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Abstract 

Background:  Walnuts are grown worldwide in temperate areas and producers are facing an increasing demand. In a 
climate change context, the industry also needs cultivars that provide fruits of quality. This quality includes satisfactory 
filling ratio, thicker shell, ease of cracking, smooth shell and round-shaped walnut, and larger nut size. These desirable 
traits have been analysed so far using calipers or micrometers, but it takes a lot of time and requires the destruction 
of the sample. A challenge to take up is to develop an accurate, fast and non-destructive method for quality-related 
and morphometric trait measurements of walnuts, that are used to characterize new cultivars or collections in any 
germplasm management process.

Results:  In this study, we develop a method to measure different morphological traits on several walnuts simultane-
ously such as morphometric traits (nut length, nut face and profile diameters), traits that previously required opening 
the nut (shell thickness, kernel volume and filling kernel/nut ratio) and traits that previously were difficult to quantify 
(shell rugosity, nut sphericity, nut surface area and nut shape). These measurements were obtained from recon-
structed 3D images acquired by X-ray computed tomography (CT). A workflow was created including several steps: 
noise elimination, walnut individualization, properties extraction and quantification of the different parts of the fruit. 
This method was applied to characterize 50 walnuts of a part of the INRAE walnut germplasm collection made of 161 
unique accessions, obtained from the 2018 harvest. Our results indicate that 50 walnuts are sufficient to phenotype 
the fruit quality of one accession using X-ray CT and to find correlations between the morphometric traits. Our imag-
ing workflow is suitable for any walnut size or shape and provides new and more accurate measurements.

Conclusions:  The fast and accurate measurement of quantitative traits is of utmost importance to conduct quan-
titative genetic analyses or cultivar characterization. Our imaging workflow is well adapted for accurate phenotypic 
characterization of a various range of traits and could be easily applied to other important nut crops.

Keywords:  Walnut, Germplasm collection, Morphological traits, X-ray computed tomography, 3D characterization, 
Image analysis
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Background
Persian walnut (Juglans regia L.), the walnut species 
cultivated for nut production, is one of the oldest food 
sources known and is grown worldwide [1]. According 
to the Food and Agriculture Organization of the United 

Nations (www.fao.org, 2017 data), worldwide in-shell 
walnut production exceeds 3.8  M tons. The three larg-
est producers are China, USA and Iran. France is the 
9th largest producer, the 2nd in Europe, with 40,000 
tons. French walnut orchard area reached approximately 
21,000 hectares in 2017 (https​://agres​te.agric​ultur​e.gouv.
fr/), making it the most important French fruit crop other 
than apple. The production is mainly exported in-shell to 
Europe thanks to its high quality, especially due to the 
well-known Protected Designations of Origin ‘Noix du 
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Périgord’ and ‘Noix de Grenoble’, the two main walnut 
production areas. However, the number of cultivars is 
low and the French walnut industry needs new cultivars 
well adapted to French climatic conditions, with high 
nut and kernel quality. The quality traits include round-
shaped walnut, smooth and shell easy to crack, larger nut 
size and high nut/kernel weight ratio [2].

Nowadays, agriculture is facing challenges for crop 
production and the plant research community needs to 
perform quantitative analyses of numerous plant traits in 
order to accelerate progress in breeding [3, 4]. This is why 
crop germplasm collections are of tremendous impor-
tance since no production area is fully self-sufficient 
in genetic diversity to cover all producer and consumer 
demand [5]. A germplasm collection is ordinarily evalu-
ated with morphological descriptors which is usually the 
first step for describing accessions and selecting geni-
tors for breeding programs [6, 7]. For obvious cost rea-
sons, the International Plant Genetic Research Institute 
(IPGRI, now called Bioversity International) gives ontolo-
gies to manage germplasm collections based on mor-
phological measurements, such as fruit length, diameter 
or thickness in millimeter without any measuring tools 
mentioned, and visual appreciation for traits that are dif-
ficult to quantify such as fruit shape or rugosity.

In walnut, since mid-1970s numerous studies report 
correlations between various traits related to morpholog-
ical properties of the nut [8–13]. For instance, to evalu-
ate promising genotypes mainly originated from seed in 
Iran, shell thickness was measured with a micrometer 
and shell roughness was recorded by assigning values 
from 1 to 7 [14, 15] or from 1 to 9 [16, 17] based on visual 
appreciation recommended by IPGRI [18]. Other works 
in Iran, using a caliper, also focused on nut length and 
diameter [19–23]. In Turkey, similar studies were con-
ducted still using a caliper or even a compass to measure 
walnut diameter, length and/or shell thickness [24–28]. 
Finally, walnut germplasm collections from Europe were 
also characterized using similar tools in Albania [29], 
Serbia [30], Bulgaria [31], Romania [32] and Italy [33].

Overall, the measurements using a caliper, a microm-
eter or even by simple visual observation are until now 
the classical methods in walnut assessment. However, 
this kind of evaluation is painstaking, time-consuming 
and can lead to inaccuracy and low resolution. For-
tunately, imaging techniques applied for plant phe-
notyping and food quality determination have been 
developed over the past decades using a wide range 
of methodologies, mainly for field crops and for vari-
ous traits such as growth dynamics, shoot structure 
and morphometric parameters [34]. We can quote the 
use of visible light [35] and fluorescence imaging [36] 
on barley; the thermal infrared [37], near-infrared [38] 

and hyperspectral imaging [39] on rice; or 3D imaging 
on soybean [40] and magnetic resonance imaging on 
bean [41]. With the genomics era allowing researchers 
to unravel the genetic architecture of complex traits, 
we clearly observe a shift to a need in high-throughput 
phenotyping for crop improvement [42].

X-ray computed tomography (CT) is a non-destruc-
tive imaging technique based on computer-processed 
X-rays to acquire tomographic slice images of the 
scanned sample and generate a 3D reconstruction 
[34]. Used at first for medical purposes, X-ray CT has 
been lately applied in various agricultural products in 
particular to evaluate internal quality [43], especially 
in fruits and vegetables. In apples, X-ray CT was used 
to evaluate the density and the water content under 
varying moisture conditions [44], while in pears this 
technology was used to study the core breakdown 
development [45]. This method was also used in nuts 
and few works are reported, such as the detection of 
pinhole insect damage in almonds [46], the segmenta-
tion and classification in hazelnuts [47] and the behav-
iour study of fourth-instar weevil in pecan nuts [48]. In 
grapevine, a recent study aimed to characterize inflo-
rescence architecture using X-rays [49]. The authors 
found correlations between 24 morphological traits 
among 392 samples of 10 wild Vitis species. They were 
able then to perform a multivariate discriminant analy-
sis to classify the different species.

However, there is not much work showing the appli-
cation of such methods on walnut. A technical report is 
available on 3D reconstruction of a walnut using X-ray 
CT [50] and also a data collection providing an image 
reconstruction pipeline [51]. However, in this study, the 
authors aimed to develop a method adapted for machine 
learning and they used 42 walnuts as models because 
they have variability, hard shell, softer kernel and empty 
space which are characteristics similar to the human 
head. Here, we present the development of a robust 
method that extracts for the first time complete morpho-
logical measurements of walnut using X-ray CT within 
a worldwide germplasm collection. This method offers 
the possibility to quantify several traits such as rugosity, 
sphericity and shape indexes previously really difficult to 
quantify but essential for French walnut industry. It also 
allows to evaluate the filling ratio which is the volume 
occupied by the kernel over the total nut volume, until 
now impossible to know without cracking the walnut. 
Our results will be helpful for new breeding programs 
by selecting the best accessions as genitors in order to 
release tomorrow’s varieties. Our method could be also 
used as a reference for walnut or other nut crop germ-
plasm investigation in any breeding program and could 
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pave the way for future application in industry, particu-
larly for internal quality control.

Methods
Plant materials and sample preparation
A panel of 161 unique J. regia accessions from world-
wide was analysed. All the accessions are maintained 
at the Prunus and Juglans Genetic Resources Center 
and located in the Fruit Experimental Unit of INRAE 
in Toulenne (latitude 44°34′37.442′′N – longitude 
0°16′51.48′′W), near Bordeaux, France (Additional 
file 1). The panel choice was made thanks to a previous 
work based on genetic diversity and phenotypic variation 
results [52].

In-shell walnut sampling was performed during harvest 
season in September 2018 and walnuts were dried fol-
lowing classical French industrial recommendations, for 
2 days at 25 °C using a food dryer, and then stored until 
analyses in a cold room set to 2  °C. For each accession, 
a selection of 50 walnuts was performed based on their 
sanitary state and sent to the GEVES laboratory (Beau-
couzé, France). All the samples were stored in an envi-
ronmentally controlled room at 10 °C and 47.75% (± 3.4) 
relative humidity until use. During the preparation, the 
walnuts were embedded in a floral foam sample holder 
(9 length × 8 width × 21 cm height) to keep the samples 
from any abrupt or slight movement during the scanning 
process in order to avoid producing distorted images. 
The floral foam was chosen based on preliminary trials 
on different low-density materials in order to observe the 
level of attenuation of the X-rays passing through these 
materials.

The walnuts were scanned in batches, knowing that, 
the sample size was not fixed due to the huge variation 
between the walnuts in size and the limited scanning 
scope of the detector. The sample size ranged from 5 up 
to 16 walnuts per scan.

X‑ray computed tomography imaging system 
specifications
X-ray CT scans were performed at the GEVES labora-
tory (Beaucouzé, France) using a 3D X-ray imaging sys-
tem, the NSI X-50 model from North Star Imaging©, Inc. 
(Minnesota, USA), which has a focus tube with focal spot 
up to 1 µ, a voltage range of 10–130 kV, an electric cur-
rent range of 50–300 µA, a flat-panel detector with a res-
olution of 256 × 256 and an adjustable rotary stage.

Image acquisition and reconstruction
Scans were obtained at constant electron acceleration 
energy of 120 kV, an electric current of 300 µA and a rota-
tion speed of 4.99 degrees/s resulting in a scan duration 
of 14 m34 s. A total of 2,164 images (or radiographs) in 

a.tif format were used for reconstructing each 3D image 
using North Star Imaging© reconstruction software 
EFX-CT (version 1.9.5.12) where the resulting 3D images 
were exported in a.nsihdr format with a resolution of 
992 × 992 × 2991 voxels (voxel size of 0.1 × 0.1 × 0.1 mm).

After 3D reconstruction, a multi-stage workflow was 
applied to all CT images in order to eventually achieve 
a quantitative study. This workflow consists of three key 
steps as illustrated in Fig. 1d-f: preprocessing steps, wal-
nuts individualization, and morphological traits extrac-
tion and quantification.

(i) The preprocessing: it begins with automatically load-
ing each image in our image collection I(1,x,y,z), ..., I(m,x,y,z) 
sequentially (where m is the number of images) and 
then denoising them in order to eliminate the noise and 
artifacts introduced by the X-ray system during image 
acquisition. We applied Gaussian filter, successive mor-
phological operations such as opening and closing, and 
also, we removed the unwanted small spots in the image. 
Subsequently, all the voxels which represent the sample 
holder are eliminated and only the voxels which repre-
sent the walnuts are preserved by discarding all the vox-
els below a certain threshold τ resulting in a binary mask 
M(x,y,z) according to the Eq. (1).

(ii) The individualization: the task of extracting the 
features of the walnuts and quantification is challenging 
especially if the walnuts are touching. To overcome this 
difficulty, all the walnuts in the images were separated 
and individualized (Fig.  2). The individualization step 
consists of multiple sub-steps such labelling, masking, 
convex hull estimation and exporting. Labelling is based 
on voxel connectivity in the whole 3D volume in order 
to determine the regions of interest which represent the 
walnuts by assigning identical values to all the voxels that 
belong to an individual walnut. Each walnut in the image 
was assigned a unique value starting from 1 to n consecu-
tively where n represents the total number of walnuts 
in the image. Then, labelling was followed by generating 
a set of masks using the determined regions of interest 
then finally, given the original input image and the gen-
erated set of masks K(x,y,z) as shown in the Eq.  (2), each 
walnut was exported in a separate sub-image i(x,y,z) in 
a.nsihdr format after estimating the convex hull of each 
walnut. Loading, preprocessing, labelling and convex hull 
calculation take 20 min for an average sized sample.

(iii) The morphological traits extraction and quanti-
fication: at this step, the principal components of the 

(1)M(x,y,z) =

{

0 if I(x,y,z) ≤ τ

1 if I(x,y,z) > τ

(2)f
(

I(x,y,z),K(x,y,z)

)

=
{

i(1,x,y,z), i(2,x,y,z) . . . i(n,x,y,z)
}
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walnuts whose morphological features were segmented 
using multi-level thresholding and watershed algorithm 
which is a transformation that treats the image like a top-
ographic map [53]. As a consequence, in our case, each 
main part of each walnut was segmented and was given 
a unique label as shown in Fig. 1f, considering the kernel, 
the shell, and the empty space between the kernel and the 
shell. The optimum threshold τ and greyscale ranges of 
the principal parts of the walnuts were estimated experi-
mentally based on the analysis of the histogram, using K 
Nearest Neighbor clustering method, that corresponds to 
the distribution of the intensities of the images (Fig.  3). 
Cropping and exporting take 1m30s/walnut. An addi-
tional movie file shows this in more detail (Additional 
file 2).

A fully automated in-house image processing pipeline 
was developed using the Thermo Scientific Avizo© soft-
ware V9.0.0 built-in functions, the MATLAB© version 

7.7.0 R2008b image processing toolbox [54] from The 
MathWorks©, Inc. (Massachusetts, USA), the TCL 
scripting language and Spyder Python IDE. To use this 
pipeline, walnuts that have no damage on the shell are 
required.

Measurements of a total of 14 morphological and 
shape descriptors were obtained: the nut length, the nut 
face diameter, the nut profile diameter, the nut volume, 
the nut shape VA3D, the nut Feret shape 3D (defined by 
D/d where d is the minimum Feret diameter and D is the 
maximum Feret diameter in the orthogonal direction, 
so 90° from the minimum Feret diameter; the maximum 
Feret diameter is the maximum diameter of an object 
as if it were freely rotating in three dimensions using a 
caliper [55]), the nut surface area, the shell volume, shell 
thickness, the kernel volume, the kernel filling ratio, and 
the empty space volume (Table  1). Quantification takes 
2 min/walnut.

Fig. 1  X-ray CT workflow of walnut measurements. a Preparation of walnut samples using floral foam (12 walnuts/batch in average), b Acquisition 
of X-ray CT images with right images of 2D slices, c 3D reconstruction, d Preprocessing with right image showing noise and artifacts that have to be 
removed, e Individualization of each walnut of the batch and f XY, YZ, ZX segmentation and labelling of a walnut leading to segmentation of each 
different part, with the shell in red, the kernel in green and the empty space in blue
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In addition, 2 supplementary traits, the nut sphericity 
(close to roundness) (3) and the shell rugosity (or sur-
face roughness) (4) indexes, were measured using a non-
standard calculation since they are not supported by the 
Avizo© software:

where Vn is the nut volume and A is its surface area. 
The sphericity of a sphere is 1 and any object which is not 
a sphere will have sphericity less than 1. The nut shape 
VA3D is defined by A3

36πVn
2.

Experiments were run on a workstation equipped with 
an Intel® Xeon® dual-core processor running at 3  GHz 
using 64  MB of RAM and running Windows® version 
10. The dataset was assessed using R software [56] with 
the package “tidyverse” [57]. Pearson correlation matri-
ces were performed using the package “corrplot” [58] and 
Principal Component Analysis (PCA) using the package 
“FactoMineR” [59].

Results
Building a workflow for assessing phenotypic variation 
of the germplasm collection from CT images and 3D 
processing
The X-ray CT imaging workflow permitted to charac-
terize the INRAE germplasm collection for 14 traits 
whose descriptive statistics (mean, standard deviation, 

(3)Nut Sphericity =
π

1
3 (6Vn)

2
3

A

(4)Shell Rugosity =
A

3
√
36πVn

2

Fig. 2  Separation and individualization of walnuts

Fig. 3  Greyscale histogram analysis. a Example of a 2D slice, b the corresponding histogram and c a bar that visualizes an approximate percentage 
of pixels in each cluster
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minimum and maximum) are given in Table 2. The col-
lection exhibits high phenotypic variation in morphol-
ogy-related traits, particularly for Nut Volume which 
ranged from approx. 10,000 for ‘UK 56–12′ to more 

than 42,000  mm3 for ‘Carmelo’ (Additional file  3). We 
found between the minimum and the maximum a fac-
tor of 1.8 for Nut Length, 1.6 for Nut Face and Nut Pro-
file Diameters, and 2.0 for Shell Thickness. Globally, the 
Kernel Filling Ratio is low, ranging from approx. 21 to 
37%, and the Nut Sphericity has a low variation, from 
0.84 to 0.93.

Using Pearson correlation coefficient, we found unsur-
prisingly significant high positive correlations (p value 
0.001) between all the morphometric traits: Nut Face/
Profile Diameters, Nut Length, Nut Surface Area, Nut/
Shell/Kernel/Empty Space Volumes (Fig.  4). We can 
observe that Nut Length is positively correlated with 
Nut Face and Profile Diameters (0.67 and 0.64, respec-
tively), meaning that the longer the walnut is, the larger 
the diameter is. Then, Nut Volume is unsurprisingly 
positively correlated with all three previous traits (Nut 
Length 0.80, Nut Face Diameter 0.91 and Nut Profile 
Diameter 0.94), since the variation of the volume of an 
object depends on those three dimensions. Nut Surface 
Area is also positively correlated with all volumes-related 
traits (from 0.85 to 0.99). We also observed significant 
moderate positive correlations (p value 0.001) between 
all those morphometric traits (except Kernel Volume), 
and Shell Rugosity and Nut Shape VA3D (from 0.30 to 
0.50), indicating that the bigger the fruit is, the rougher 
the shell is. Those morphometric traits are significantly 
negatively correlated (p value 0.001) with Nut Spheric-
ity and Kernel Filling Ratio. This means that a big fruit 
is less spherical and less filled by the kernel. Finally, Nut 

Table 1  Walnut morphological traits measured by the workflow

Morphological trait Symbol Description Unit

Nut

 Nut length L The largest length of the nut from the base to the end mm

 Nut face diameter F The largest longitudinal section of the nut through suture mm

 Nut profile diameter P The largest longitudinal section of the nut perpendicular to suture mm

 Nut volume Vn Total volume of the nut, Vn = Vs + Vk + Ve mm3

 Nut shape VA3D S1 Shape factor of the nut –

 Nut feret shape 3D S2 Feret shape factor of the nut –

 Nut surface area A Surface area of the nut mm2

 Nut sphericity Ψ Index of nut roundness –

Shell

 Shell volume Vs Volume of the shell mm3

 Shell thickness T Thickness of the shell mm

 Shell rugosity Ω Index of shell surface roughness –

Kernel

 Kernel volume Vk Volume of the kernel mm3

 Kernel filling ratio R Ratio of the kernel volume Vk to the total volume of the nut Vn %

Empty Space

 Empty space volume Ve Volume of the empty space mm3

Table 2  Descriptive statistics of  walnut morphological 
traits

a  SD is the abbreviation for standard deviation

Morphological trait Unit Mean ± SDa Range

Nut

 Nut length mm 38.39 ± 2.18 28.57–51.43

 Nut face diameter mm 32.27 ± 1.70 25.99–40.75

 Nut profile diam-
eter

mm 33.29 ± 1.70 27.06–42.84

 Nut volume mm3 19,400.02 ± 2669.03 10,382.05–42,813.08

 Nut shape VA3D – 1.47 ± 0.08 1.24–1.69

 Nut feret shape 3D – 1.25 ± 0.05 1.12–1.48

 Nut surface area mm2 4019.53 ± 401.91 2622.59–7093.53

 Nut sphericity – 0.88 ± 0.02 0.84–0.93

Shell

 Shell volume mm3 4076.78 ± 595.05 2390.66–9051.88

 Shell thickness mm 1.03 ± 0.12 0.73–1.49

 Shell rugosity – 1.14 ± 0.02 1.07–1.19

Kernel

 Kernel volume mm3 5723.89 ± 1039.03 3408.85–9548.93

 Kernel filling ratio % 30.02 ± 3.55 20.66–37.42

Empty space

 Empty space 
volume

mm3 9599.35 ± 1719.56 4536.51–24,212.21
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Sphericity is perfectly negatively correlated (p value 
0.001) with Shell Rugosity and Nut Shape VA3D show-
ing that the closer the fruit gets to a spherical shape, the 
smoother the shell is.

The X‑ray CT method for the selection of superior 
genotypes
In French walnut industry, both producers and consum-
ers have particular expectations. For example, they would 
prefer large round-shaped walnuts, easy to crack and 
having a high kernel filling ratio. A Principal Component 
Analysis using the dataset obtained permitted us to select 
interesting genotypes for the previous important traits 
(Fig. 5).

The first two dimensions of the PCA explain 75.5% 
of the total variance (Fig.  5b). The dimension 1 corre-
sponds to the morphometric traits (Nut Length, Nut 
Face Diameter, Nut Profile Diameter), the volumes (Nut 
Volume, Shell Volume, Kernel Volume, Empty Space 

Volume) and the Nut Surface Area (Fig. 5a and d). The 
dimension 2 is linked to the Nut Shape VA3D, the Nut 
Sphericity and the Shell Rugosity (Fig. 5a, b). Unfortu-
nately, the Kernel Filling Ratio and the Shell Thickness 
are both traits badly represented by the PCA (Fig. 5). By 
visualizing the scatterplot of the individuals, it is now 
easy to select superior genotypes for most of the traits 
(Fig. 5c). For example, ‘Carmelo’ (131) and ‘Germisara’ 
(135) are the two accessions giving the biggest walnuts, 
and ‘Milotaï n°10′ (113) and ‘Lozeronne n°1′ (7) are the 
two accessions giving the more round-shaped walnuts.

Since the Shell Thickness and the Kernel Filling Ratio 
are not well represented by the PCA, we also looked at 
the ten superior genotypes for both traits (Table 3).

‘Lozeronne n°1′, previously identified as highly 
round-shaped, gives walnuts with a thin shell, more 
easily cracked, but, this accession is also one of those 
that gives the smallest walnuts. The two Iranian acces-
sions ‘IR 13–1′ and ‘IR 100–2′ are among those having 

Fig. 4  Pearson correlation matrix for walnut morphological traits
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the highest kernel/nut ratio. In our panel, although we 
have a large diversity, we do not find the optimal acces-
sion for all the traits, but we can identify the best for 
each trait with this technique.

Discussion
Primarily developed for medical purposes, X-ray CT 
is now widely applied in food science, for instance to 
track the microstructural evolution of dairy products 
or to quantify salt concentrations in pork meat [60]. An 
overview of applications related to various food prod-
ucts showed the use of X-ray CT in chestnut for post-
harvest assessment of internal decay and in pecan nuts 

for components screening [61–63]. We showed for the 
first time that X-ray CT is a method of choice also for 
walnut germplasm analysis of morphological traits. We 
obtained quantitative data of high accuracy on 14 traits 
including volumes and shell thickness which are classi-
cally obtained by cracking the nuts. The obtained dataset 
includes information that is crucial for the INRAE wal-
nut germplasm collection, allowing a precise and relevant 
characterization of the nuts of each accession. It will help 
to select superior genitors for a breeding program, so that 
we can hope to combine many favourable traits in a new 
variety.

Fig. 5  Principal Component Analysis using the 161 walnut accessions and the 14 traits quantified using the X-ray CT method. a PCA correlation 
circle of the 14 variables (dimensions 1 and 2), b Scree plot of the percentage of variances explained by the first ten dimensions, c PCA scatterplot 
of the 161 accessions (dimensions 1 and 2), d Correlation plot of the 14 variables (dimensions 1 and 2). For a and c plots, color gradient indicates the 
quality of the representation of each variable given by the squared cosines cos2
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This method is suitable for all types of walnuts, 
regardless of size and shape. However, the walnuts ana-
lysed should not have shell damaged, as, in this case, it 
is difficult to extract the walnut features with the algo-
rithm developed in our study. The observations show 
that the shell and the empty space inside those walnuts 
were incorrectly segmented. The measurements of such 
walnuts were totally excluded from the results. For 
future work, it is recommended to discard the damaged 
walnuts during the sample preparation step, before 
performing CT scanning in order to avoid any inac-
curate calculations. One beneficial direction could be 
increasing the robustness of the pipeline by designing 
an artificial intelligence-based task for automatic detec-
tion of the walnuts with notably broken and/or dam-
aged shells, and eliminating them before morphological 
traits extraction and quantification step.

We demonstrate that this method presents numerous 
advantages compared to classical morphological evalu-
ation, mainly the accuracy of measurement and access 
to several measures without cracking. For all these rea-
sons, the development of this technology for research 
scale but also for the industry could be very useful in 

the future. However, the cost of this technology can 
constitute a limitation of its use but this method will 
save time for any lab or industry operator willing to use 
X-ray CT on walnuts and can be easily transferable to 
other nuts species. For instance, with the addition of 
deep learning methods, we can imagine such an appli-
cation for food security and commercial frauds pur-
poses, in place of molecular biology authentication.

For nuts, it is economically important to know from 
which cultivar they come from. For French walnut indus-
try, the fruits of the most produced cultivar ‘Franquette’, 
old cultivar representing 70% of the orchard surfaces, 
can be distinguished from those of ‘Fernor’, a cultivar 
released in 1995 and sold at a higher price. Based on our 
results from 50 walnuts, the value of the nut Feret Shape 
for ‘Franquette’ is between 1.380 and 1.500 whereas the 
value for ‘Fernor’ is between 1.210 and 1.304, considering 
the standard deviation. The Feret shape is clearly a pow-
erful descriptor to discriminate two cultivars and estab-
lish genetic origin, since DNA isolation is often a difficult 
task on nut materials due to the high lipid content of ker-
nels [64].

Conclusions
We presented a method for better resolution phenotyp-
ing of walnuts based on X-ray CT compared to classical 
measurement methods. The data will be used for INRAE 
walnut germplasm management, but also for GWAS pur-
poses and for selecting superior genotypes in a future 
breeding program. This method could be easily adapted 
for any nut species and potentially moved towards the 
identification of the first steps of infection by pathogens.
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