosphatidylinositol-3,4-bisphophate: Isoformand site-specific activation of Akt, Mol. Cell, vol.71, pp.1092-1104, 2018.

B. J. Shenker, L. P. Walker, A. Zekavat, and K. Boesze-battaglia, Lymphoid susceptibility to the Aggregatibacter actinomycetemcomitans cytolethal distending toxin is dependent upon baseline levels of the signaling lipid, phosphatidylinositol-3,4,5-triphosphate, Mol. Oral Microbiol, vol.31, pp.33-42, 2016.

W. Y. Mansour, P. Tennstedt, J. Volquardsen, C. Oing, M. Kluth et al., Loss of PTEN-assisted G2/M checkpoint impedes homologous recombination repair and enhances radio-curability and PARP inhibitor treatment response in prostate cancer, Sci. Rep, vol.8, p.3947, 2018.

Y. Lee, M. Chen, and P. P. Pandolfi, The functions and regulation of the PTEN tumour suppressor: New modes and prospects, Nat. Rev. Mol. Cell Biol, vol.19, pp.547-562, 2018.

E. Bezine, J. Vignard, and G. Mirey, The Cytolethal Distending Toxin effects on mammalian cells: A DNA damage perspective, vol.3, pp.592-615, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01192559

A. Eshraghi, F. J. Maldonado-arocho, A. Gargi, M. M. Cardwell, M. G. Prouty et al., Cytolethal Distending Toxin family members are differentially affected by alterations in host glycans and membrane cholesterol, J. Biol. Chem, vol.285, pp.18199-18207, 2010.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI