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Aditi Bhandari1,2, Nitika Sandhu1,3, Jérôme Bartholome1,4,5, Tuong-Vi Cao-Hamadoun4,5, Nourollah Ahmadi4,5,
Nilima Kumari2 and Arvind Kumar1,6*

Abstract

Background: Reproductive-stage drought stress is a major impediment to rice production in rainfed areas.
Conventional and marker-assisted breeding strategies for developing drought-tolerant rice varieties are being
optimized by mining and exploiting adaptive traits, genetic diversity; identifying the alleles, and understanding their
interactions with genetic backgrounds for their increased contribution to drought tolerance. Field experiments were
conducted in this study to identify marker-trait associations (MTAs) involved in response to yield under
reproductive-stage (RS) drought. A diverse set of 280 indica-aus accessions was phenotyped for ten agronomic
traits including yield and yield-related traits under normal irrigated condition and under two managed
reproductive-stage drought environments. The accessions were genotyped with 215,250 single nucleotide
polymorphism markers.

Results: The study identified a total of 219 significant MTAs for 10 traits and candidate gene analysis within a 200
kb window centred from GWAS identified SNP peaks detected these MTAs within/ in close proximity to 38 genes, 4
earlier reported major grain yield QTLs and 6 novel QTLs for 7 traits out of the 10. The significant MTAs were mainly
located on chromosomes 1, 2, 5, 6, 9, 11 and 12 and the percent phenotypic variance captured for these traits
ranged from 5 to 88%. The significant positive correlation of grain yield with yield-related and other agronomic
traits except for flowering time, observed under different environments point towards their contribution in
improving rice yield under drought. Seven promising accessions were identified for use in future genomics-assisted
breeding programs targeting grain yield improvement under drought.

Conclusion: These results provide a promising insight into the complex genetic architecture of grain yield under
reproductive-stage drought in different environments. Validation of major genomic regions reported in the study
will enable their effectiveness to develop drought-tolerant varieties following marker-assisted selection as well as to
identify genes and understanding the associated physiological mechanisms.
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Background
Drought is one of the major pervasive and limiting fac-
tors affecting rice productivity in the Asian-Pacific re-
gion under rainfed lowland (46 million hectares; Mha)
and upland (10Mha) rice ecosystems (Pandey et al.
2007). Each year, varying intensities of drought stress at
different crop stages- seedling, vegetative and reproduct-
ive (Price and Courtois 1999; Tripathy et al. 2000; Xu
et al. 2011; Nguyen and Bui 2008) affect approximately
34 Mha of rainfed lowland and 8 Mha of upland rice
production in Asia (Huke and Huke 1997) as the popu-
lar high-yielding green revolution varieties, bred primar-
ily for yield under high input conditions, experience
drastic yield reductions even under mild drought stress
(O’Toole 1982; Kumar et al. 2008; Torres and Henry
2018). Drought is particularly damaging in the repro-
ductive stage (RS), especially during flowering (Venupra-
sad et al. 2007; Serraj et al. 2009) reducing both the
number of grains per panicle and grain weight and in-
creasing grain sterility. Worldwide, rice production is
predicted to be further challenged by an erratic and in-
creasing frequency and severity of drought due to cli-
mate change (Wassmann et al. 2009). Combining high
productivity with climate resilience is thereby essential
to stabilize production by developing climate-smart var-
ieties for adverse ecologies.
Over the years, efforts at International Rice Research

Institute (IRRI) for improving yield under drought have
documented the effectiveness and response of direct se-
lection for grain yield under drought in upland rice
(Venuprasad et al. 2007) and lowland rice (Kumar et al.
2008, 2009), proving the effectiveness of direct selection
for grain yield over secondary traits under drought, as a
result of which many varieties have been developed
(Kumar et al. 2014; Sandhu and Kumar 2017). The dif-
ferent breeding methods followed to improve drought
tolerance ranged from marker-assisted breeding (MAB)
wherein numerous studies (Fernando and Grossman
1989; Lande and Thompson 1990; Zhang et al. 1992;
Howes et al. 1998; Bonnett et al. 2005; Bernardo and
Charcosset 2006; Xu and Crouch 2008) used different
strategies for increasing favorable alleles in breeding
populations for quantitative traits to genomics-assisted
breeding (GAB) for improving breeding efficiency by
exploiting genome characterization for diversity and
function (Varshney et al. 2005, 2014; Abbai et al. 2019)
and transgenic breeding (Bhatnagar-Mathur et al. 2008;
Yang et al. 2010a ), all of which have helped obtain yield
gains and ensured both yield and grain quality improve-
ments over existing varieties. However, complex quanti-
tative traits like grain yield under drought, resistance to
other existing and emerging abiotic and biotic stresses
are a challenge as they are characterized by interactions
of several large and small effect genes for a single trait;

of genes for different traits as well as of genes with the
environment and genetic backgrounds (Xue et al. 2009;
Wang et al. 2012; Kumar et al. 2014; Yadav et al. 2019).
To tackle the restrictive applicability of breeding for
complex traits, studies conducted have exploited germ-
plasm for desirable variability (Dixit et al. 2014; Mondal
et al. 2016; Kumar et al. 2018) and applied precise selec-
tion in experiments under different environments and
stress intensity levels to emulate farmers’ field
conditions.
Genome-wide association study (GWAS) is an import-

ant tool in GAB with enormous potential to accelerate
breeding for stress tolerance as it enables breeders to
make selection based on marker-trait associations
(MTAs) as a response to combined effect of all favorable
alleles. The transfer of well-characterized genes/ QTLs
in breeding programs for varietal development was ini-
tially low as the genomic regions of interest were being
identified in biparental populations. Subsequently, iden-
tification of genomic regions associated with agronomic
traits has been accelerated by association mapping in
panels with larger genetic background allowing the use
of ancestral recombination events, which led to non-
random association of alleles at different loci across the
genome, and that too at a higher mapping resolution
than the biparental linkage analysis (Zhu et al. 2008).
Using different methods, GWAS has been successfully

employed in rice for a wide range of traits like yield and
yield components (Agrama et al. 2007), harvest index (Li
et al. 2012), flowering time (Ordonez Jr et al. 2010)
among others. GWAS in diversity panels (unrelated di-
verse germplasm) including locally adapted breeding ma-
terial is highly advantageous to breeders (Bernardo
2008) for incorporation of detected beneficial alleles to
develop climate-smart varieties (Pauli et al. 2014) as
maximum allelic diversity contributing to agronomic
traits is identified, as exemplified by Huang et al. (2012)
for flowering time and grain yield in worldwide rice
germplasm collection; Zhao et al. (2011) and Yang et al.
(2010b) for revealing the rich genetic architecture and
natural variants of complex traits. Effective population
size to select for desired plant type and high yield under
upland ecosystem with tolerance to moderate drought
stress in lowland ecosystem (Gu et al. 2012) is essential
for crossing and successful selection in breeding pro-
grams that integrate modern and affordable strategies
for varietal development across environments (Kondo
et al. 2000; Samejima et al. 2016; Xia et al. 2016).
In the present study, GWAS was performed on ten

agronomic traits including grain yield and its compo-
nents in a diverse set of 280 indica-aus accessions to
identify the significant MTAs/ QTLs/ genes to study the
effect of trait architecture in identifying genomic regions
associated with traits of interest across seasons and
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environments. The analysis was conducted using differ-
ent model algorithms and results reported include the
consistent MTAs detected by two multi-locus methods-
SUPER and Farm-CPU. The diverse set used in the
study included accessions from both lowland and upland
ecosystems with the premise to identify highly drought-
tolerant rice accessions in either ecosystem or having at
least moderate drought-tolerance in the other to breed
for reproductive stage drought-tolerant rice varieties for
different growing environments.

Results
Phenotypic and Genotypic Characteristics of the
Population
Distribution, Heritability and Correlation of the Measured
Phenotypic Traits
Box-plots of the adjusted means of the ten phenotypic
variables - days to 50% flowering (DTF), plant height
(PH), panicle length (PL), flag leaf area (FlgLA), number
of effective panicles (NBP), biomass at maturity
(BMDW), grain yield (GY), 1000-grain weight (TGW),
harvest index (HI) and spikelet fertility (SPKFT) under
three environments (control condition or non-stress ex-
periment in lowland- LL_N; reproductive-stage drought-
stress experiments in lowland- LL_S and upland- UL_S)
in two seasons- 2014 wet season (WS) and 2015 dry sea-
son (DS) are presented in Fig. 1. The plots depicted at
two levels- whole population and genetic subgroup,

highlight that the mean phenotypic performances of dif-
ferent levels (whole population with 280 lines, indica
genetic subgroup with 245 lines and aus genetic sub-
group with 35 lines) in each environment and season
were not significantly different except for DTF, HI,
TGW and SPKFT. Overall, trait range was higher in DS
than WS; PH, FlgLA, BMDW and NBP exhibited a rea-
sonably symmetric distribution while DTF, GY and
SPKFT exhibited skewed distributions across environ-
ments and seasons. Under drought, all traits values ex-
cept for DTF decreased as compared to the LL_N
environment. Multidimensional analysis of phenotypic
data for WS and DS was performed with experiment-
wise data projected on the space defined by the first two
axes of factorial discriminant analysis (FDA) using the
Yadj values for the 10 agronomic traits. In general, the
phenotypic distribution was greater in DS than WS
(Additional file 1: Figure S1a). Fisher distances were
highly significant (p < 0.001) between the experiments of
WS and DS. The projection of the ten traits across ex-
periments revealed different degrees of relatedness be-
tween the traits measured at different growth stages of
life cycle (Additional file 1: Figure S1b). PH, PL, GY,
SPKFT and NBP were the major factors affecting about
80% variance explained in both WS and DS. Higher
grain yield reduction was observed in DS lowland stress
experiment (98%) followed by upland stress experiment
(94%) (Additional file 1: Table S1). Significant effects of

Fig. 1 Boxplots of ten phenotypic variables within diverse set. Days to 50% flowering, Plant height (cm), Panicle length (cm), Flag leaf area (cm2),
Number of effective panicles, Biomass dry weight at maturity (kg ha−1), Grain yield (kg ha-1), 1000 grain weight (g), Harvest index and Spikelet
fertility (percentage ratio by weight) for each of the six experiments (lowland non stress-LL_N, lowland stress-LL_S and upland stress-UL_S) in the
two seasons- wet season-WS and dry season-DS. The boxplots are divided into population and subpopulation levels for each trait-whole
population level (with all 280 indica-aus accessions): 245 accessions representing the four major genetic subgroups of indica genetic background
and 35 accessions of aus genetic background. Within the boxplots, bold line represents the median, box edges represent upper and lower
quantiles, and whiskers are 1.5 times the quantile of the data. Open dots represent the outliers
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drought stress were observed on DTF as reflected by
early flowering in WS but late flowering in DS for toler-
ant accessions. Heritability was in medium and high
range for all the 10 traits in the two seasons, with rela-
tively higher trait heritability in DS than WS (Table 1).
The phenotypic variance was partitioned into different
sources of variations using the mixed model analysis. As
shown (Table 1), genotype effect contributed signifi-
cantly to the observed variation for all traits across
environments.
Trait correlation within DS and WS was studied for

the 10 traits for each experiment (Fig. 2). As expected,
DTF was negatively correlated to grain yield and yield-
related traits under drought stress in both seasons (in
the range of − 0.03 to − 0.72). The grain yield related
traits such as NBP, BMDW, TGW and HI as well as PL
showed significant positive correlation with GY across
seasons and experiments; for the LL_S and UL_S envi-
ronments, this correlation was positive (0.06–0.91) while
for LL_N condition, the range of this correlation was
from 0 to 0.51. Overall, the correlation was strong in DS
as compared to WS. Seasonal variation was observed in
trait correlations between environments- while in DS,
the correlations between all three environments was sig-
nificantly positive for all traits (range of − 0.18-0.72), the
correlations between two drought environments was
negligible in WS, in the range of − 0.11-0.12 (Additional
file 1: Figure S2).

Phenotypic Effect of the Drought Stress on Tolerance and
Susceptibility in the Diverse Set
Differences in response to RS drought at agronomic level
are presented in Table 1. Significant effect of treatments
(control and RS drought stress), environments (lowland
and upland) and seasons (WS and DS) was observed on
the traits measured in the present study. The DTF in-
creased under both, lowland and upland reproductive-
stage drought stress in DS (from 87.83 days in LL_N to
88.09 days and 93.07 days in LL_S and UL_S, respect-
ively) while in WS, early flowering was observed under
both stress environments (from 90.4 days in LL_N to
79.66 days and 80.28 days under LL_S and UL_S, re-
spectively). Moreover, as shown in Fig.1, effect of sub-
population on DTF was significant in LL_S in WS and
UL_S in DS. In both WS and DS, plant height, panicle
length and spikelet fertility reduced significantly under
the two stress environments. The extent of reduction
was more under very severe stress levels realized in DS
(Additional file 1: Table S1) under both LL_S and UL_S,
where PH was reduced by 39.54 cm and 37.6 cm, re-
spectively; PL was reduced by 4.28 cm and 5.7 cm, re-
spectively and SPKFT was reduced by 49% and 71%,
respectively. SPKFT was quite variable at subpopulation
level as well, especially in DS under LL_S and UL_S;

while under LL_S, SPKFT at population level (280 acces-
sions) and in the indica subset (245 accessions) was re-
duced to 47% and 40%, respectively, it was interestingly
greater in the aus subset (35 accessions) at 60% and
similarly, these figures under UL_S in DS were 25%, 16%
and 70%, respectively. Yield was markedly reduced under
RS drought in both lowland and upland stress environ-
ments and this was reflected in the various component
trait measurements, especially in NBP and SPKFT. The
reduction in GY under LL_S and UL_S was more in DS;
in WS, GY was reduced by 64% in LL_S and 57% in UL_
S while in DS, it was reduced by 98% in LL_S and 93%
in UL_S.
Consequently, analysis of variance for all traits mea-

sured in the present study revealed high significant dif-
ferences between the two treatments (control and RS
drought stress) for all traits (Table 2). However, the
growing environment (lowland and upland) did not sig-
nificantly affect the PL and SPKFT measurements while
the growing season (WS / DS) had the least effect on the
differences in genotypic trait performances for DTF,
NBP and BMDW. The drought susceptibility index
(DSI) calculated for each genotype under both lowland
and upland environments for the selected traits (Add-
itional file 1: Table S2). indicated that the accessions
with high levels of drought tolerance and good recovery
ability (recorded by leaf rolling scores) could still pro-
duce some grains even under severe level of drought
stress at reproductive stage. The number of tolerant ge-
notypes differed by DSI under different growing
environments.

Population Structure Analysis
The density, distribution of allele frequencies and het-
erozygosity of the working set of 215,250 loci (215 k) is
summarized in Additional file 1: Table S3. For this 215 k
SNP set, there is an uneven distribution of markers
along the genome. Average density of markers per Mb
of the genome was 503 SNPs. High-density marker re-
gions were observed on chromosomes 2 and 4, with a
magnitude of about 493 and 438 SNPs per Mb and on
chromosome 11 with a magnitude of about 1231 SNPs
between 22 and 27Mb region. The distribution of
markers along each chromosome is depicted as heatmap
in Additional file 1: Figure S3.
For the 215 k marker set, average observed heterozy-

gosity (Ho) at the accession level was 0.86% with a mini-
mum and maximum of 0.4% and 4.81%, respectively.
The distribution of Ho varied among the 12 rice chro-
mosomes in the working set and with an average of
0.36%, chromosomes, more heterozygous calls were
mainly on chromosomes 7, 9, 10 and 12 (Additional file
1: Table S3).
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Table 1 Summary statistics and sources of variation for the ten phenotypic traits under three different environments and two
seasons for the diverse set of 280 lines

Trait Env Wet Season Dry Season

Mean (SD) Phenotypic variance Mean (SD) Phenotypic variance

Fixed Random H2 Fixed Random H2

Genotype Residual Genotype Residual

DTF LL_
N

90.4 (8.69) 0.36 22.55NS 52.22 0.34 87.83 (9.53) 0.12 76.31d 23.49 0.75

LL_S 79.66 (6.7) 2.29 37.89d 6.02 0.90 88.09 (16.68) 5.96 212.92d 68.03 0.85

UL_
S

80.28 (9.64) 0.01 55.82d 39.41 0.72 93.07 (20.09) 4.78 357.44d 51.19 0.93

PH LL_
N

113.79 (24.23) 1.18 579.55d 42.06 0.93 108.63 (21.2) 0.08 538.47d 21.62 0.96

LL_S 102.42 (26.61) 8.70 605.08d 104.52 0.92 69.09 (16.67) 3.34E-15 191.30d 90.86 0.79

UL_
S

110.23 (29.58) 20.55 241.92NS 616.22 0.43 71.03 (15.55) 8.56 196.20d 46.21 0.88

PL LL_
N

21.75 (3.41) 0.01 1042d 1.86 0.91 22.15 (3.16) 0.02 9.29d 2.05 0.81

LL_S 20.05 (3.12) 0.07 5.65d 4.13 0.79 17.87 (3.35) 0.04 5.19d 5.88 0.63

UL_
S

20.41 (3.22) 0.64 1.64NS 8.13 0.16 16.45 (2.09) 0.41 1.45d 2.58 0.50

FlgLA LL_
N

36.0 (10.92) 0.02 83.89d 36.74 0.68 36.73 (9.74) 0.09 98.77d 12.34 0.89

LL_S 40.19 (13.46) 1.31 79.15d 101.37 0.68 29.85 (9.81) 1.65 43.95d 50.54 0.71

UL_
S

37.77 (11.95) 6.51 24.81NS 111.33 0.19 22.96 (6.04) 1.67 17.56d 17.99 0.63

BMDW LL_
N

15.57E + 03 (92E + 02) 0.05 3.13E + 07d 5.48E + 08 0.34 14.78E + 03 (67.81E +
02)

1.92E +
05

4.23E + 07d 9.9E + 06 0.82

LL_S 36.13E + 02 (14.4E + 02) 1.11E +
05

4.86E + 05a 15.06E +
05

0.40 36.50E + 02 (15.49E +
02)

3.37E +
04

6.6E + 05d 1.75E +
06

0.50

UL_
S

54.61E + 02 (56.5E + 02) 2.07E +
05

5.87E +
07NS

3.18E + 07 0.35 55.29E + 02 (18.14E +
02)

3.65E +
05

7.29E +
05NS

2.34E +
06

0.42

NBP LL_
N

46.99 (18.24) 0.03 214.91b 126.33 0.70 54.81 (17.02) 1.93 130.23c 162.03 0.44

LL_S 20.38 (14.57) 2.38 15.81NS 211.05 0.20 14.99 (13.59) 2.91 102.80d 83.08 0.76

UL_
S

23.32 (16.38) 11.35 0.22NS 255.78 0.23 24.84 (14.38) 2.9 136.37d 73.28 0.78

GY LL_
N

16.66E + 02 (10.03E +
02)

0.05 7.94E + 05d 2.28E + 05 0.84 5.21E + 02 (16.8E + 02) 2.41E +
04

3.92E + 06d 1.55E +
06

0.68

LL_S 5.73E + 02 (6.28E + 02) 7.79E +
03

3.68E +
04NS

3.52E + 05 0.20 1.58E + 02 (2.89 E + 02) 1.4E + 03 4.91E + 04d 3.49E +
04

0.74

UL_
S

9.42E + 02 (9.24E + 02) 0.02 3.26E +
04NS

8.23E + 05 0.13 3.36E + 02 (6.1 E + 02) 2.29E +
09

8.12E + 09d 2.52E+ 04 0.91

TGW LL_
N

198.13 (77.77) 79.37 2221.13b 3824.46 0.37 218.53 (39.82) 112.63 1528.06d 191.65 0.89

LL_S 149.2 (80.97) 75.33 0.01NS 6481.26 0.20 113.26 (79.5) 158.25 2139.19d 4015.32 0.52

UL_
S

177.96 (84.55) 96.99 0.01NS 7100.32 0.10 83.69 (78.41) 138.69 4111.16d 1870.32 0.81

HI LL_
N

0.17 (0.15) 0.01 0.001NS 0.02 0.30 0.39 (0.11) 2.4E-04 0.006d 0.005 0.61

LL_S 0.15 (0.17) 4.8E-06 2.03E-03NS 0.03 0.21 0.05 (0.08) 5.2E-05 0.004d 0.003 0.76

UL_
S

0.11 (0.1) 0.001 8E-05NS 0.01 0.14 0.05 (0.09) 8.2E-05 0.006d 0.003 0.82

SPKFT LL_ 86.81 (9.64) 0.02 27.88a 64.19 0.80 96.41 (3.25) 0.51 6.83d 4.22 0.78
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Phylogenetic diversity illustrated by the unweighted NJ
tree (Fig. 3a) validated the population structure analysis
of diversity panel clustering into three main groups (Fig.
3b): Cluster-I with indica subgroups of ind2, ind3 and
indx, Cluster-II aus background and Cluster-III with
indica subgroups of ind1A, ind1B, ind3 and indx genetic
background. The ideal K value with the least cross-
validation error detected by the population structure

analysis was determined as 3 (Fig. 3c). PCA output of R/
GAPIT illustrated accessions clustering in 3 distinct
groups when plotted against the first three PC compo-
nents (Fig. 3d). The decay of linkage disequilibrium
along the physical distance is depicted in Additional file
1: Figure S4. The rapid decay of r2 of 0.145 between
markers with distance of 0–25 kb to half of the initial
level was observed around 200 kb.

Table 1 Summary statistics and sources of variation for the ten phenotypic traits under three different environments and two
seasons for the diverse set of 280 lines (Continued)

Trait Env Wet Season Dry Season

Mean (SD) Phenotypic variance Mean (SD) Phenotypic variance

Fixed Random H2 Fixed Random H2

Genotype Residual Genotype Residual

N

LL_S 57.49 (29.94) 29.36 106.46NS 762.52 0.22 47.03 (31.33) 81.07 315.92d 615.27 0.60

UL_
S

61.19 (29.59) 0.01 86.21NS 892.48 0.15 25.19 (34.85) 27.01 809.67d 349.53 0.81

SD standard deviation, Env environment (lowland non-stress, LL_N; lowland stress, LL_S and upland stress, UL_S), Fixed effects block (rep), Random effects
genotype and residual, H2 broad sense heritability for single environment analysis, DTF days to 50% flowering, PH plant height (cm), PL panicle length (cm), FlgLA
flag leaf area (cm2), BMDW biomass dry weight at maturity (kg ha−1), NBP number of effective panicles, GY grain yield (kg ha−1), TGW 1000 grain weight (g), HI
harvest index and SPKFT spikelet fertility from each of the six experiments in two seasons (wet and dry). asignificant at 5%, bsignificant at 1%, c significant at 0.1%,
dsignificant at 0.01% levels and NS- Non-significant

Fig. 2 Plots of Pearson’s r-values showing correlation between each of the ten traits in each of the six experiments (LL_N_WS-lowland non-stress
2014WS, LL_N_DS-lowland non-stress 2015DS, LL_S_WS-lowland stress 2014WS, LL_S_DS-lowland stress 2015DS, UL_S_WS-upland stress 2014WS
and UL_S_DS-upland stress 2015DS). Blue color indicates positive correlation and red color indicates negative correlation among different traits,
with color intensity variance depicting the strength of correlation. *significant at < 0.05 level, **significant at <0.01 level, *** significant at < 0.001
level, blank for non-significant
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Effect of Trait Architecture and Heritability on MTA
Identification Across Seasons and Environments
The phenotypic variance (PV) captured for the ten traits
by the GWAS models reveal that severity of drought
stress realized in the experiment and correlation of trait
to grain yield cause significant differences in variations
across seasons. For DTF, high heritability and negative
correlation to GY under reproductive-stage drought in
upland environment and zero to negligibly positive cor-
relation in lowland environment, the PV ranged from 15
to 29% in the wet season while in the dry season, it was
between 19 and 42% across lowland and upland environ-
ments. Similarly, for PH which is another highly herit-
able trait, the PV ranged uniformly between 34 and 53%
across seasons, environment and stress. However, for
GY, highly heritable but polygenic trait, variation be-
tween wet and dry season was quite apparent. While PV
ranged from 5 to 17% only in WS, it was in range of 12–

55% for DS. Similarly, for some yield related traits, NBP
(55–63%), PL (at least 80% in LL_N and UL_S and 6–
29% in LL_S) and FlgLA (at least 80% in non-stress and
WS and less than 15% in DS stress), the model explained
significant variance for the traits. However, for traits
with either low heritability or narrow range of pheno-
typic values like BMDW (6–27%), HI (5–17%), TGW
(5–16%) and SPFKT (5–30%), very minimal phenotypic
variance was captured by markers across environments
and seasons.

GWAS Identified Significant Genomic Regions Associated
with Yield and Yield Components under Different Growing
Environments for RS Drought
Several significant MTAs and QTLs were identified in
the present study for the 10 traits. Among the 219 sig-
nificant MTAs identified in the study, 95 were associated
with grain yield across different environments, seasons

Table 2 Analysis of variance (F-values) for grain yield, yield components and agronomic traits among treatments, conditions and
seasons for the diverse set of 280 lines

Sources of variations Df DTF PH PL FlgLA NBP BMDW GY HI TGW SPKFT

Treatment 1 348.69c 497.02c 403.82c 227.76c 3136.14c 4062.87c 4524.94c 1856.72c 652.32c 2508.07c

Condition 1 173.25c 19.93c 0.5NS 8.07b 58.63c 76.61c 30.86c 12.14c 21.2c 2.61NS

Season 1 4.35a 223.68c 40.59c 155.89c 7.19b 1.31NS 430.86c 50.45c 51.74b 166.89c

Treatment:Season 1 19.73c 67.91c 29.64c 94.02c 84.76c 4.69a 1951.55c 1045.64c 100.08c 241.19c

Condition:Season 1 42.3c 11.62c 19.1c 30.39c 18.88c 0.85NS 3.51. 9.1b 39.13c 57.03c

Sources of variation analysed using two treatment levels (control, stress); two growing conditions (lowland, upland) and two seasons (wet and dry) for ten traits at
asignificant at 5%, bsignificant at 1%, c significant at 0.1% levels and NS- Non-significant levels

Fig. 3 Genetic relatedness and population structure of the diversity panel; a Genetic diversity depicted through the unweighted neighbour-
joining tree method within the population as indica (ind1A, ind1B, ind2, ind3 and indx) and aus accessions, as established in the 3k rice genome
project; b Ancestory proportions from ADMIXTURE analysis represented for k = 3, the optimal with the lowest cross-validation error for K = 2–8
and visualized using R/pophelper package; c Cross-validation error for k = 2–8 from ADMIXTURE analysis; d Variation captured by the PCs using R/
GAPIT corresponding to the 3 clustered distribution along the first three PC components
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and stress levels, 20 with DTF, 34 with PH, 8 with
BMDW, 13 with NBP, 25 with HI, 10 with TGW and 20
with SPKFT while no significant association was de-
tected for PL and FlgLA (Additional file 1: Table S4).
Circular manhattan plots and qq-plots for MTAs de-
tected using two p-value thresholds (1e-6 and 1e-4) to
draw out common regions associated with trait across
seasons and environments at season-level (WS and DS)
and combined-season level are presented in Figs. 4, 5, 6
for DTF, PH, GY, respectively and in Additional file 1:
Figure S5 a-g for PL, FlgLA, BMDW, NBP, HI, TGW
and SPKFT.
Among the 16 identified QTLs (Additional file 1:

Table S4), four QTLs (qGY1–1, qGY1–2, qPH1–1 and
qPH1–2) showed consistent effect across both seasons
and under different environments; two QTLs showed
consistent effect under lowland stress (qBMDW8–1 and
qDTF11–1), six QTLs under upland stress (qGY2–1,
qGY2–2, qGY5–1, qGY5–2, qPH9–1 and qGY12–1), two
QTLs under both lowland non-stress and stress
(qSPKFT9–1 and qBMDW-NBP9–1) and two under low-
land non-stress across seasons (qDTF6–1 and qDTF6–2).
Significant MTAs were reported for GY on chr 1 and 12
under LL_N, on chr 1, 2, 5, 6, 7, 8, 11 and 12 under LL_
S, while on chr 1, 2, 4, 5, 6, 7, 8, 11 and 12 under UL_S.
Out of these, consistent across experiment level and
combined level were on chr 10 for LL_N, on chr 1, 7, 8
and 12 for LL_S and on chr 2, 5, 7 and 8 for UL_S. In
about 0.403Mb interval region on long arm of chr 1 and
4.27Mb interval region on long arm of chr 2, MTAs
were found to be associated with GY under non stress
and reproductive stage drought stress conditions for
both lowland and upland across seasons, in previously
reported major grain yield QTLs under drought–
qDTY1.1 and qDTY2.3. Three SNPs in a region of 5.06
Mb interval on long arm of chr 11 are reported to be
linked with reproductive stage drought stress under low-
land and upland conditions across seasons from this
study. The 0.941Mb interval region below centromere
on chr 12 showed association with GY under different
level of stresses in upland environment (Fig. 6). Under
different environmental stresses, the MTAs for DTF
were reported on chr 6 (7611279–7,749,410 bp, 9,539,
728–10,371,528 bp), chr 7 (19598023–20,159,780 bp),
chr 11 (6525213–7,215,940 bp) and chr 12 (7712803–9,
203,018 bp). Comparison of experiment level and com-
bined analysis showed consistent effect of MTAs for
DTF on chr 6 (7611279–7,749,410 bp) under lowland
non-stress and on chr 11 (6525213–6,602,990 bp) for
lowland stress (Fig. 4). The long arm of chr 1
(33418648–34,400,345 bp, 37,960,019–39,044,781 bp),
chr 3 (33600040–33,600,989 bp), chr 6 (30802585–30,
807,826 bp), chr 9 (13423222–16,154,337 bp) and chr 11
(20143839–24,761,315 bp, 25,597,507–28,789,891 bp)

was observed to be associated with plant height trait
under different environments, stress levels and seasons,
with MTAs on chr 1 consistent at both individual ex-
periment and combined levels (Fig. 5). Some SNPs such
as S5_352058, S5_4140355, S5_4266313, S8_857745, S9_
19316065 and S9_20944019 with very high and almost
similar levels of significance were associated with more
than one grain yield and yield related traits. However,
the SNP S1_3440034 and S12_1642245 were associated
with PH and GY, respectively under different environ-
mental stresses.

Subpopulation Specific GWAS for Grain Yield under
Different Growing Environments and Seasons
Aus-type rice is closely related to indica-type rice but
constitutes a distinct genetic group (McNally et al.
2009). The superiority of aus accessions over indica ac-
cessions in the present study was established by the sub-
population based GWAS performed for GY wherein
upland-adapted aus accessions yielded consistent yields
under RS drought, especially in DS (Additional file 1:
Table S5). While significant loci associated with GY
under different environments and seasons at complete
diversity set level (280 lines) corresponded to those de-
tected at aus subpopulation level (35 accessions) (as
shown in Fig.7), 25 additional MTAs were detected at
indica subpopulation level (245 accessions) in DS-
mainly on chr 1 and 11 under LL_S (Fig. 7d) and on chr
1 and 4 under UL_S environment (Fig. 7f).

Candidate Gene Analysis for Drought Tolerance under
Different Growing Environments
Candidate gene analysis of the 219 MTAs with a
200 kb window centered from the MTA detected 101
of these MTAs within/ in close proximity to 38
genes from MSU database and 4 earlier reported
major grain yield QTLs under drought (qDTY1.1,
qDTY2.3, qDTY9.1 and qDTY12.1.). Summary of these
results is presented in Table 3 wherein we also re-
port 6 novel QTLs of about 0.5–1 Mb for DTF on
chr 6, 11; for GY on chr 1, 2, 5 and for BMDW on
chr 8 identified with strong peak markers across
drought environments, associated mainly with puta-
tive retrotransposon proteins. An overview of the re-
sults for validation of MTAs for 7 traits out of 10 is
presented in Fig. 8 which depicts the genomic loca-
tions of 101 MTAs validated from MSU database
and literature for previously reported QTLs under
drought. The significant MTAs/ QTLs were mainly
located on chr 1, 2, 5, 6, 9, 11 and 12 and the per-
cent phenotypic variance captured for these traits
ranged from 5 to 88%.
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Fig. 4 Circular manhattan plot and qq plot for Days to 50% flowering (DTF). a. Each of the six experiments (from centre of the plot- 1. lowland
non-stress 2014WS(LL_N_WS); 2. lowland non-stress 2015DS (LL_N_DS); 3. lowland stress 2014WS (LL S WS): 4. lowland stress 2015DS (LL_S_DS);
5. upland stress 2014WS (UL_S_WS) and 6. upland stress 2015DS (UL_S_DS) for p-values obtained using Farm-CPU method at two significance
thresholds of 1e-4 (blue) and 1e-6 (red). The outermost ring depicts the SNP distribution in the 215,250 SNP working set. Individual experimental
results are compared to the combined analysis for each of the three environments- b. LL_N, c. LL_S and d. UL_S, to detect seasonal variation
between WS and DS, from centre of the plot- i. WS, ii. DS and iii. Combined analysis
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Fig. 5 Circular manhattan plot and qq plot for Plant height (PH)- a. each of the six experiments (from centre of the plot- 1. lowland non-stress
2014WS (LL_N_WS); 2. lowland non-stress 2015DS (LL_N_DS); 3. lowland stress 2014WS (LL_S_WS); 4. lowland stress 2015DS (LL_S_DS); 5. upland
stress 2014(UL_S_WS) and 6. upland stress 2015DS (UL_S_DS) for p-values obtained using Farm-CPU method at two significance thresholds of 1e-
4 (blue) and 1e-6 (red). The outermost ring depicts the SNP distribution in the 215,250 SNP working set. Individual experimental results are
compared to the combined analysis for each of the three environments- b. LL_N, c. LL_S and d. UL_S, to detect seasonal variation between WS
and DS, from centre of the plot-i. WS, ii. DS and iii. Combined analysis
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Fig. 6 Circular manhattan plot and qq plot for Grain yield (GY)- a. each of the six experiments (from centre of the plot- 1. lowland non-stress
2014WS (LL_N_WS); 2. lowland non-stress 2015DS (LL_N_DS); 3. lowland stress 2014WS (LL-S_WS); 4. lowland stress 2015DS (LL_S_DS); 5. upland
stress 2014WS (UL_S_WS) and 6. upland stress 2015DS (UL_S_DS) for p-values obtained-using Farm-CPU method at two significance thresholds of
1e-4 (blue) and 1e-6 (red). The outermost ring depicts the SNP distribution in the 215,250 SNP working set. Individual experimental results are
compared to the combined analysis for each of the three environments- b. LL_N, c. LL_S and d. UL_S, to detect seasonal variation between WS
and DS, from centre of the plot-i. WS, ii. DS and iii. Combined analysis
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Grain Yield under Drought in Different Environments as
Selection Criterion for Promising Accessions to Develop
High Yielding Drought Tolerant Varieties
Seven promising accessions viz. Aus 329, Aus 344, Chungur
Bali, Dangar, Lalsaita, Para Nellu and Simul Khuri posses-
sing better yield and yield related traits across different

seasons under lowland and upland stress in combination of
the favourable allele for yield and yield related traits were
identified using two parameters- phenotypic performance
evaluated using DSI and yield advantage over checks, and
genotypic profile characterised by presence of favourable al-
leles contributing to high yield under drought.

Fig. 7 Circular manhattan plot and qq plot for Grain yield (GY) for- a. lowland non-stress 2014WS (LL_N_WS); b. lowland non-stress 2015DS
(LL_N_DS); c. lowland stress 2014WS (LL_S_WS); d. lowland stress 2015DS (LL_S_DS); e. upland stress 2014WS (UL_S_WS); f. upland stress 2015DS
(UL_S_DS) divided into two levels- subgroup level with i. aus lines and ii. indica lines and iii. comlpete diversity set of 280 lines for p-values
obtained using Farm-CPU menthod at two significance thresholds of 1e-4 (blue) and 1e-6 (red). The outermost ring depicts the SNP distribution
in the 215,250 SNP working set; to explore the effect of population structure in detection of significant marker trait associations
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Table 3 Summary of candidate gene analysis for seven traits in different seasons and environments validated for genes and qDTY
regions

Trait MTA/ QTL detected QTL span (Mb) SNP start
(chrom_pos (bp))

SNP end
(chrom_pos (bp))

Env Season Locus name (MSU 7.0) /
Drought QTL (qDTY)

BMDW – – S2_17808669 S2_17808669 LL_N DS LOC_Os02g30270

BMDW qBMDW8–1 0.075 S8_00466752 S8_00541934 LL_S WS,DS –

BMDW qBMDW-NBP9–1 2.021 S9_19316065 S9_20944019 LL_N WS,DS LOC_Os09g36290,
LOC_Os09g36330

DTF qDTF6–1 0.138 S6_07611279 S6_07749410 LL_N WS,DS –

DTF qDTF6–2 0.832 S6_09539728 S6_10,371,528 LL_N WS,DS –

DTF – – S7_19,598,023 S7_19,598,023 LL_N WS LOC_Os07g32800

DTF – – S7_20,159,780 S7_20,159,780 LL_N DS LOC_Os07g32820

DTF – – S9_13934171 S9_13934171 LL_S DS qDTY9.1

DTF qDTF11–1 0.691 S11_06525213 S11_07215940 LL_S WS,DS –

DTF – – S11_18836588 S11_18836588 LL_S DS LOC_Os11g31980

GY qGY1–1 0.351 S1_03473291 S1_03824622 LL_S,UL_S WS,DS –

GY – – S1_24304274 S1_24304274 UL_S DS LOC_Os01g43450

GY qGY1–2 0.403 S1_39987434 S1_40390527 LL_S,UL_S WS,DS qDTY1.1

GY qGY2–1 4.271 S2_18794394 S2_23065933 UL_S WS,DS LOC_Os02g33620,
LOC_Os02g36190

GY qGY2–2 3.18 S2_25979458 S2_29167141 UL_S WS,DS qDTY2.3

GY – – S3_28646420 S3_28646420 UL_S WS LOC_Os03g49650

GY – – S4_01441702 S4_01441702 UL_S WS LOC_Os04g25400

GY – – S4_25920763 S4_25920763 LL_S DS LOC_Os04g37410

GY – – S4_31088649 S4_31088649 LL_S DS LOC_Os04g50150

GY qGY5–1 0.365 S5_04502747 S5_04505637 UL_S WS –

GY – – S5_12494100 S5_12494100 UL_S WS LOC_Os05g20900

GY – – S5_19224697 S5_19224697 LL_S DS LOC_Os05g32660

GY qGY5–2 5.205 S5_24708194 S5_29913640 UL_S WS OsRPK1, OsCCaMK,
OsHAP3B, OsTPS1, OsSTN8

GY – – S6_06025083 S6_06025083 UL_S WS LOC_Os06g11540

GY – – S6_22794237 S6_22794237 UL_S WS LOC_Os06g37850

GY – – S6_23132086 S6_23132086 UL_S WS LOC_Os06g39690

GY – – S6_27655258 S6_27655258 UL_S WS LOC_Os06g47030

GY – – S6_31179920 S6_31179920 UL_S WS LOC_Os06g49910

GY – – S7_13019061 S7_13019061 UL_S DS LOC_Os07g23450

GY – – S7_16180595 S7_16180595 UL_S WS LOC_Os07g27900

GY – – S7_16181810 S7_16181810 UL_S WS

GY – – S7_16183053 S7_16183053 UL_S WS

GY – – S9_03032058 S9_03032058 UL_S WS LOC_Os09g06650

GY – – S9_05467194 S9_05467194 UL_S WS LOC_Os09g10300

GY – – S11_16248710 S11_16248710 UL_S WS qGP-11, qGI-11, yld11.1,
gpl11.1, gl11.1

GY – – S11_20668615 S11_20668615 UL_S WS LOC_Os11g35310

GY – – S11_21311326 S11_21311326 UL_S WS LOC_Os11g36200

GY – – S12_02835650 S12_02835650 UL_S DS LOC_Os12g06020

GY qGY12–1 0.941 S12_18165164 S12_19106346 UL_S WS,DS qDTY12.1

GY / HI qGY5–1 0.365 S5_04140355 S5_04266313 UL_S DS –

HI – – S2_24797737 S2_24797737 LL_N DS LOC_Os02g40920

HI – – S2_25205930 S2_25205930 LL_N DS LOC_Os02g42020
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Table 3 Summary of candidate gene analysis for seven traits in different seasons and environments validated for genes and qDTY
regions (Continued)

Trait MTA/ QTL detected QTL span (Mb) SNP start
(chrom_pos (bp))

SNP end
(chrom_pos (bp))

Env Season Locus name (MSU 7.0) /
Drought QTL (qDTY)

HI – – S5_05891992 S5_05891992 LL_N DS LOC_Os05g10700

HI – – S11_10053723 S11_10053723 UL_S DS LOC_Os11g18366

HI – – S11_10351950 S11_10351950 LL_N DS LOC_Os11g19230

HI – – S11_23022593 S11_23022593 LL_N DS –

HI – – S12_23250434 S12_23250434 LL_N WS LOC_Os12g37850

NBP – – S1_37770897 S1_37770897 LL_N DS qDTY1.1

NBP qBMDW-NBP9–1 2.021 S9_20908000 S9_21337553 LL_N WS,DS –

PH qPH1–1 0.982 S1_33,418,648 S1_34,400,345 LL_N, LL_S, UL_S WS,DS LOC_Os01g53670,
LOC_Os01g59760

PH qPH1–2 1.085 S1_37,960,019 S1_39,044,781 LL_N, UL_S WS,DS qDTY1.1

PH – – S3_33,600,040 S3_33,600,040 LL_S WS LOC_Os03g58220

PH – – S3_33,600,989 S3_33,600,989 LL_S WS

PH – – S6_13439145 S6_13439145 LL_N WS OsPT9, OsPT1055,OsGLK1, nyc3

PH qPH9–1 2.731 S9_13,423,222 S9_16,154,337 LL_N,UL_S WS,DS qDTY9.1

PH – – S11_20,143,839 S11_20,143,839 LL_N DS LOC_Os11g34364

PH – – S11_22175365 S11_22175365 UL_S DS qGP-11,qGl-11, yld11.1,
gpl11.1, gw11.1

SPKFT – – S6_28876857 S6_28876857 UL_S DS LOC_Os06g49060

SPKFT qSPKFT9–1 2.411 S9_09426722 S9_11838142 LL_N WS,DS –

Fig. 8 Genomic locations of 101 significant MTAs detected within a 200 kb window in reported genes and drought QTLs (qDTYs). Colored circles
show the position of each MTA for 7 traits: Days to 50% flowering-DTF, Plant height-PH, Biomass-BMDW, Number of effective panicles-NBP, Grain
yield-GY, Harvest index-HI and Spikelet fertility-SPKFT from each of the six experiments (lowland non stress-LL_N, lowland stress-LL_S and upland
stress-UL_S) in the two seasons (WS and DS) and combined season analysis. Exact genomic locations are shown in Table S4
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DSI estimated for each genotype based on six import-
ant traits (DTF, PH, BMDW, GY, TGW and SPKFT) for
each of the two stress conditions (LL_S and UL_S) in
both WS and DS (6 traits * 2 stress conditions * 2 sea-
sons) generated maximum of 24 DSI variables for each
genotype used as selection criteria, to effectively deter-
mine the most tolerant and susceptible genotypes (Add-
itional file 1: Table S2). Significant variability in
genotypes exhibiting drought tolerance and susceptibility
under different growing conditions was observed.
Twelve accessions with DSIs close to zero for at least 20
DSI variables for each genotype were identified,
highlighted in green in Additional file 1: Table S2. Sub-
sequently, yield advantage of these 12 selections com-
puted against the traditional varieties used as checks in
the experiments narrowed selections down to seven ac-
cessions across environments and seasons. The grain
yield improvement in these selected accessions ranged
from 188 to 508 kg ha− 1 under lowland stress, to under
403 to 1645 kg ha− 1 lowland non-stress and 846 to 1800
kg ha− 1 under upland stress over the best performing
checks in DS (Table 4).
Validation of phenotype-based selection performed

using set of 101 (on 94 unique loci with 4 having co-
localization for multiple traits) significant MTAs (vali-
dated from database and earlier reported literature for
grain yield QTLs) for DTF, PH and GY is presented in
Fig.9a, b and c, respectively. Favorable alleles associated
with DTF included major alleles in 45.74% loci contribut-
ing to both LL_S and UL_S (Class I abbreviated hereby as
cl-I), major alleles in 9.57% loci contributing to only UL_S
(cl-II) and major alleles in 5.32% loci contributing to only
LL_S (cl-III). Interestingly, among favorable minor alleles,
8.5% of loci contributed to DTF under both LL_S and

UL_S (cl-IV). Similarly, for PH, favorable alleles comprised
43.6%, 4.26%, 9.57% and 10.64% of 94 loci corresponding
to classes I, II, III and IV, respectively while for GY, these
figures were 36.17%, 7.45%, 5.32% and 12.7% for the four
classes of loci respectively. The results imply that at least
44.67% loci (36.17% with major allele of the panel and
8.5% with minor allele of the panel) of the significant 94
loci can be useful in marker development, haplotype block
construction for improving yield and yield related traits
under both LL_S and UL_S; at least 4.26% of loci have fa-
vorable alleles to target UL_S for trait-based breeding and
at least 5.3% of loci from panel have alleles for improving
trait performance under LL_S.
Additionally, each selected accession was validated for

presence of favorable alleles by computing their percent
composition in the set of 94 loci, corresponding to the
four classes established (Additional file 1: Table S6). The
selected accessions belong predominantly to aus genetic
sub-group (Aus329, Aus344, Chungur Bali, Dangar, Lal-
saita and Simul Khuri) while Para Nellu belongs to indica
genetic sub-group. The percentage of favorable alleles in
their genotypic profile varied from 60 to 70% (Fig. 9d)
which establishes usefulness of phenotype-based selection
which is validated by a moderate to high percentage of
genotypic profile of each accession possessing favorable al-
leles contributing to improved yield under RS drought.
Interestingly, about 38.29% of loci (cl-V) in the se-

lected seven promising accessions did not contribute to
high yield under drought (Fig. 9c). Analysis of these loci
in 12 most susceptible accessions (detected having ex-
tremes of DSIs, highlighted in red in Additional file 1:
Table S2) across lowland and upland stress environ-
ments, established variable allelic contribution to suscep-
tibility under RS drought. The 12 accessions were

Table 4 Selected promising accessions on basis of grain yield advantage across seasons and environments

S.No Taxa Name DTF PH GY

LL_N LL_N LL_S UL_S

WS DS WS DS WS DS WS DS WS DS

1 AUS 329::IRGC 29116–1 89 83 114 116 1171 4966 616 313 975 1224

2 AUS 344::IRGC 29131–1 87 84 105 125 1379 4943 575 335 994 1907

3 CHUNGUR BALI::IRGC 25855–1 86 77 124 115 1083 7107 592 569 987 1537

4 DANGAR::IRGC 76296–1 86 75 125 105 1785 5865 592 569 980 1059

5 LALSAITA::IRGC 43915–1 88 83 109 112 3465 4899 590 451 965 1778

6 PARA NELLU::IRGC 50009–1 87 75 144 127 3719 5925 582 633 975 953

7 SIMUL KHURI::IRGC 35154–1 91 86 120 118 1174 4844 574 340 994 1399

Check1 IRRI 154 – 93 – 93 – 5462 – 7 – 65

Check2 MTU1010 – 93 – 94 – 4323 – 2 – 60

Check3 Sabitri – 90 – 101 – 3761 – 124 – 107

Trial Mean 90 89 114 109 1666 5214 573 158 942 336

LSD 1 2 3 3 140 280 82 32 100 62
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divided into two categories, viz. Hodarawala, Eloni, Fei
Gai 122, IR 75870–5–8-5-B-1, E-2024, Chandna (suscep-
tible under different environments in DS only) and
Muttu Samba, Race Perumal, Kalabail, Muta Ganje,
Altamira-9 and Bak Tulsi (susceptible under different
environments in both WS and DS). Validation of allelic
contribution in these 12 susceptible accessions using 94
significant loci established a variable range of 19–33%
loci with minor allele associated with low yield under
drought, as depicted in the Fig. 9c.

Discussion
Phenotypic Characterization under Different
Environments
In both the environments i.e. lowland and upland and
across seasons, the yields of the accessions were lower
under reproductive stage drought stress compared to the
control non-stress indicating the severity of the drought
stress imposed. Numerous studies point towards negative
relation between yield potential and yield under drought
and this has been used to establish response indices under

different levels of stress severity (Raman et al. 2012;
Kumar et al. 2014; Palanog et al. 2014). Positive correl-
ation between moderate and severe stress response indices
are informative of the genotypes with yield gain under all
stress severities. In our study, different levels of stress se-
verity were observed across seasons (Additional file 1:
Table S1). Such differential levels of stress were useful in
identifying the potential drought tolerant lines under vari-
able growing environments. Verulkar et al. (2010) docu-
mented that yield reduction under reproductive stage
drought is significant even at moderate stress severity and
even lower under severe stress. The premise to use
indica-aus diversity panel in the study was to identify the
donors/accessions that can be directly used in breeding
programs targeting grain yield improvement under
drought for South-Asian and South-East Asian region.

Effect of Trait Architecture for MTA Validation across
Seasons and Environments
PV validation within the diversity panel in our study was
affected by trait architecture and seasonal variation,

Fig. 9 Allelic variation at the significant GWAS-identified loci analysed to detect percentage composition of allelic profile in the selected 7
promising accessions based on presence of major or minor allele contibuting the phenotypic performance for tolerance under reproductive
stage drought in lowland- LL_S and upland- UL_S in the two seasons for a. DTF; b. PH; c. GY. The five classes identified include three with loci
where major allele present in all selected accessions contributed to trait mean under – LL_S + UL_S(cl-l); only UL_S (cl-ll) and only LL_S (cl-lll)
while the fourth class comprises loci with minor allele present in selected accessions contributing to trait mean under both LL_S + UL_S(cl-IV).
Class V (cl-V) comprises all the remaining loci out of the analysed 94, with neither major nor minor allele contributing to phenotypic performance
for tolerance under drought in the selected accessions. The ClassV loci were analysed for contribution to low yield in 12 susceptible lines across
LL_S and UL_S in either or both WS and DS. The variability in allelic variation for GY in the 12 susceptible accessions is depicted in the bar graph,
divided in two categories-susceptible in both stress environments in DS only and in both seasons-WS and DS. d. Validation of selected accessions
based on percentage of allelic variation contributing to grain yield under LL_S and UL_S- loci with favorable allele in each the selected
accessions is divided along the first four classes and loci with unfavourable allele in each acession is represented by class V. The cumulative
favourable allelic percentage of each accession associated with higher yield under drought is depicted by the percentage value mentioned on
top of the bar columns. Details for loci associated with GY are mentioned in Table S6
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where for example the range of variance captured by
Farm-CPU is narrow for simple quantitative traits like
flowering time (0.15–0.52) and plant height (0.34–0.63)
as compared to that for a complex quantitative trait like
GY with range of 0.02–0.55. In our study, the correlation
among the two seasons (DS and WS) is of lower magni-
tude which warrants the variable PV for traits across
seasons. Our results draw similar interpretations with re-
cent studies that conclude the effectiveness of multi-
locus methods, especially Farm-CPU over single-locus
methods (like MLM) for association analysis of traits
with either high or low heritability by adequately con-
trolling false positives and negatives, indicated by sharp
deviations observed for p-value distribution in qq plots
(Xu et al. 2018; Kaler and Purcell 2019).
The significant and positive correlation among grain

yield and other agronomic traits except for DTF and the
colocation of MTAs associated with these traits indicates
the contribution of grain yield related traits in contribut-
ing to yield improvement under drought stress. Most of
the important economic traits such as grain yield, grain
quality, biotic and abiotic stresses in different crop spe-
cies are polygenic in nature. These complex quantitative
traits being the focal for the breeding programs, genome
wide analysis has proven to be advantageous in captur-
ing the genetic variance of the diverse germplasm,
subsequently contributing to improving crop productiv-
ity. Identification of marker-trait associations, QTLs,
haplotypes, candidate genes and the functional
characterization of the identified candidate genes under-
lying QTLs/genes will help plant breeders to design and
develop drought tolerant rice varieties. In the present
study, among the detected significant marker-trait asso-
ciations, some were novel while the others were located
near or co-located with the previously reported genes/
QTLs.
Recently, GWAS studies conducted on 180 Vietnam-

ese rice landraces identified a total of 17 QTLs associ-
ated with vegetative stage drought tolerance under
greenhouse conditions (Hoang et al. 2019). Different sig-
nificant MTAs in the two subpanels of the study, indica
and japonica were detected using mixed model approach
with structure control and kinship among the studied
landraces. GWAS performed by Subedi et al. (2019) re-
ported 37 highly significant MTAs for 20 traits including
plant and root morphological traits, nutrient uptake,
yield and its components in MAGIC population of 5 di-
verse parents for increased adaptability in dry direct
seeded rice (DDSR) system.

MAS Optimization Based on Significant Genomic Regions
Identified
The QTLs; qGY1–2 and qPH1–2 and the MTAs (S1_
37770897 for NBP) mapped on chromosome 1; qGY2–2

on chromosome 2; qPH9–1 and qSPKFT9–1 on chromo-
some 9 and qGY12–1 mapped on chromosome 12 in
both the years and environments were located near the
earlier reported major grain yield QTLs namely qDTY1.1,
qDTY2.3, qDTY9.1 and qDTY12.1 respectively (Table 3).
These findings indicate the consistency of the effects of
drought grain yield QTLs across diverse germplasm. It is
important to take note here that the qDTY1.1 was re-
ported to have significant effect on the grain yield under
control non-stress and reproductive stage drought stress
in different genetic backgrounds such as Swarna, IR64,
MTU1010 under lowland and upland environments
(Vikram et al. 2011; Sandhu et al. 2014; Sandhu et al.
2015). The qGY2–1 and qGY2–2 reported in the present
study were found to be present in the upstream and
downstream region of earlier reported qDTY2.3, respect-
ively (Sandhu et al. 2014; Palanog et al. 2014). Interest-
ingly, the qGY5–2 reported in the present study was
located near the earlier reported genes OsRPK1 gene
(Chen et al. 2013 for root development), OsCCaMK
(Bao et al. 2014 for microbial symbiosis), OsHAP3B,
OsTPS1 (Miyoshi et al. 2003 for chloroplast biogenesis),
OsSTN8 (Nath et al. 2013) for protein phosphorylation
of photosystem II) and MTAs for nutrient uptake
(Sandhu et al. 2019). The colocation of identified QTLs
in the present study with the earlier reported genes for
root development, photosynthetic traits, and the stress-
responsive genes further indicate the complex nature of
grain yield traits in addition to the contribution of these
traits/genomic regions in enhancing yield under drought.
After validation, the identified significant marker-trait
associations and the selected promising accessions pos-
sessing the QTLs/MTAs could be used further in GAB
program. The seven selected accessions from this panel
may provide novel donors in developing drought toler-
ant rice varieties for variable growing environment.

Research Prospective for Breeders
Diversity panels are a valuable source for exploiting gen-
etic variation to potentially raise genetic gain in an inte-
grative pre-breeding approach. Association studies help
in detecting genetic variants associated with agronomi-
cally important traits and identifying underlying candi-
date genes and establishing haplotypes to accelerate
development of climate-smart cultivars. In our present
study, we detected 94 significant loci associated with 38
genes and 4 major grain yield QTLs. Analysing pheno-
typic performances of various haplotype combinations of
these in post-GWAS study and functional
characterization of candidate gene expressions can help
ascertain superior haplotype combinations for improved
grain yield under RS drought in different ecosystems.
Exploiting such superior performance haplotypes in dif-
ferent genetic backgrounds; detecting presence of such

Bhandari et al. Rice           (2020) 13:53 Page 17 of 22



multiple haplotypes in accessions can aid genomic selec-
tion for tailoring development of high-yielding climate-
smart varieties. The seven accessions selected based on
grain yield and analysed for allelic variation, can serve as
potential donors for improving yield under
reproductive-stage drought in different ecosystems, as
favourable alleles contributing to yield under drought
comprised 60–70% genotypic profile in significant loci.
Moreover, these selected accessions belong to aus and
indica genetic backgrounds, hence can be exploited to
identify consistent, superior haplotypes for yield and
yield related traits with potential to strengthen rice pro-
duction by deployment of tailored climate-smart
varieties.

Conclusions
The diverse indica-aus panel possessing wide range of
phenotypic variability combined with the already avail-
able genomic information was exploited to identify the
MTAs/QTLs associated with grain yield improvement
under reproductive stage drought. A total of 219 signifi-
cant MTAs were detected in the present study. Candi-
date gene analysis within 200 kb window centred from
GWAS identified SNP peaks detected 101 of these
MTAs within/ in close proximity to 38 reported genes, 4
earlier reported major grain yield QTLs and 6 novel
QTLs for 7 traits. Two QTLs each for plant height and
grain yield showed consistent effect across seasons and
environments under both control non-stress and stress
conditions. The significant positive correlation of the
grain yield with grain yield related traits was further con-
firmed with the colocation of QTLs/MTAs associated
with these traits. The introgression of the identified
QTLs into elite genetic background, functional
characterization of candidate genes identified in or near
QTLs regions would be the next step in improving grain
yield of rice under reproductive stage drought stress
conditions. The identified promising accessions may
serve as novel donors in drought breeding program tar-
geting grain yield improvement.

Methods
Plant Material and Genotypic Data
The study used data evaluated for a diverse indica-aus
rice panel of 280 accessions, of which 245 represent the
four major genetic subgroups belonging to indica gen-
etic background and 35 to aus genetic background
(Additional file 1: Table S7). They were selected from
the 3000 accessions recently re-sequenced within the
framework of the Rice Genome Project (Li et al. 2014),
for their potential to breeding programs targeting
rainfed lowland and upland drought environments in
South and South-East Asia. In the selected panel, 215
accessions are landraces originating mainly from Asia

and 65 accessions are improved lines. Seeds of the acces-
sions were obtained from the IRRI gene bank.
The genotypic data for the 280 accessions were ob-

tained from the International Rice Informatics Consor-
tium (IRIC) database for the 3000 rice genomes project
(http://oryzasnp.org/iric-portal). The raw genotypic data
extracted from the database contained 962 k SNPs. The
filtering for missing data (≤ 20%), minor allele frequency
(MAF) ≥ 2% and rate of heterozygosity (Ho) ≤ 5% led to
a working set of 215,250 SNPs, referred to as 215 k set.
This panel and the associated genotypic data were previ-
ously described in Bhandari et al. (2019).

Phenotyping of Population
Experimental Design and Crop Management
Six experiments (Additional file 1: Table S1) were con-
ducted in the 2014 wet season (WS) and 2015 dry sea-
son (DS) at IRRI (14.18°N, 121.25°E), Philippines. In
each season, the experiment was conducted under
control conditions or non-stress experiment (LL_N) in
lowland (under flooded, puddled, transplanted and an-
aerobic conditions) while the reproductive-stage
drought-stress experiments were conducted in lowland
and upland (under direct-sown, non-puddled, non-
flooded and aerobic conditions in leveled fields)
environments, referred as LL_S and UL_S, respectively.
The LL_N experiments were established in augmented
randomized complete block design in single-row plots
with 5 m row length. The LL_S and UL_S experiments
were established in a α-lattice design with two replica-
tions in single or two-row plots with 5m row length in
lowland and 2–3 m row length in upland. The crop
management practices were as described in Kumar et al.
(2014).

Drought Application Procedure
RS-drought phenotyping was as described in Kumar
et al. (2014). Briefly, in the LL_S experiments, the field
was drained 30 days after transplantation and irrigation
was withheld to impose the RS-drought stress. Stress
was continued until severe leaf rolling was observed in
at least 75% of the accessions and water table depth
remained below 100 cm for more than 2 weeks. Fields
were thereafter re-irrigated (flash-flooding -WS and
sprinklers - DS) and the water was drained after 24 h to
impose a subsequent cycle of drought stress. This cyclic
pattern was implemented until harvest. In the UL_S ex-
periments, where the crop was established by direct-
seeding, RS-drought stress was initiated 45 days after
sowing, by withholding sprinkler irrigation until the soil
water tension fell below − 50 kPa at 30 cm depth. There-
after, sprinkler-irrigation and subsequent drainage after
24 h for the imposition of drought stress were done in a
cyclic pattern till harvest.
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Traits Measured
For each experiment, days to 50% flowering (DTF, in
days), plant height (PH, in cm, the average for 3 mea-
surements per plot), panicle length (PL, in cm, the
average for 3 measurements per plot), flag leaf area
(FlgLA, in cm2, the average for 3 measurements per
plot), dry biomass at maturity (BMDW, in kg ha− 1),
number of effective panicles (NBP), grain yield (GY,
in kg ha− 1), 1000-grain weight (TGW, in g) and
spikelet fertility (SPKFT, in percentage) were mea-
sured in individual plots and harvest index (HI) was
calculated as GY/BMDW. Details of measurement
procedures of each trait are given in Additional file 1:
Table S8.

Analysis of Phenotypic Data for each Trait
For each trait from each of the six experiments, best lin-
ear unbiased predictors (BLUP) were estimated using
the restriction maximum likelihood method (REML) in
the PROC MIXED procedure of SAS v9.0 (Statistical
Analysis Systems 2002). Within a season, the perform-
ance of a genotype was modeled as Yij = μ + ßi + cj + αi +
εij for augmented randomized complete block design
where Yij is the phenotype of the ith genotype in jth

block, μ the overall mean, ßi the block effect which was
considered as random, cj the checks effect in jth block
which was considered as fixed, αi the random effect of
the ith genotype and εij is the residual considered as a
random effect. We constructed two variables- “checks”
and “genotypes” variables in both WS and DS. Checks
refer to the control genotypes included additionally in
the experiment to compare the performance of geno-
types being tested and were used to recover the block ef-
fects. For α-lattice design, genotype performance was
modeled as Yijk = μ + αi + rj + bkj + εijk where Yijk is the
phenotype of the ith genotype in kth block of jth replicate,
μ the overall mean, αi is the genotype effect considered
as random, rj is the replicate effect considered as fixed,
bkj is the random effect of the kth block within jth repli-
cate and εijk is the residual considered as a random
effect.
The variance components were estimated using the

REML method to extract Yadj (μ + Yij(k)) values for each
genotype which were used in GWAS for analysis at both
individual experiment level and combined analysis for
each environment- lowland non-stress, lowland stress,
and upland stress, to detect genomic regions associated
with traits of interest. For each of the studied trait, the
broad-sense heritability was estimated using the formula

H2 ¼ σ2g=σ2p

where σ2g is the genotypic variance obtained from the
experimental data (assuming only additive genetic

variance among accessions) and the phenotypic variance
is σ2p = σ2g + σ2e/r, where σ2e is the residual variance ob-
tained from the ANOVA and r is the number of
replication.
The corrplot package in R (R. v.1.2.5001) (Wei and

Simko 2017) was used to estimate the correlation among
the measured traits.
The drought susceptibility index (DSI) was calculated

for DTF, PH, BMDW, GY, TGW and SPKFT. Drought
intensity (DI) was calculated according to (Lazar et al.
1995) as follows-

DI ¼ 1 - YD=YN

Where YD is the average all genotypes for a given trait
under drought stress, while, the YN is the average of all
genotypes for the same trait under normal condition.
The drought susceptibility index (DSI) was estimated for
each genotype and calculated according to (Lazar et al.
1995) as follows-

DSI ¼ 1‐XD=XN

DI

Where XD is the mean performance of each genotype
for a given trait under drought stress, while, the XN is
the mean performance of each genotype for the same
trait under normal condition.

Methods for Characterizing the Population
Experimental Evaluation
Multi-dimensional analysis of the phenotypic data by
FDA was performed on phenotypic data (280 acces-
sions × 10 trait variables × 6 experiments) to estimate
the pairwise Fisher distance between the experiments
using the XLSTAT package [Internet] 2012. (http://
www.xlstat.com/en/products-solutions/pro.html)
XLSTAT (2012). Using mean grain yield as criterion,
each experiment was re-classified based on the grain
yield reduction compared to the control-lowland-non-
stress experiment (Kumar et al. 2009) (Additional file 1:
Table S1).

Genetic Structure
The genetic diversity among the 280 accessions was
studied with the working set of 215 k markers using the
Neighbor-joining (NJ) clustering method in TASSEL 5
(Bradbury et al. 2007) and visualization using FigTree
v1.4.3 (Rambaut and Drummond 2016). The population
structure was assessed using ADMIXTURE v.1.3.0
(Alexander et al. 2009) and results visualized using R/
pophelper (Francis 2017) package for 280 accessions and
215 k SNPs. Series of models for K value ranging from 2
to 8 were run with 5 fold cross-validation to prime the
main algorithm- QuasiNewton for convergence
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acceleration. Accuracy and precision were ensured by
performing 20 runs for each value of K and the optimal
number of clusters was determined by the K value with
the least cross-validation (CV) error. Principal compo-
nents (PC) explaining genetic variation were estimated
using R/GAPIT 3.0 package (Lipka et al. 2012). The esti-
mated population structure covariates (Q) and kinship
matrix (K) were used to improve the statistical power of
the GWAS models used.

Pairwise Linkage Disequilibrium (LD)
LD between SNP loci at the individual chromosomal
level was calculated and plotted by computing r2 estima-
tors between all pairs of SNP markers using the PopLD-
decay (Zhang et al. 2019).

Methods for Identifying Associations at the Population
Level
In our study, we implemented GWAS with MLM,
SUPER and Farm-CPU methods using R/GAPIT 3.0
package and visualization of circular manhattan and qq
plots using rMVP package (0.99.17) (https://github.com/
xiaolei-lab/rMVP)(R/MVP package 2019). The false pos-
itives in GWAS study were corrected using “Bonferroni
Correction” factor. Using the Bonferroni multiple test
correction (0.05/215,250; at 5% level of significance), the
calculated threshold value was 2.32 × 10− 7. Only the
MTAs that exceed the threshold value and which were
consistent across multi-locus methods- SUPER and
Farm-CPU methods have been reported in this study.
To detect seasonal variations, we explored two p-value
thresholds (1e-6 and 1e-4).
The percent phenotypic variance (PV) explained by all

significant SNPs detected in each environment and sea-
son was output from all models used in the study. PV
explained by each significant SNP was calculated as the
squared correlation between the phenotype and geno-
type of the SNP.

Candidate Genes Discovery
The candidate genes were searched within the 200-kb
region around (100 kb upstream and 100 kb down-
stream) the detected significant SNP. The literature
searches were also performed using QTARO and MSU
databases (http://qtaro.abr.affrc.go.jp (QTARO database
2019) and http://rice.plantbiology.msu.edu (MSU data-
base 2019)) to identify the earlier reported QTLs present
in the LD region.

Selection of Accessions as Potential Donors in Breeding
Programs
Promising accessions were selected from the population
based on yield advantage over non-stress condition in
WS for both lowland and upland stress environments

and over checks in each environment in DS. The prem-
ise was to identify a set of accessions that can be incor-
porated in breeding programs for drought tolerance
under both lowland and upland environments with the
advantage of early flowering and short plant type under
RS drought.
These selected accessions were analyzed for allelic ef-

fect using 101 (on 94 unique loci with 4 having colocali-
sation for multiple traits) significant MTAs validated
from database and earlier reported literature for grain
yield QTLs. Allelic variation was studied for effect of al-
lelic contribution to trait mean for DTF, PH and GY
under LL_S and UL_S in both seasons. Five classes of
loci were established – three based on presence of major
allele in all seven accessions contributing to phenotypic
performance for tolerance under LL_S + UL_S (class I
abbreviated as cl-I); under UL_S only (class II abbrevi-
ated as cl-II) and under LL_S only (class III abbreviated
as cl-III) while the fourth class (cl-IV) contained loci
with minor allele associated to phenotypic performance
for tolerance under both LL_S + UL_S. The fifth class
(cl-V) consisted of loci with neither the major nor minor
allele associated to phenotypic performance for tolerance
under RS drought in the selected accessions. Further,
validation of phenotypic-based selection of each acces-
sion was done by computing the percentage composition
of favorable alleles in the set of 94 loci.
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1186/s12284-020-00406-3.

Additional file 1. Table S1. Field experiments conducted at IRRI,
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