I. O. Therios and . Olives, Crop Production Science in Horticulture Series, CABI, p.425, 2009.

C. Maurel, Y. Boursiac, D. T. Luu, V. Santoni, Z. Shahzad et al., Aquaporins in plants, Physiol. Rev, vol.95, pp.1321-1358, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01282576

R. K. Singh, R. Deshmukh, M. Muthamilarasan, R. Rani, and M. Prasad, Versatile roles of aquaporin in physiological processes and stress tolerance in plants, Plant Physiol. Biochem, vol.149, pp.178-189, 2020.

K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre et al., Structural determinants of water permeation through aquaporin-1, Nature, vol.407, pp.599-605, 2000.

D. F. Savage, J. D. O'connell, L. J. Miercke, J. Finer-moore, and R. M. Stroud, Structural context shapes the aquaporin selectivity filter, Proc. Natl. Acad. Sci, vol.107, pp.17164-17169, 2010.

R. M. Hove and M. Bhave, Plant aquaporins with non-aqua functions: Deciphering the signature sequences, Plant. Mol. Biol, vol.75, pp.413-430, 2011.

A. K. Azad, J. Ahmed, M. A. Alum, M. M. Hasan, T. Ishikawa et al., Genome-wide characterization of major intrinsic proteins in four grass plants and their non-aqua transport selectivity profiles with comparative perspective, PLoS ONE, vol.11, 2016.

K. Fetter, V. Van-wilder, M. Moshelion, and F. Chaumont, Interactions between plasma membrane aquaporins modulate their water channel activity, Plant Cell, vol.16, pp.215-228, 2004.

S. Kreida and S. Tornroth-horsefield, Structural insights into aquaporin selectivity and regulation, Curr. Opin. Struct. Biol, vol.33, pp.126-134, 2015.

M. Yasui, A. Hazama, T. H. Kwon, S. Nielsen, W. B. Guggino et al., Rapid gating and anion permeability of an intracellular aquaporin, Nature, vol.402, pp.184-187, 1999.

I. I. Ivanov, A. V. Loktyushkin, R. A. Guskova, N. S. Vasilev, G. E. Fedorov et al., Oxygen channels of erythrocyte membrane, Dokl. Biochem. Biophys, vol.414, pp.137-140, 2007.

J. S. Hub and B. L. De-groot, Mechanism of selectivity in aquaporins and aquaglyceroporins, Proc. Natl. Acad. Sci, vol.105, pp.1198-1203, 2008.

F. Chaumont and S. D. Tyerman, Aquaporins: Highly regulated channels controlling plant water relations, Plant Physiol, vol.164, pp.1600-1618, 2014.

K. V. Khabudaev, D. P. Petrova, M. A. Grachev, and Y. V. Likhoshway, A new subfamily LIP of the major intrinsic proteins, BMC Genom, vol.15, 2014.

K. Ishibashi, Y. Morishita, and Y. Tanaka, The Evolutionary Aspects of Aquaporin Family Aquaporins, pp.35-50, 2017.

F. Secchi, C. Lovisolo, N. Uehlein, V. R. Kaldenho, and A. Schubert, Isolation and functional characterization of three aquaporins from olive (Olea europaea L.), Planta, vol.225, pp.381-392, 2007.

F. J. López-escudero and J. Mercado-blanco, Verticillium wilt of olive: A case study to implement an integrated strategy to control a soil-borne pathogen, Plant Soil, vol.344, pp.1-50, 2011.

Z. Zou, L. Yang, J. Gong, Y. Mo, J. Wang et al., Genome-Wide Identification of Jatropha curcas Aquaporin Genes and the Comparative Analysis Provides Insights into the Gene Family Expansion and Evolution in Hevea brasiliensis, Front. Plant Sci, vol.7, p.395, 2016.

S. Reuscher, M. Akiyama, C. Mori, K. Aoki, D. Shibata et al., Genome-Wide Identification and Expression Analysis of Aquaporins in Tomato, PLoS ONE, vol.8, 2013.

A. B. Gupta and R. Sankararamakrishnan, Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective, BMC Plant. Biol, vol.20, 2009.

Z. Zou, J. Gong, Q. Huang, Y. Mo, L. Yang et al., Gene Structures, Evolution, Classification and Expression Profiles of the Aquaporin Gene Family in Castor Bean (Ricinus communis L.), PLoS ONE, vol.10, 2015.

A. A. Deokar and B. Tar'an, Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea, Cicer arietinum L.). Front. Plant Sci, 1802.

S. M. Shivaraj, R. Deshmukh, S. Humira, and R. R. Bélanger, Identification and characterization of aquaporin genes in Arachis duranensis and Arachis ipaensis genomes, the diploid progenitors of peanut, BMC Genom, 2019.

R. K. Deshmukh, J. Vivancos, G. Ramakrishnan, V. Guérin, G. Carpentier et al., A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants, Plant J, vol.83, pp.489-500, 2015.

J. A. Danielson and U. Johanson, Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens, BMC Plant Biol, vol.8, p.45, 2008.

J. Venkatesh, J. W. Yu, D. Gaston, and S. W. Park, Molecular evolution and functional divergence of X-intrinsic protein genes in plants, Mol. Genet. Genom, vol.290, pp.443-460, 2015.

T. A. Diehn, B. Pommerrenig, N. Bernhardt, A. Hartmann, and G. P. Bienert, Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis, Front. Plant Sci, vol.6, 2015.

R. Deshmukh and R. R. Bélanger, Molecular evolution of aquaporins and silicon influx in plants, Funct. Ecol, vol.30, pp.1277-1285, 2016.

C. D. Martins, A. M. Pedrosa, D. Du, L. P. Gonçalves, Q. Yu et al., Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L, Osb.). PLoS ONE, vol.10, p.138786, 2015.

D. Lopez, G. Bronner, N. Brunel, D. Auguin, S. Bourgerie et al., Insights into Populus XIP aquaporins: Evolutionary expansion, protein functionality, and environmental regulation, J. Exp. Bot, vol.63, pp.2217-2230, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777008

U. Turgay, Z. Wu, L. Sterck, M. Turktas, R. Lohaus et al., Genome of wild olive and the evolution of oil biosynthesis, Proc. Natl. Acad. Sci, vol.114, pp.9413-9422, 2017.

J. Jiménez-ruiz, J. A. Ramírez-tejero, N. D. Fernández-pozo, .. O. Leyva-pérez, M. Yan et al., Transposon activation is a major driver in the genome evolution of cultivated olive trees (Olea europaea L.), Plant Genome, vol.13, p.20010, 2020.

H. Sonah, R. K. Deshmukh, C. Labbé, and R. R. Bélanger, Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola, 2017.

W. Li, D. Zhang, G. Zhu, X. Mi, and W. Guo, Combining genome-wide and transcriptome-wide analyses reveal the evolutionary conservation and functional diversity of aquaporins in cotton, BMC Genomics, vol.20, 2019.

U. Johanson, M. Karlsson, I. Johansson, S. Gustavsson, S. Sjövall et al., The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants, Plant Physiol, vol.126, pp.1358-1369, 2001.

F. Chaumont, F. Barrieu, R. Jung, and M. J. Chrispeels, Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity, Plant Physiol, vol.122, pp.1025-1034, 2000.

M. Katsuhara, Y. T. Hanba, K. Shiratake, and M. Maeshima, Expanding roles of plant aquaporins in plasma membranes and cell organelles, Funct. Plant Biol, vol.35, pp.1-14, 2008.

N. Mitani-ueno, N. Yamaji, F. Zhao, and J. F. Ma, The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic, J. Exp. Bot, vol.62, pp.4391-4398, 2011.

H. Sui, B. G. Han, J. K. Lee, P. Walian, and B. K. Jap, Structural basis of water-specific transport through the AQP1 water channel, Nature, vol.414, pp.865-872, 2001.

D. Fu, A. Libson, L. J. Miercke, C. Weitzman, P. Nollert et al., Structure of a glycerol-conducting channel and the basis for its selectivity, Science, vol.290, pp.481-486, 2000.

J. F. Ma and N. Yamaji, Silicon uptake and accumulation in higher plants, Trends Plant Sci, vol.11, pp.392-397, 2006.

J. Takano, M. Wada, U. Ludewig, G. Schaaf, N. Von-wirén et al., The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation, Plant Cell, vol.18, pp.1498-1509, 2006.

D. Lopez, M. Ben-amira, D. Brown, B. Muries, N. Brunel-michac et al., The Hevea brasiliensis XIP aquaporin subfamily: Genomic, structural and functional characterizations with relevance to intensive latex harvesting, Plant Mol. Biol, vol.91, pp.375-396, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594467

G. P. Bienert, M. D. Bienert, T. P. Jahn, M. Boutry, and F. Chaumont, Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates, Plant J, vol.66, pp.306-317, 2011.

M. D. Bienert, B. Muries, D. Crappe, F. Chaumont, and G. P. Bienert, Overexpression of X Intrinsic Protein 1;1 in Nicotiana tabacum and Arabidopsis reduces boron allocation to shoot sink tissues

A. Froger, B. Tallur, D. Thomas, and C. Delamarche, Prediction of functional residues in water channels and related proteins, Protein Sci, vol.7, pp.1458-1468, 1998.

M. Gaspar, A. Bousser, I. Sissoëff, O. Roche, J. Hoarau et al., Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea, Plant Sci, vol.165, pp.21-31, 2003.

G. P. Bienert, R. B. Heinen, M. C. Berny, and F. Chaumont, Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide, Biochim. Biophys. Acta, vol.1838, pp.216-222, 2014.

M. Heckwolf, D. Pater, D. T. Hanson, and R. Kaldenhoff, The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO 2 transport facilitator, Plant J, vol.67, pp.795-804, 2011.

J. Flexas, M. Ribas-carbo, D. T. Hanson, J. Bota, B. Otto et al., Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO 2 in vivo, Plant J, vol.48, pp.427-439, 2006.

N. Uehlein, C. Lovisolo, F. Siefritz, and R. Kaldenhoff, The tobacco aquaporin NtAQP1 is a membrane CO 2 pore with physiological functions, Nature, vol.425, pp.734-737, 2003.

W. G. Choi and D. M. Roberts, Arabidopsis NIP2;1, a major intrinsic protein trans-porter of lactic acid induced by anoxic stress, J. Biol. Chem, vol.282, pp.24209-24218, 2007.

C. Grégoire, W. Rémus-borel, J. Vivancos, C. Labbé, F. Belzile et al., Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense, Plant J, vol.72, pp.320-330, 2012.

D. Loqué, U. Ludewig, L. Yuan, and N. V. Wiren, Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole, Plant Physiol, vol.137, pp.671-680, 2005.

S. Suga and M. Maeshima, Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis, Plant Cell Physiol, vol.45, pp.823-830, 2004.

G. P. Bienert, D. Cavez, A. Besserer, M. C. Berny, D. Gilis et al., A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers, Biochem. J, vol.445, pp.101-111, 2012.

K. L. Forrest and M. Bhave, Major intrinsic proteins (MIPs) in plants: A complex gene family with major impacts on plant phenotype, Funct. Integr. Genom, vol.7, pp.263-289, 2007.

M. Mizutani, S. Watanabe, T. Nakagawa, and M. Maeshima, Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana, Plant Cell Physiol, vol.47, pp.1420-1426, 2006.

F. Ishikawa, S. Suga, T. Uemura, M. H. Sato, and M. Maeshima, Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana, FEBS Lett, vol.579, pp.5814-5820, 2005.

J. Sakurai, F. Ishikawa, T. Yamaguchi, M. Uemura, and M. Maeshima, Identification of 33 rice aquaporin genes and analysis of their expression and function, Plant Cell Physiol, vol.46, pp.1568-1577, 2005.

I. Carqueijeiro, H. Noronha, P. Duarte, H. V. Gerôs, and M. Sottomayor, Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton driven antiport, Plant Physiol, vol.162, pp.1486-1496, 2013.

S. Gattolin, M. Sorieul, and L. Frigerio, Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane, Mol. Plant, vol.4, pp.180-189, 2011.

Y. Boursiac, S. Prak, J. Boudet, O. Postaire, D. T. Luu et al., The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species-and phosphorylation-dependent internalization of aquaporins, Plant Signal. Behav, vol.3, pp.1096-1098, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356390

D. T. Luu, A. Martinière, M. Sorieul, J. Runions, and C. Maurel, Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress, Plant J, vol.69, pp.894-905, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777022

H. Innan and F. Kondrashov, The evolution of gene duplications: Classifying and distinguishing between models, Nat. Rev. Genet, vol.11, pp.97-108, 2010.

R. K. Varshney, C. Song, R. K. Saxena, S. Azam, S. Yu et al., Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement, Nat. Biotechnol, vol.31, pp.240-246, 2013.

F. Abascal, I. Irisarri, and R. Zardoya, Diversity and evolution of membrane intrinsic proteins, Biochim. Biophys. Acta (Bba) Gen. Subj, vol.1840, pp.1468-1481, 2014.

M. Lynch and J. S. Conery, The evolutionary fate and consequences of duplicate genes, Science, vol.290, pp.1151-1155, 2000.

K. M. Tanaka, K. R. Takahasi, and T. Takano-shimizu, Enhanced fixation and preservation of a newly arisen duplicate gene by masking deleterious loss-of-function mutations, Genet. Res, vol.91, pp.267-280, 2009.

R. K. Deshmukh, J. Vivancos, V. Guérin, H. Sonah, C. Labbé et al., Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice, Plant Mol. Biol, vol.83, pp.303-315, 2013.

Y. Zhou, J. Tao, G. J. Ahammed, J. Li, and Y. Yang, Genome-wide identification and expression analysis of aquaporin gene family related to abiotic stress in watermelon, Genome, vol.62, pp.643-656, 2019.

G. X. Xu, C. C. Guo, H. Y. Shan, and H. Z. Kong, Divergence of duplicate genes in exon-intron structure, Proc. Natl. Acad. Sci, vol.109, pp.1187-1192, 2012.

J. A. Fraser, J. C. Huang, R. Pukkila-worley, J. A. Alspaugh, T. G. Mitchell et al., Chromosomal translocation and segmental duplication in Cryptococcus neoformans, Eukaryot. Cell, vol.4, pp.401-406, 2005.

A. Yaneff, L. Sigaut, M. Marquez, K. Alleva, L. I. Pietrasanta et al., Heteromerization of PIP aquaporins affects their intrinsic permeability, Proc. Natl. Acad. Sci, vol.111, pp.231-236, 2014.

M. D. Bienert, T. A. Diehn, N. Richet, F. Chaumont, and G. P. Bienert, Heterotetramerization of plant PIP1 and PIP2 aquaporins Is an evolutionary ancient feature to guide PIP1 plasma membrane localization and function. Front, Plant Sci, vol.9, 2018.

K. D. Johnson, E. M. Herman, and M. J. Chrispeels, An abundant, highly conserved tonoplast protein in seeds, Plant Physiol, vol.91, pp.1006-1013, 1989.

S. M. Shivaraj, R. K. Deshmukh, R. Rai, R. Bélanger, P. K. Agrawal et al., Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum), Sci. Rep, vol.7, p.46137, 2017.

S. Footitt, R. Clewes, M. Feeney, W. E. Finch-savage, and L. Frigerio, Aquaporins influence seed dormancy and germination in response to stress, Plant Cell Environ, vol.42, pp.2325-2339, 2019.

W. Hu, X. Hou, C. Huang, Y. Yan, W. Tie et al., Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana, Int. J. Mol. Sci, vol.16, 2015.

W. Kong, M. Bendahmane, and X. Fu, Genome-wide Identification and characterization of aquaporins and their role in the flower opening processes in Carnation (Dianthus caryophyllus), Molecules, vol.23, p.1895, 2018.

X. Min, H. Wu, Z. Zhang, X. Wei, X. Jin et al., Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula, J. Plant. Biochem. Biotechnol, vol.28, pp.320-335, 2019.

Y. Zhu, L. Yang, N. Liu, J. Yang, X. Zhou et al., Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber, BMC Plant Biol, vol.19, 2019.

K. Prado and C. Maurel, Regulation of leaf hydraulics: From molecular to whole plant levels, Front. Plant. Sci, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00921037

B. Muries, R. Mom, P. Benoit, N. Brunel-michac, H. Cochard et al., Aquaporins and water control in drought-stressed poplar leaves: A glimpse into the extraxylem vascular territories, Environ. Exp. Bot, vol.162, pp.25-37, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02168616

S. Tian, X. Wang, P. Li, H. Wang, H. Ji et al., Plant Aquaporin AtPIP1;4 Links Apoplastic H 2 O 2 Induction to Disease Immunity Pathways, Plant Physiol, vol.171, pp.1635-1650, 2016.

H. Wang, S. Schoebel, F. Schmitz, and H. Donga, Characterization of aquaporin-driven hydrogen peroxide transport, Biochim. Biophys. Acta, 1862.

J. Jiménez-ruiz, M. D. Leyva-pérez, .. O. Schilirò, E. Barroso, J. B. Bombarely et al., Transcriptomic analysis of the Olea europaea L. roots during the Verticillium dahliae early infection process, Plant Genome, vol.10, pp.1-15, 2017.

M. D. Leyva-pérez, .. O. Valverde-corredor, A. Valderrama, R. Jiménez-ruiz, J. Muñoz-merida et al., Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves, Dna Res, vol.22, pp.1-11, 2015.

L. Wang, L. Yao, X. Hao, N. Li, Y. Wang et al., Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant, Environ. Exp. Bot, vol.160, pp.45-68, 2019.

G. Soveral, A. Veiga, M. C. Loureiro-dias, A. Tanghe, P. V. Dijck et al., Water channels are important for osmotic adjustments of yeast cells at low temperature. Microbiology, vol.152, pp.1515-1521, 2006.

Y. Peng, R. Arora, G. Li, X. Wang, and A. Fessehaie, Rhododendron catawbiense plasma membrane intrinsic proteins are aquaporins, and their over-expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic Arabidopsis plants, Plant Cell Environ, vol.31, pp.1275-1289, 2008.

J. Jiménez-ruiz, M. D. Leyva-pérez, .. O. Vidoy-mercado, I. Barceló, A. Luque et al., Transcriptomic time-series analysis of early development in olive from germinated embryos to juvenile tree, BMC Genom, vol.19, 2018.

S. Renny-byfield and J. F. Wendel, Doubling down on genomes: Polyploidy and crop plants, Am. J. Bot, vol.101, pp.1711-1725, 2014.

N. Panchy, M. Lehti-shiu, and S. H. Shiu, Evolution of Gene Duplication in Plants, Plant Physiol, vol.171, pp.2294-2316, 2016.

Z. Yang, Q. Gong, W. Qin, Y. Cheng, L. Lu et al., Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses, BMC Plant Biol, vol.17, 2017.

P. Samadder, E. Sivamani, J. Lu, X. Li, and R. Qu, Transcriptional and post-transcriptional enhancement of gene expression by the 5' UTR intron of rice rubi3 gene in transgenic rice cells, Mol. Genet. Genom, vol.279, pp.429-439, 2008.

O. Shaul, How introns enhance gene expression, Int J. Biochemistry Cell Biol, vol.91, pp.145-155, 2017.

I. Letunic and P. Bork, Interactive Tree of Life (iTOL) v4: Recent updates and new developments, Nucleic Acids Res, vol.47, pp.256-259, 2019.

B. Hu, J. Jin, A. Y. Guo, H. Zhang, J. Luo et al., GSDS 2.0: An upgraded gene feature visualization server, Bioinformatics, vol.31, pp.1296-1297, 2015.

E. L. Sonnhammer, G. Von-heijne, and A. Krogh, A hidden Markov model for predicting transmembrane helices in protein sequences, Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, pp.175-182, 1998.

T. Hirokawa, S. Boon-chieng, S. Mitaku, and . Sosui, Classification and secondary structure prediction system for membrane proteins, Bioinformatics, vol.14, pp.378-379, 1998.

K. C. Chou and H. B. Shen, Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization, PLoS ONE, vol.5, 2010.

L. Timothy, J. Bailey, and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp.28-36, 1994.

N. Goldman and Z. Yang, A codon-based model of nucleotide substitution for protein-coding DNA sequences, Mol. Biol. Evol, vol.11, pp.725-736, 1994.

J. A. Ramírez-tejero, J. Jiménez-ruiz, M. D. Leyva-pérez, .. O. Barroso, J. B. Luque et al., Gene expression pattern in olive tree organs (Olea europaea L.), Genes, vol.2020

M. D. Leyva-pérez, .. O. Jiménez-ruiz, J. Gómez-lama-cabanás, C. Valverde-corredor, A. Barroso et al., Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahlia relies on both basal and pathogen-induced differential transcriptomic responses, New Phytol, vol.217, pp.671-686, 2018.