E. C. Adair, P. B. Reich, J. Trost, and S. E. Hobbie, Elevated CO 2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture, Glob. Change Biol, vol.17, pp.3546-3563, 2011.

E. A. Ainsworth and S. P. Long, What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2, New Phytol, vol.165, pp.351-372, 2005.

E. A. Ainsworth, R. , and A. , The response of photosynthesis and stomatal conductance to rising [CO 2 ]: mechanisms and environmental interactions, Plant Cell Environ, vol.30, pp.258-270, 2007.

I. Aranda, H. A. Bahamonde, and D. Sánchez-gómez, Intrapopulation variability in the drought response of a beech (Fagus sylvatica L.) population in the southwest of Europe, Tree Physiol, vol.37, pp.938-949, 2017.

M. J. Aspinwall, C. J. Blackman, V. R. De-dios, F. A. Busch, P. D. Rymer et al., Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO 2 in Eucalyptus camaldulensis, Tree Physiol, vol.38, pp.1286-1301, 2018.

M. J. Aspinwall, V. K. Jacob, C. J. Blackman, R. A. Smith, M. G. Tjoelker et al., The temperature response of leaf dark respiration in 15 provenances of Eucalyptus grandis grown in ambient and elevated CO 2, Funct. Plant Biol, vol.44, pp.1075-1086, 2017.

M. J. Aspinwall, M. E. Loik, V. Resco-de-dios, M. G. Tjoelker, P. R. Payton et al., Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change, Plant Cell Environ, vol.38, pp.1752-1764, 2015.

A. Of and L. Australia, Eucalyptus grandis, 2020.

B. J. Atwell, M. L. Henery, G. S. Rogers, S. P. Seneweera, M. Treadwell et al., Canopy development and hydraulic function in eucalyptus tereticornis grown in drought in CO 2 -enriched atmospheres, Funct. Plant Biol, vol.34, pp.1137-1149, 2007.

G. Ayub, R. A. Smith, D. T. Tissue, and O. K. Atkin, Impacts of drought on leaf respiration in darkness and light in eucalyptus saligna exposed to industrial-age atmospheric CO 2 and growth temperature, New Phytol, vol.190, pp.1003-1018, 2011.

C. Bachofen, B. Moser, G. Hoch, J. Ghazoul, and T. Wohlgemuth, No carbon "bet hedging" in pine seedlings under prolonged summer drought and elevated CO 2, J. Ecol, vol.106, pp.31-46, 2018.

R. K. Bamber and F. R. Humphreys, A preliminary study of some wood properties of Eucalyptus grandis (Hill) Maiden, J. Inst. Wood Sci, vol.11, pp.63-70, 1963.

M. Battaglia and J. Bruce, Direct climate change impacts on growth and drought risk in blue gum (Eucalyptus globulus) plantations in Australia, Aust. For, vol.80, pp.216-227, 2017.

P. Battie-laclau, J. Laclau, C. Beri, L. Mietton, M. R. Almeida-muniz et al., Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment, Plant Cell Environ, vol.37, pp.70-81, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268487

P. Battie-laclau, J. Laclau, J. Domec, M. Christina, J. Bouillet et al., Effects of potassium and sodium supply on drought-adaptive mechanisms in Eucalyptus grandis plantations, New Phytol, vol.203, pp.401-413, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01506324

D. Binkley, O. C. Campoe, C. Alvares, R. L. Carniero, I. Cegatta et al., The interactions of climate, spacing and genetics on clonal eucalyptus plantations across Brazil and Uruguay, For. Ecol. Managem, vol.405, pp.271-283, 2017.

C. J. Blackman, M. J. Aspinwall, V. Resco-de-dios, R. A. Smith, and D. T. Tissue, Leaf photosynthetic, economic and hydraulic traits are decoupled among genotypes of a widespread species of eucalypt grown under ambient and elevated CO 2, Funct. Ecol, vol.30, pp.1491-1500, 2016.

T. H. Booth, Eucalypt plantations and climate change, For. Ecol. Manage, vol.301, pp.28-34, 2013.

T. H. Booth, L. M. Broadhurst, E. Pinkard, S. M. Prober, S. K. Dillon et al., Native forests and climate change: Lessons from eucalypts, For. Ecol. Manage, vol.347, pp.18-29, 2015.

D. R. Calderia, C. A. Alvares, O. C. Campoe, R. E. Hakamada, I. A. Guerrini et al., Multisite evaluation of the 3-PG model for the highest phenotypic plasticity Eucalyptus clone in Brazil, For. Ecol. Manage, vol.462, p.117989, 2020.

D. Cantin, M. F. Tremblay, M. J. Lechowicz, and C. Potvin, Effects of CO 2 enrichment, elevated temperature, and nitrogen availability on the growth and gas exchange of different families of jack pine seedlings, Can. J. For. Res, vol.27, pp.510-520, 1997.

J. P. Cavalli, J. M. Reichert, M. F. Rodrigues, and E. F. De-araújo, Composition and functional soil properties of arenosols and acrisols: effects on eucalyptus growth and productivity, Soil Till. Res, vol.196, p.104439, 2020.

R. Ceulemans, B. Y. Shao, X. N. Jiang, K. , and J. , Firstand second-year aboveground growth and productivity of two Populus hybrids grown at ambient and elevated CO 2, Tree Physiol, vol.16, pp.61-68, 1996.

J. Cornelius, The effectiveness of plus-tree selection for yield, For. Ecol. Manage, vol.67, pp.23-34, 1994.

I. Correia, M. H. Almeida, A. Aguiar, R. Alía, T. S. David et al., Variations in growth, survival and carbon isotope composition (?13C) among Pinus pinaster populations of different geographic origins, Tree Physiol, vol.28, pp.1545-1552, 2008.

K. Y. Crous, J. Zaragoza-castells, D. S. Ellsworth, R. A. Duursma, M. Loew et al., Light inhibition of leaf respiration in field-grown eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought, Plant Cell Environ, vol.35, pp.966-981, 2012.

P. S. Curtis, A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide, Plant Cell Environ, vol.19, pp.127-137, 1996.

M. G. De-kauwe, B. E. Medlyn, S. Zaehle, A. P. Walker, C. D. Dietze et al., Where does all the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO 2 enrichment sites, New Phytol, vol.203, pp.883-899, 2014.

S. C. Dekker, M. Groenendijk, B. B. Booth, C. Huntingford, and P. M. Cox, Spatial and temporal variations in plant water use efficiency inferred from tree-ring, eddy covariance and atmospheric observations, Earth Syst. Dynam. Discuss, vol.7, pp.525-533, 2016.

R. E. Dickson, M. Coleman, D. E. Riemenschneider, J. G. Isebrands, G. Hogan et al., Growth of five hybrid poplar genotypes exposed to interacting elevated CO2 and O3, Can. J. For. Res, vol.28, pp.1706-1716, 1998.

B. G. Drake, M. A. Gonzàlez-meler, and S. P. Long, More efficient plants: a consequence of rising atmospheric CO2?, Annu. Rev. Plant Biol, vol.48, pp.609-639, 1997.

J. E. Drake, M. J. Aspinwall, S. Pfautsch, P. D. Rymer, P. B. Reich et al., The capacity to cope with climate warming declines with from temperate to tropical latitudes in two widely distributed Eucalyptus species, Glob. Change Biol, vol.21, pp.459-472, 2015.

J. E. Drake, A. Gallet-budynek, K. S. Hofmockel, E. S. Bernhardt, S. A. Billings et al., Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO 2, Ecol. Lett, vol.14, pp.349-357, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652586

H. Duan, J. S. Amthor, R. A. Duursma, A. P. O'grady, B. Choat et al., Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO 2 ] and elevated temperature, Tree Physiol, vol.33, pp.779-792, 2013.

G. A. Duff, C. A. Berryman, and D. Eamus, Growth, biomass allocation and foliar nutrient contents of two Eucalyptus species of the wet-dry tropics of Australia grown under CO 2 enrichment, Funct. Ecol, vol.8, pp.502-508, 1994.

M. E. Dusenge, A. G. Duarte, and D. A. Way, Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration, New Phytol, vol.221, pp.32-49, 2019.

D. S. Ellsworth, I. C. Anderson, K. Y. Crous, J. Cooke, J. E. Drake et al., Elevated CO 2 does not increase eucalypt forest productivity on a low-phosphorus soil, Nat. Clim. Change, vol.7, pp.279-282, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608517

P. D. Erskine, D. Lamb, and M. Bristow, Tree species diversity and ecosystem function: can tropical multi-diversity plantations generate greater productivity, For. Ecol. Manage, vol.233, 2005.

G. D. Farquhar, J. R. Ehleringer, and K. T. Hubick, Carbon isotope discrimination and photosynthesis, Ann. Rev. Plant Physiol. Plant. Mol. Biol, vol.40, pp.503-537, 1989.

G. D. Farquhar, M. H. O'leary, and J. A. Berry, On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Funct. Plant Biol, vol.9, pp.121-137, 1982.

G. D. Farquhar and R. A. Richards, Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes, Funct. Plant Biol, vol.11, pp.539-552, 1984.

A. C. Finzi, R. J. Norby, C. Calfapietra, A. Gallet-budynek, B. Gielen et al., Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.14014-14019, 2007.

J. Fox and S. Weisberg, An R Companion to Applied Regression, 2019.

D. C. Frank, B. Poulter, M. Saurer, J. Esper, C. Huntingford et al., Water-use efficiency and transpiration across European forests during the Anthropocene, Nat. Clim. Change, vol.5, pp.579-583, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02467515

P. P. Gauthier, K. Y. Crous, G. Ayub, H. Duan, L. K. Weerasinghe et al., Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO 2 ] and temperature, J. Exp. Bot, vol.65, pp.6471-6485, 2014.

O. Ghannoum, N. G. Phillips, J. P. Conroy, R. A. Smith, R. D. Attard et al., Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus, Glob. Change Biol, vol.16, pp.303-319, 2010.

R. M. Gifford, Plant respiration in productivity models: conceptualization, representation and issues for global terrestrial carbon-cycle research, Funct. Plant Biol, vol.30, pp.171-186, 2003.

G. Grassi, P. Meir, R. Cromer, D. Tompkins, J. et al., Photosynthetic parameters in seedlings of eucalyptus grandis as affected by rate of nitrogen supply, Plant Cell Environ, vol.25, pp.1677-1688, 2002.

R. Grote, A. Gessler, R. Hommel, W. Poschenrieder, and E. Priesack, Importance of tree height and social position for drought-related stress on tree growth and mortality, Trees, vol.30, pp.1467-1482, 2016.

C. Harwood, New introductions-doing it right, " in Developing a Eucalypt Resource: Learning From Australia and Elsewhere: University of Canterbury, pp.43-54, 2011.

S. Hättenschwiler and C. Körner, Biomass allocation and canopy development in spruce model ecosystems under elevated CO 2 and increased N deposition, Oecologia, vol.113, pp.104-114, 1997.

L. V. Hedges, J. Gurevitch, C. , and P. S. , The meta-analysis of response ratios in experimental ecology, Ecology, vol.80, pp.1150-1156, 1999.

J. G. Isebrands, E. P. Mcdonald, E. Kruger, G. Hendrey, K. Percy et al., Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone, Environ. Pollut, vol.115, pp.359-371, 2001.

L. Iverson, A. Prasad, and S. Matthews, Modeling potential climate change impacts on the trees of the northeastern United States, Mitig. Adapt. Strateg. Glob. Change, vol.13, pp.487-516, 2008.

E. B. Josephs, Determining the evolutionary forces shaping G×E, New Phytol, vol.219, pp.31-36, 2018.

S. Kaluthota, D. W. Pearce, L. M. Evans, M. G. Letts, T. G. Whitham et al., Higher photosynthetic capacity from higher latitude: foliar characteristics and gas exchange of southern, central and northern populations of Populus angustifolia, Tree Physiol, vol.35, pp.936-948, 2015.

T. F. Keenan, D. Y. Hollinger, G. Bohrer, D. Dragoni, J. W. Munger et al., Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, Nature, vol.499, pp.324-327, 2013.

D. Killi, F. Bussotti, E. Gottardini, M. Pollastrini, J. Mori et al., Photosynthetic and morphological responses of oak species to temperature and [CO 2 ] increased to levels predicted for 2050, Urb. Forest. Urb. Green, vol.31, pp.26-37, 2018.

M. B. Lavigne, Comparing stem respiration and growth of jack pine provenances from northern and southern locations, Tree Physiol, vol.16, pp.847-852, 1996.

J. R. Lawson, K. A. Fryirs, and M. R. Leishman, Interactive effects of waterlogging and atmospheric CO 2 concentration on gas exchange, growth and functional traits of Australian riparian tree seedlings, Ecohydrology, vol.10, p.1803, 2017.

A. D. Leakey, K. A. Bishop, and E. A. Ainsworth, A multi-biome gap in understanding of crop and ecosystem responses to elevated CO 2, Curr. Opin. Plant. Biol, vol.15, pp.228-236, 2012.

X. Li, G. Zhang, B. Sun, S. Zhang, Y. Zhang et al., Stimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphere, Sci. Rep, vol.3, p.3433, 2013.

M. Liberloo, S. Y. Dillen, C. Calfapietra, S. Marinari, Z. B. Luo et al., Elevated CO 2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE), Tree Physiol, vol.25, pp.179-189, 2005.

M. E. Loik, V. R. Dios, . De, R. Smith, and D. T. Tissue, Relationships between climate of origin and photosynthetic responses to an episodic heatwave depend on growth CO2 concentration for Eucalyptus camaldulensis var. camaldulensis, Funct. Plant Biol, vol.44, pp.1053-1062, 2017.

S. P. Long, E. A. Ainsworth, A. Rogers, and D. R. Ort, Rising atmospheric carbon dioxide: plants face the future, Annu. Rev. Plant Biol, vol.55, pp.591-628, 2004.

A. C. Matheson, R. , and C. A. , A review of provenance × environment interaction: its practical importance and use with particular reference to the tropics, Commonwealth For. Rev, vol.65, pp.283-302, 1986.

H. R. Mccarthy, R. Oren, A. C. Finzi, D. S. Ellsworth, H. Kim et al., Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO 2 . Glob, Change Biol, vol.13, pp.2479-2497, 2007.

B. E. Medlyn, C. V. Barton, M. S. Broadmeadow, R. Ceulmans, P. De-angelis et al., Stomatal conductance of forest species after long-term exposure to elevated CO 2 concentration: a synthesis, New Phytol, vol.149, pp.247-264, 2001.

R. Melville, Intergrading among plants in relation to the provenance of forest trees, Nature, vol.145, pp.130-132, 1940.

J. E. Mohan, J. S. Clark, and W. H. Schlesinger, Genetic variation in germination, growth, and survivorship of red maple in response to subambient through elevated atmospheric CO 2, Glob. Change Biol, vol.10, pp.233-247, 2004.

B. D. Moore, S. Cheng, D. Sims, and J. R. Seemann, The biochemical and molecular basis for photosynthetic acclimation to elevated CO 2, Plant Cell Environ, vol.22, pp.567-582, 1999.

E. V. Moran, F. Hartig, and D. M. Bell, Intraspecific trait variation across scales: implications for understanding global change responses, Glob. Change Biol, vol.22, pp.137-150, 2016.

P. H. Müller-da-silva, A. Brune, C. A. Alvares, W. Amaral, M. L. De-moares et al., Selecting for stable and productive families of Eucalyptus urophylla across a country wide range of climates in Brazil, Can. J. For. Res, vol.49, pp.87-95, 2019.

R. J. Norby, Z. , and D. R. , Ecological lessons from free-air CO 2 enrichment (FACE) experiments, Annu. Rev. Ecol. Evol. Syst, vol.42, pp.181-203, 2011.

M. H. O'leary, Carbon isotope fractionation in plants, Phytochem, vol.20, pp.553-567, 1981.

J. Oleksyn, J. Modrzýnski, M. G. Tjoelker, R. Zytkowiak, P. B. Reich et al., Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation, Funct. Ecol, vol.12, pp.573-590, 1998.

Y. Pan, L. Jiang, G. Xu, J. Li, B. Wang et al., Evaluation and selection analyses of 60 Larix kaempferi clones in four provenances based on growth traits and wood properties, Tree Genet. Genom, vol.16, p.27, 2020.

H. Poorter, Ü. Niinemets, L. Poorter, I. J. Wright, and R. Villar, Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis, New Phytol, vol.182, pp.565-588, 2009.

S. G. Pritchard, A. E. Strand, M. L. Mccormack, M. A. Davis, A. C. Finzi et al., Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2-enrichment: a six-year-minirhizotron study, Glob. Change Biol, vol.14, pp.588-602, 2008.

A. Pyakurel and J. R. Wang, Interactive effects of elevated [CO 2 ] and soil water stress on leaf morphological and anatomical characteristics of paper birch populations, Am. J. Plant Sci, vol.5, pp.691-703, 2014.

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2019.

P. B. Reich, S. E. Hobbie, and T. D. Lee, Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation, Nature Geosci, vol.7, pp.920-924, 2014.

V. Resco-de-dios, T. E. Mereed, J. P. Ferrio, D. T. Tissue, and J. Voltas, Intraspecific variation in juvenile tree growth under elevated CO 2 alone and with O 3 : a meta-analysis, Tree Physiol, vol.36, pp.682-693, 2016.

L. Rose, C. Leuschner, B. Köckemann, and H. Buschmann, Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes?, Eur. J. For. Res, vol.128, pp.335-343, 2009.

H. Saxe, D. S. Ellsworth, and J. Heath, Tree and forest functioning in an enriched CO2 atmosphere, New Phytol, vol.139, pp.395-436, 1998.

S. Schmidt, S. Palacio, and G. Hoch, Growth reduction after defoliation is independent of CO 2 supply in deciduous and evergreen young oaks, New Phytol, vol.214, pp.1479-1490, 2017.

R. A. Smith, J. D. Lewis, O. Ghannoum, and D. T. Tissue, Leaf structural responses to pre-industrial, current and elevated atmospheric [CO2] and temperature affect leaf function in Eucalyptus sideroxylon, Funct. Plant Biol, vol.39, pp.285-296, 2012.

J. P. Souza, N. M. Melo, E. G. Pereira, A. D. Halfeld, I. N. Gomes et al., Responses of woody Cerrado species to rising atmospheric CO2 concentration and water stress: gains and losses, Funct. Plant Biol, vol.43, pp.1183-1193, 2016.

K. Streit, R. T. Siegwolf, F. Hagedorn, M. Schaub, and N. Buchmann, Lack of photosynthetic or stomatal regulation after nine years of elevated [CO 2 ] and four years of soil warming in two conifer species at the alpine treeline, Plant Cell Environ, vol.37, pp.315-326, 2014.

D. T. Tissue, J. D. Lewis, S. D. Wullschleger, J. S. Amthor, K. L. Griffin et al., Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field, Tree Physiol, vol.22, pp.1157-1166, 2002.

D. T. Tissue and S. J. Wright, Effect of seasonal water availability on phenology and the annual shoot carbohydrate cycle of tropical forest shrubs, Funct. Ecol, vol.9, pp.518-527, 1995.

M. G. Tjoelker, J. Oleksyn, G. Lorenc-plucinska, and P. B. Reich, Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana, New Phytol, vol.181, pp.218-229, 2009.

M. Viera and R. Rodríguez-saolliero, A complete assessment of carbon stocks in above and belowground biomass components of a hybrid eucalyptus plantation in Southern Brazil, Forests, vol.10, p.536, 2019.

S. Wang, R. C. Littell, and D. L. Rockwood, Variation in density and moisture content of wood and bark among twenty Eucalyptus grandis progenies, Wood Sci. Technol, vol.18, pp.97-102, 1984.

T. Wang, G. A. O'neill, and S. N. Aitken, Integrating environmental and genetic effects to predict responses of tree populations to climate, Ecol. Appl, vol.20, pp.153-163, 2010.

X. Wang, J. D. Lewis, D. T. Tissue, J. R. Seemann, and K. L. Griffin, Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.2479-2484, 2001.

D. A. Way, R. Oren, and Y. Kroner, The space-time continuum: the effects of elevated CO 2 and temperature on trees and the importance of scaling, Plant Cell Environ, vol.38, pp.991-1007, 2015.

S. C. Wong, P. E. Kriedemann, and G. D. Farquhar, CO 2 ×nitrogen interaction on seedling growth of four species of eucalypt, Aust. J. Bot, vol.40, pp.457-472, 1992.

S. Zaehle, B. E. Medlyn, M. G. De-kauwe, A. P. Walker, M. C. Dietze et al., Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO 2 enrichment studies, New Phytol, vol.202, pp.803-822, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02638404