I. Andretta, M. Kipper, C. R. Lehnen, L. Hauschild, V. M. Lovatto et al., , 2012.

, Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs, Animal, vol.6, pp.1476-1482

L. Sciellour, . Zemb, and R. Serviento,

G. Antonissen, A. Martel, F. Pasmans, R. Ducatelle, E. Verbrugghe et al., The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases, Toxins, vol.6, pp.430-452, 2014.

S. B. Binder, H. Schwartz-zimmermann, E. Varga, G. Bichl, H. Michlmayr et al., Metabolism of zearalenone and its major modified forms in pigs, Toxins, vol.9, p.56, 2017.

S. Bouhet and O. Ip, The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response, Veterinary Immunology and Immunopathology, vol.108, pp.199-209, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02669736

A. Chlebicz, In vitro detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 toxin and Zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast, Probiotics and Antimicrobial Proteins, vol.12, pp.289-301, 2019.

S. Dänicke, H. Valenta, and S. Döll, On the toxicokinetics and the metabolism of deoxynivalenol (don) in the pig, Archives of Animal Nutrition, vol.58, pp.169-180, 2004.

G. S. Eriksen, H. Pettersson, K. Johnsen, and J. E. Lindberg, Transformation of trichothecenes in ileal digesta and faeces from pigs, Archiv für Tierernaehrung, vol.56, pp.263-274, 2002.

G. S. Eriksen, H. Pettersson, and J. E. Lindberg, Absorption, metabolism and excretion of 3-acetyl DON in pigs, Archiv für Tierernaehrung, vol.57, pp.335-345, 2003.

B. M. Flannery, W. Wu, and J. J. Pestka, Characterization of deoxynivalenolinduced anorexia using mouse bioassay, Food and Chemical Toxicology, vol.49, pp.1863-1869, 2011.

S. A. Frese, K. Parker, C. C. Calvert, and D. A. Mills, Diet shapes the gut microbiome of pigs during nursing and weaning, vol.3, p.28, 2015.

I. González, S. Déjean, P. G. Martin, and A. Baccini, CCA: an R package to extend canonical correlation analysis, Journal of Statistical Software, vol.23, pp.1-14, 2008.

S. W. Gratz, V. Currie, A. J. Richardson, G. Duncan, G. Holtrop et al., Porcine small and large intestinal microbiota rapidly hydrolyze the masked mycotoxin deoxynivalenol-3-glucoside and release deoxynivalenol in spiked batch cultures in vitro, Applied and Environmental Microbiology, vol.84, pp.2106-2123, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626371

S. W. Gratz, D. G. Richardson, and A. J. , The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol, Applied and Environmental Microbiology, vol.79, pp.1821-1825, 2013.

P. He, Microbial transformation of deoxynivalenol (vomitoxin), Applied and Environmental Microbiology, vol.58, pp.3857-3863, 1992.

J. Huffman, R. Gerber, and L. Du, Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins, Biopolymers, vol.93, pp.764-776, 2010.

B. Kollarczik, M. Gareis, and M. Hanelt, In vitro transformation of the fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs, Natural Toxins, vol.2, pp.105-110, 1994.

L. Cao, K. Boitard, S. Besse, and P. , Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems, BMC Bioinformatics, vol.12, p.253, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00959981

I. Mateos, S. Combes, G. Pascal, L. Cauquil, C. Barilly et al., Fumonisin-exposure impairs age-related ecological succession of bacterial species in weaned pig gut microbiota, Toxins, vol.10, p.230, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01829232

P. J. Mcmurdie, S. Holmes, V. Nagl, B. Woechtl, H. E. Schwartz-zimmermann et al., phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data, Toxicology Letters, vol.8, pp.190-197, 2013.

D. Payros, U. Dobrindt, P. Martin, T. Secher, A. Bracarense et al., The food contaminant deoxynivalenol exacerbates the genotoxicity of gut microbiota, vol.8, pp.7-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608529

A. Pierron, S. Mimoun, L. S. Murate, N. Loiseau, Y. Lippi et al., Microbial biotransformation of DON: molecular basis for reduced toxicity, Scientific Reports, vol.6, p.29105, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02636872

P. Pinton and O. Ip, Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review, Toxins, vol.6, pp.1615-1643, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02640753

J. Pomar, V. López, and C. Pomar, Agent-based simulation framework for virtual prototyping of advanced livestock precision feeding systems, Computers and Electronics in Agriculture, vol.78, pp.88-97, 2011.

D. B. Prelusky, K. E. Hartin, H. L. Trenholm, and J. D. Miller, Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine, Fundamental and Applied Toxicology, vol.10, pp.276-286, 1988.

R. Core, R: a language and environment for statistical computing. R foundation for statistical computing, 2018.

K. Reddy, J. Song, H. Lee, M. Kim, D. Kim et al., Effects of high levels of deoxynivalenol and zearalenone on growth performance, and hematological and immunological parameters in pigs, Toxins, vol.10, p.114, 2018.

K. E. Reddy, J. Y. Jeong, J. Song, Y. Lee, H. Lee et al., Colon microbiome of pigs fed diet contaminated with commercial purified deoxynivalenol and zearalenone, Toxins, vol.10, p.347

H. Robert, D. Payros, P. Pinton, V. Théodorou, M. Mercier-bonin et al., Impact of mycotoxins on the intestine: are mucus and microbiota new targets?, Journal of Toxicology and Environmental Health, vol.20, pp.249-275, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608381

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

T. Rognes, T. Flouri, B. Nichols, C. Quince, F. Mahé et al., Evaluation of an oral subchronic exposure of deoxynivalenol on the composition of human gut microbiota in a model of human microbiota-associated rats, e80578. Serviento AM, Brossard L and Renaudeau, vol.4, pp.5209-5221, 2013.

P. Sobrova, V. Adam, A. Vasatkova, M. Beklova, L. Zeman et al., Deoxynivalenol and its toxicity, Interdisciplinary Toxicology, vol.3, pp.94-99, 2010.

Y. J. Waché, C. Valat, G. Postollec, S. Bougeard, C. Burel et al., Impact of deoxynivalenol on the intestinal microflora of pigs, International Journal of Molecular Sciences, vol.10, pp.1-17, 2008.

W. Id and J. K. Nicholson, Gut microbiome interactions with drug metabolism, efficacy and toxicity, Translational Research, vol.179, pp.204-222, 2017.

J. C. Young, T. Zhou, H. Yu, H. Zhu, and J. Gong, Degradation of trichothecene mycotoxins by chicken intestinal microbes, Food and Chemical Toxicology, vol.45, pp.136-143, 2007.

H. Yu, T. Zhou, J. Gong, C. Young, X. Su et al., Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection, BMC Microbiology, vol.10, 2010.