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Abstract
Many systems in life sciences have been modeled by reaction–diffusion equations. How-
ever, under some circumstances, these biological systems may experience instantaneous 
and periodic perturbations (e.g. harvest, birth, release, fire events, etc) such that an appro-
priate formalism like impulsive reaction–diffusion equations is necessary to analyze them. 
While several works tackled the issue of traveling waves for monotone reaction–diffusion 
equations and the computation of spreading speeds, very little has been done in the case 
of monotone impulsive reaction–diffusion equations. Based on vector-valued recursion 
equations theory, we aim to present in this paper results that address two main issues of 
monotone impulsive reaction–diffusion equations. Our first result deals with the existence 
of traveling waves for monotone systems of impulsive reaction–diffusion equations. Our 
second result tackles the computation of spreading speeds for monotone systems of impul-
sive reaction–diffusion equations. We apply our methodology to a planar system of impul-
sive reaction–diffusion equations that models tree–grass interactions in fire-prone savan-
nas. Numerical simulations, including numerical approximations of spreading speeds, are 
finally provided in order to illustrate our theoretical results and support the discussion.
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Introduction

In nature, all organisms migrate or disperse. This can take diverse forms such as walk-
ing, swimming, flying, or being transported by wind or flowing water, see Shigesada and 
Kawasaki [44]. Such a migration, or dispersion, can be to some extent related to human 
activities that bring drastic changes in the global environment. According to [44], disper-
sive movements become noticeable when an offspring or a seed leaves its natal site, or 
when an organism’s habitat deteriorates from overcrowding. The spatially explicit ecologi-
cal theories of such events have been made possible thanks to successful development of 
mathematical models that have played a central role in the description of migrations, see 
Friedman [18], Shigesada and Kawasaki [44], Okubo and Levin [37], Cantrell and Cosner 
[12], Volpert [52], Logan [33, 34], Perthame [39], and the references therein.

Mathematical literature dealing with the species’ spread mostly relies on reaction–dif-
fusion equations that assume that the dispersal is governed by random diffusion and that it, 
along with the growth processes, take place continuously in time and space, (Cantrell and 
Cosner [12], Lewis and Li [27]). This approach has had a remarkable success in explaining 
the rates at which species have invaded large open environments, see Shigesada and Kawa-
saki [44], Okubo and Levin [37], Cantrell and Cosner [12], Lewis and Li [27], Volpert 
[52], Logan [33, 34] and Perthame [39]. However, it is well-known that ecological spe-
cies may experience several phenomena that, depending on circumstances, can be either 
time-continuous (growth, death, birth, release, etc.), or time-discrete (harvest, birth, death, 
release, etc.), see also Ma and Li [35], Dumont and Tchuenche [13], Yatat Djeumen et al. 
[60], Yatat Djeumen [58] and the references therein. In the case of time-discrete perturba-
tions, whose duration is negligible in comparison with the duration of the process, it is nat-
ural to assume that these perturbations act instantaneously; that is, in the form of impulses 
(Lakshmikantham et al. [26], Bainov and Simeonov [6]). Hence, there is a need to create 
a meaningful mathematical framework to analyze models leading to, say, impulsive reac-
tion–diffusion equations.

There are several works that considered the impact of impulsive perturbations on the 
dynamics of a system, both in the space-implicit and space-explicit case (see also Sects. 
1.1 and 1.2). Very often, impulsive perturbations in space-implicit mathematical models 
result in the occurrence of periodic solutions in the model (e.g. Ma and Li [35], Yatat Djeu-
men et al. [60] and references therein). For space-explicit impulsive mathematical models 
in bounded domains, in addition to periodic solutions that may occur, the issue of minimal 
domain has been also addressed (e.g. Lewis and Li [27], Yatat Djeumen and Dumont [61]). 
On the other hand, in unbounded domains the problems of the existence of traveling wave 
solutions and the computation of the spreading speeds are rarely addressed (see below).

The study of traveling waves, as well as the computation of spreading speeds for mono-
tone systems of reaction–diffusion equations, have been done by several authors (e.g. 
Weinberger et al. [56], Weinberger [54, 55], Lewis et al. [28], Li et al. [29], Volpert [52], 
Yatat Djeumen et al. [59] and references therein). However, little is known about the case 
of impulsive reaction–diffusion equations (see e.g. Yatat Djeumen and Dumont [61], 
Fazly et al. [15]). For a scalar impulsive reaction–diffusion equation, Yatat Djeumen and 
Dumont [61] considered the Fisher-Kolmogorov-Petrowsky-Piscounov (FKPP) equation 
and obtained conditions under which an invasive traveling wave, connecting the extinction 
steady state and the positive steady state may exist (see also Lewis and Li [27]). To the best 
of our knowledge, the existence of traveling waves for system of impulsive reaction–diffu-
sion equation was studied only in Huang et al. [23], and only in a particular case. Precisely, 
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the authors considered a stage-structured population model, were only one stage (or state 
variable) experiences a spatial diffusion, while the others are stationary. This assumption 
leads to a partially degenerate system of impulsive reaction–diffusion equations. Moreover, 
they also assumed the reaction term for the diffusing state variable to be linear.

In the following, we provide a brief literature review of both space-implicit and space-
explicit impulsive mathematical models.

Space‑Implicit Impulsive Models

Several types of perturbations, or instantaneous phenomena, have been considered as pulse 
events in mathematical models. These include events such as birth, vaccination, release, 
harvest, or fire events : see Mailleret and Lemesle [36] where various examples are given 
and references therein; see also White et al. [57], Dumont and Tchuenche [13], Strugarek 
et  al. [45], Bliman et  al. [9], Anguelov et  al. [4], Liu et  al. [31], Zhao et  al. [65], Yatat 
Djeumen and Dumont [61], Yatat Djeumen et al. [63] and references therein. The resulting 
impulsive models were rigorously analyzed by the well-known theory due to Lakshmikan-
tham et al. [26], Bainov and Simeonov [6] and [5], or Lakmeche and Arino [25]. We note 
that, by using a suitable comparison argument, the standard theory of ordinary differential 
equations (Hale [19, 20]) can also be used.

Modelling Releases as Pulse Events

In the framework of biological control of pests or vectors of infectious diseases, the sterile 
insect technique (SIT) is one of the promising ones. SIT control generally consists in mas-
sive releases of sterile insects in the targeted area in order to eliminate, or at least to lower 
the pest population under a certain threshold (Anguelov et al. [4]). Generally, SIT releases 
are done periodically. That is why several authors modelled the release process as a peri-
odic impulsive event, while keeping the continuous-time differential equation framework 
for the birth, growth, death, or mating process (e.g. White et al. [57], Dumont and Tch-
uenche [13], Strugarek et al. [45], Bliman et al. [9] and the references therein). Based on 
the qualitative analysis of their impulsive models, the authors were able to derive meaning-
ful relations between the period and the size of the releases in order to achieve the elimina-
tion of the vector or pest population in the long term.

In the context of interacting species such as prey-predator interactions, there exist 
mathematical models that tackled periodic releases of one of the interacting species (e.g. 
prey only, predator only). They considered periodic impulses as to model periodic release 
events. The authors found relations involving the pulse time period and the amount of 
released species that precluded extinction, in the long term dynamics, of interacting popu-
lations (see for instance Zhang et al. [64], Zhao et al. [65]).

Modelling Fires as Pulse Events in Tree–Grass Interactions in Fire‑prone Savannas

Maintaining the balance between the grass and the trees in savanna is of utmost importance 
for both human and animal populations living in such areas. The problem is that in typi-
cal circumstances the trees encroach on the grassland making the environment inhabitable 
for many species. It turns out that periodic fires, either natural or man-made, are one of 
the way to maintain an acceptable equilibrium. Thus, several mathematical models have 
been developed to study tree–grass interactions in fire-prone savannas (see the review of 
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Yatat Djeumen et al. [63]). It is well-known that in such savannas, grass biomass that dries 
up during dry seasons is used as fuel for fires (see op. cit. and references therein). Hence, 
low grass biomass will result in fires of lower intensity. We emphasize that here we are not 
dealing with ‘forest fires’, like that usually occurring in Europe, North America, or, some-
times, in Australia, but only with grass-induced fires. Thus, in particular, a dense tree pop-
ulation results in a lower fire intensity and consequently, in a lower tree destruction. Some 
of the models take into account fire as a time-continuous forcing in tree–grass interactions. 
However, as pointed out in Yatat Djeumen et al. [63], it is questionable whether it makes 
sense to model fire as a permanent forcing that continuously removes a fraction of the fire 
sensitive biomass. Indeed, since several months and even years can pass between two suc-
cessive fires, they can be rather considered as instantaneous perturbations of the savanna 
ecosystem (see also Yatat Djeumen [58], Yatat Djeumen et  al. [60], Tchuinté et  al. [47, 
48]). Several recent papers have proposed to model fires either as stochastic events, while 
keeping the continuous-time differential equation framework (Baudena et  al. [7], Beckk-
age et al. [8], Synodinos et al. [46]), or by using a time-discrete model (Higgins et al. [22], 
Accatino et al. [1, 2], Klimasara and Tyran-Kamińska [24]). However, a drawback of many 
of the aforementioned recent time-discrete stochastic models (Higgins et al. [22], Baudena 
et  al. [7], Beckage et  al. [8]) is that they hardly lend themselves to analytical treatment. 
Thus, on the basis of recent publications (see for instance Yatat Djeumen et al. [63] and the 
references therein), we consider fires as impulsive time-periodic events. While certainly an 
approximation, such an approach results in impulsive differential equation models which 
are a good compromise combining the impact of time-discrete fires with a time-continuous 
process of the vegetation growth. As such, they are analytically tractable, while at the same 
time remain reasonably realistic.

Now we recall the minimalistic tree–grass interactions model with pulse fires that will 
be used later in the paper (see Sect. 3). We assume that the trees and grass form an amen-
salistic system in which grass is harmed by trees (which, for instance, block the sunlight) 
but itself does not affect them. The fires occur periodically every 𝜏 units of time. We denote 
by Tn (resp. Gn ) the tree (resp. grass) biomass during the inter-fire season number n ∈ ℕ

∗ , 
where ℕ∗ = {1, 2,…} . Following the formalism of the recursion equations (see Weinberger 
et al. [56], Yatat Djeumen and Dumont [61]), the resulting minimalistic system of equa-
tions governing the trees–grass interactions with periodic fires is given by (see also Yatat 
Djeumen et al. [63] and references therein)

with non negative initial conditions (T1(0),G1(0)).
Here, between two successive fires; that is, in the inter-fire season n, the dynamics of 

both the tree and grass biomasses is modelled by the first two equations of system (1), 
where �G(�) and �T (�) denote the unrestricted rates of growth of the grass and the tree 

(1)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dTn

dt
= 𝛾T (�)

�
1 −

Tn

KT (�)

�
Tn − 𝛿TTn,

dGn

dt
= 𝛾G(�)

�
1 −

Gn

KG(�)

�
Gn − 𝛿GGn − 𝜂TGTnGn,

0 < t ≤ 𝜏,

Tn+1(0) = [1 − 𝜓(Tn(𝜏))wG(Gn(𝜏))]Tn(𝜏),

Gn+1(0) = (1 − 𝜂)Gn(𝜏),
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biomass, respectively, while KG(�) and KT (�) are the carrying capacities for grass and 
the trees, respectively. All these functions are assumed to be increasing and bounded func-
tions of the water availability � which is supposed to be known: see [62] for further details 
about the definition of the growth rates and the carrying capacities with respect to � . Fur-
ther, �G and �T denote, respectively, the rates of the grass and the tree biomass loss due to 
natural causes, herbivores (grazing and/or browsing) or human actions, while �TG denotes 
rate of the loss of the grass biomass due to the existence of trees per units of the biomasses.

At the end of the inter-fire season a fire occurs and impacts both the tree and grass 
biomasses. Thus there is an update of the biomasses at the beginning of the next inter-fire 
season. This event is modelled by the last two equations of system (1). We model the fire 
intensity, denoted by wG, using the Holling III functional response (see (66)) ; that is, we 
assume that wG is an increasing function tending to 1 as the argument increases and satisfy-
ing wG(0) = w�

G
(0) = 0 . This reflects the fact that the fire becomes significant only when 

the grass biomass becomes sufficiently large. Impulsive fire-induced tree/shrub mortality, 
denoted by � , is assumed to be a positive, decreasing, and nonlinear function of the tree 
biomass (see (67)). Indeed, fires affect differently large and small trees since fires with high 
intensity (flames more than ca. 2 metres high) cause greater mortality of shrubs and topkill 
of trees while fires of lower intensity (flames less than ca. 2 metres high) kill only shrubs 
and subshrubs (see also [62, 63] and references therein). Further, � is the specific loss of 
the grass biomass due to the fire. To avoid the extinction of either Tn, or Gn , we assume that 
(see also Yatat Djeumen et al. [63])

System (1) will be studied in Sect. 3.
Readers are referred to Yatat Djeumen et al. [63] for the derivation and analysis of sys-

tem (1) following the formalism of Lakshmikantham et al. [26].

Space‑Explicit Impulsive Models

The formulation of space-explicit impulsive models generally consists in the addition of 
local or non-local spatial operators to a temporal impulsive model. In Akhmet et al. [3], 
Li et al. [30] and Liu et al. [32], the authors considered impulsive reaction–diffusion equa-
tions to model spatio-temporal dynamics of ecological species with prey-predator inter-
actions and experiencing pulse and periodic perturbations like harvest, release, etc. The 
spatial movement of species was modelled by the Laplace operator with a constant diffu-
sion rate. Qualitative analysis of these models was done by using the theory of sectorial 
operators (Henry [21], Rogovchenko [41, 42], Li et  al. [30]) and comparison arguments 
(Rogovchenko [40], Walter [53], Liu et  al. [32], Akhmet et  al. [3]). More precisely, the 
authors obtained some conditions involving the pulse time period that ensured the perma-
nence of the predator-prey system and the existence of a unique globally stable periodic 
solution (Akhmet et al. [3], Li et al. [30], Liu et al. [32]). Vasilyeva et al. [50] dealt with the 
question of persistence versus extinction in a single population model featuring a non-local 
impulsive reaction–advection–diffusion model for an insect population. The non-local term 
was used to describe the dispersal of the adult insects by flight. The authors employed a 
dispersal kernel that gave the probability density function of the signed dispersal distances.

We note that the study of the species spread and their wave speeds, when they experi-
ence impulsive and periodic perturbations, in the case of scalar equations was done in 
Vasilyeva et al. [50], Lewis and Li [27], or Yatat Djeumen and Dumont [61]. However, 

(2)𝛾G(�) − 𝛿G > 0 and 𝛾T (�) − 𝛿T > 0.
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until recently, systems of impulsive reaction–diffusion have not received much atten-
tion (Huang et al. [23] and Fazly et al. [15]). We aim to address this question here by 
extending the minimalistic trees–grass interactions model (1). To this end, we assume 
that both the woody and herbaceous plants can propagate in space through diffusion; see 
Yatat Djeumen et al. [59] for a discussion of the construction of the trees–grass interac-
tions partial differential equations models. The resulting minimalistic system of impul-
sive reaction–diffusion equations is then given by

with given non negative initial conditions

In system (3), dT (�) and dG(�) denote the woody, respectively, herbaceous biomass spa-
tial vegetative diffusion coefficient, while the remaining coefficients and assumptions on 
them are as in (1).

The aim of this paper is to give some insights into the existence of traveling wave 
solutions for monotone systems of impulsive reaction–diffusion equations as well as the 
computation of their spreading speeds. Precisely, we use the vector-valued recursion 
theory proposed by Weinberger et  al. [56] (see also Weinberger [54, 55], Lewis et  al. 
[28], Li et al. [29], Lewis and Li [27], and references therein) to develop a framework in 
which we are able to deal with the existence of traveling wave solutions for monotone 
systems of impulsive reaction–diffusion equations and the computation of spreading 
speeds. After this long introduction, Sect.  2 presents the framework for the computa-
tion of the spreading speeds and the existence of traveling wave solutions for monotone 
systems of impulsive reaction–diffusion equations. Section  3 deals with the applica-
tion of this framework to a system of two impulsive reaction–diffusion equations that 
models tree–grass interactions in fire-prone savannas. We also provide some numerical 
illustrations of our theoretical results and, in particular, we show an approximation of 
the spreading speeds. The paper ends with a conclusion, where further extensions are 
discussed.

Preliminaries and Hypotheses

In this section we introduce the basic notation, definition and results that allow us to 
deal with the issues of the existence of traveling wave solutions and/or computation of 
the spreading speeds for impulsive reaction–diffusion (IRD) systems. Let us denote:

(3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕Tn

𝜕t
= dT (�)

𝜕2Tn

𝜕x2
+ 𝛾T (�)

�
1 −

Tn

KT (�)

�
Tn − 𝛿TTn,

𝜕Gn

𝜕t
= dG(�)

𝜕2Gn

𝜕x2
+ 𝛾G(�)

�
1 −

Gn

KG(�)

�
Gn − 𝛿GGn − 𝜂TGTnGn,

0 < t ≤ 𝜏, x ∈ ℝ,

Tn+1(x, 0) = [1 − 𝜓(Tn(x, 𝜏))wG(Gn(x, 𝜏))]Tn(x, 𝜏),

Gn+1(x, 0) = (1 − 𝜂)Gn(x, 𝜏),

(4)(T1(x, 0),G1(x, 0)).
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� = (u1, u2, ..., uN) , � = (F1,F2, ...,FN) , � = (H1,H2, ...,HN) , D = diag(d1, d2, ..., dN) 

with di > 0 , for i = 1, 2, ...,N and �
2�

�x2
∶=

(
�2u1

�x2
,
�2u2

�x2
, ...,

�2uN

�x2

)
 . In the case when there 

are no impulsive perturbations, the reaction–diffusion system is written as

together with sufficiently smooth and nonnegative initial condition

For �-periodic impulsive perturbations, we consider the whole time interval, [0,+∞) , 
as a succession of inter-perturbation seasons of length � . Let us denote the state vari-
ables at time t ∈ [0, �] and location x during the inter-perturbation season n ∈ ℕ

∗ as 
�n(t, x) = (un,1, un,2, ..., un,N) . Following the recursion formalism (Weinberger [54, 55], 
Weinberger et al. [56], Lewis and Li [27], Vasilyeva et al. [50], Fazly et al. [16], Huang 
et al. [23], Yatat Djeumen and Dumont [61]), the impulsive reaction–diffusion system is 
written as

together with the updating condition

and with sufficiently smooth and nonnegative initial data �1(x, 0) = �0(x) . We note that (3) 
is a special case of (8).

Our work is based on the results of Li et al. [29] (see also Weinberger et al. [56]) concern-
ing the existence of monostable traveling wave solutions and the computation of spreading 
speeds for systems of reaction–diffusion equations. We note that they focused on the case, 
when � was just the time-�-map operator solution, Q� , of system (7). Since, however, the 
reduction of an IRD system to the recursion form does not depend on the updating condi-
tion, the results of op. cit. on the existence of traveling waves for recursions and the spreading 
speeds determined by them can be used verbatim to the recursion obtained from (7)–(8). Thus 
we recall the relevant results from [29].

We first assume that � , � and the initial data are such that the IRD system (7)–(8) admits 
a unique nonnegative classical solution for each n ∈ ℕ

∗ (Zheng [66], Volpert [52], Logan [33, 
34], Perthame [39]).

We begin with some notation (see Weinberger et al. [56], Li et al. [29]). For two vector-
valued functions �(x) and �(x) , �(x) ≤ �(x) means that ui(x) ≤ vi(x) for all i = 1, 2, ...,N 
and x ∈ ℝ , max{�(x), �(x)} means the vector-valued function whose i th component at x 
is max{ui(x), vi(x)} , and lim supn→∞ �(n)(x) is the function whose i th component at x is 
lim supn→∞ u(n)(x) . We shall, moreover, use the usual symbol � ≫ � if ui(x) > vi(x) for all i 
and x. We use the notation 0 for the constant vector whose all components are 0. If 𝛽 ≫ � is a 
constant vector, we define the set of functions

Let Q� be the time-�-map operator solution of system (7). Then (8) can be written as

(5)𝜕�(x, t)

𝜕t
= D

𝜕2�(x, t)

𝜕x2
+ �(�(x, t)), t > 0, x ∈ ℝ,

(6)�(x, 0) = �0(x), x ∈ ℝ.

(7)
𝜕�n(x, t)

𝜕t
=D

𝜕2�n(x, t)

𝜕x2
+ �(�n(x, t)), 0 < t ≤ 𝜏, x ∈ ℝ,

(8)�n+1(x, 0) = �(�n(x, �))

C� ∶= {�(x) ∶ � is continuous and � ≤ �(x) ≤ �}.
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with the initial condition �0(x).
In the sequel, we recall the key assumptions of Li et  al. [29], related to the opera-

tor Q defined in (9). For a fixed y ∈ ℝ, the translation operator by y is defined by 
Ty[�](x) = �(x − y) , for all x ∈ ℝ.

Hypothesis 2.1 

 i. The operator Q is order preserving in the sense that if � and � are any two functions 
in C� with � ≥ � , then Q[�] ≥ Q[�] . In biological terms, the dynamics is cooperative.

 ii. Q[�] = � , there is a constant vector 𝛽 ≫ � such that Q[�] = � , and if �0 is any constant 
vector with �0 ≫ � , then the constant vector �n , obtained from the recursion (9), 
converges to � as n approaches infinity. This hypothesis, together with (i), imply that 
Q takes C� into itself, and that the equilibrium � attracts all initial functions in C� with 
uniformly positive components. There may also be other equilibria lying between � 
and the extinction equilibrium 0, in each of which at least one of the species is extinct.

 iii. Q is translation invariant. In biological terms this means that the habitat is homogene-
ous, so that the growth and migration properties are independent of location.

 iv. For any �, � ∈ C� and any fixed y, |Q[�](y) − Q[�](y)| is arbitrarily small, provided 
|�(x) − �(x)| is sufficiently small on a sufficiently long interval centered at y.

 v. Every sequence �n in C� has a subsequence �nl such that Q[�nl ] converges uniformly 
on every bounded set.

We are now in position to recall results of Li et al. [29] that deal with spreading speeds 
as well as traveling wave solutions for the IRD system (7)–(8), rewritten following the 
recursion formalism (9). In the sequel, we assume that Hypothesis 2.1. holds for the recur-
sion operator Q of system (9).

Following Li et al. [29] (see also Weinberger et al. [56]), we consider a continuous ℝN

-valued function �(x) with the properties

We let, for all fixed c ∈ ℝ , �0(c;s) = �(s) , and define the sequence �n(c;s) by the recursion

Li et  al. [29] showed that the sequence �n converges to a limit function �(c;s) such that 
�(c; ±∞) are equilibria of Q and �(c;∞) is independent of the initial function � . Following 
this, they defined the slowest spreading speed c∗ ≤ ∞ by the equation

The following result holds.

Theorem 1 [29, Theorem 2.1] There is an index j for which the following statement is true: 
Suppose that the initial function �0(x) is 0 for all sufficiently large x, and that there are 

(9)�n+1(x, 0) = �(Q� [�n(x, 0)]) =∶ Q[�n(x, 0)], n ≥ 1, x ∈ ℝ,

(10)
i. 𝜙(x) is non-increasing in x;

ii. 𝜙(x) = � for all x ≥ 0;

iii. � ≪ 𝜙(−∞) ≪ 𝛽.

(11)�n+1(c;s) = max{�(s),Q[�n(c;x)](s + c)}.

(12)c∗ = sup{c ∶ �(c;∞) = �}.
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positive constants 0 < 𝜌 ≤ 𝜎 < 1 such that � ≤ �0 ≤ �� for all x and �0 ≥ �� for all suffi-
ciently negative x. Then for any positive � the solution �n of recursion (9) has the properties

and

That is, the jth component spreads at a speed no higher than c∗ , and no component spreads 
at a lower speed.

In order to define the fastest speed c∗
f
 , we choose � with the properties (10), and let �n(x) 

be the solution of the recursion (9) with �0(x) = �(x) . Following Li et al. [29], we define the 
function

Li et  al. [29] showed that �(c;∞) is independent of the choice of the initial function � 
as long as � has the properties (10). We therefore can define the fastest spreading speed 
c∗
f
≥ c∗ by the formula

The following result holds.

Theorem 2 [29, Theorem 2.2] There is an index i for which the following statement is true: 
Suppose that the initial function �0(x) is 0 for all sufficiently large x, and that there are 
positive constants 0 < 𝜌 ≤ 𝜎 < 1 such that � ≤ �0 ≤ �� for all x and �0 ≥ �� for all suf-
ficiently negative x. Then for any positive � the solution �n of the recursion (9) has the 
properties

and

That is, the ith component spreads at a speed no less than c∗
f
 , and no component spreads at 

a higher speed.

Let �̂n, n ≥ 0, be the solution to the recursion

with �̂0(x) = �0(x) . Recall that a traveling wave of speed c is a solution of the recursion (9) 
which has the form �n(x, 0) = �(x − nc) with �(s) a function in C� ; that is, the solution at 

(13)lim
n→+∞

[
sup

x≥n(c∗+�)
{�n}j(x)

]
= 0

(14)lim
n→+∞

[
sup

x≤n(c∗−�)
{� − �n(x)}

]
= �.

�(c;x) = lim sup
n→+∞

�n(x + nc).

(15)c∗
f
= sup{c ∶ �(c;∞) ≠ �}.

(16)lim sup
n→+∞

[
inf

x≤n(c∗
f
−𝜀)

{�n}i(x)

]
> 0

(17)lim
n→+∞

[
sup

x≥n(c∗
f
+�)

�n(x)

]
= �.

(18)�̂n+1(x) = Q[�̂n(x)], n ≥ 1, x ∈ ℝ,
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time n + 1 is simply the translate by c of its value at n. Then such a traveling wave defines a 
traveling wave solution for (7)–(8) in the following sense. By (9) we have

and thus, by Hypothesis 2.1. (iii)., for n𝜏 ≤ t < (n + 1)𝜏 we have �n+1(x, t) = �1(x − nc, t) . 
We observe that since the model is translation invariant, we obtain a traveling wave for the 
system (7) without the updating conditions.

Using the definitions of c∗ and c∗
f
 , we have the following result that deals with the exist-

ence of traveling wave solutions for the IRD systems (7)–(8).

Theorem 3 [29, Theorem 3.1] If c ≥ c∗ , then there is a non-increasing traveling wave solu-
tion �(x − nc) of speed c with �(−∞) = � and �(+∞) an equilibrium other than �.

If there is a traveling wave �(x − nc) with �(−∞) = � such that for at least one compo-
nent i

then c ≥ c∗ . If this property is valid for all components of � , then c ≥ c∗
f
.

In practice, assumptions (iii), (iv). and (v) are typically satisfied for biologically reason-
able (impulsive) models. The most challenging assumptions for IRD systems (7)–(8) are (i) 
and (ii).

Application to a Minimalistic Trees–Grass Interactions IRD System

In this section, we consider the minimalistic tree–grass interactions IRD system (3)–(4). 
Using a similar normalization procedure to Yatat Djeumen et al. [59] (see also Appendix 
A), system (3)–(4) becomes

together with the updating conditions

and sufficiently smooth and nonnegative initial data U1(x, 0),V1(x, 0) . We are now look-
ing for traveling wave solutions as well as the spreading speeds involving semi-trivial 
steady states; that is, steady states where either Un = 0, or Vn = 0 but not simultaneously 
Un = 0 = Vn = 0.

Basic Properties of (19)–(20)

Let Cub(ℝ) be the Banach space of bounded, uniformly continuous function on ℝ and

�n(x, 0) = �̂n(x) = �(x − nc) = �0(x − nc)

lim inf
x→∞

Zi(x) = 0,

(19)

⎧
⎪⎨⎪⎩

𝜕Un

𝜕t
= Un(1 − Un) + du

𝜕2Un

𝜕x2
, 0 < t ≤ 𝜏, x ∈ ℝ,

𝜕Vn

𝜕t
= 𝜆Vn(1 − Vn − 𝛾Un) + dv

𝜕2Vn

𝜕x2
,

(20)
{

Un+1(x, 0) = [1 − wV (Vn(x, �))�(Un(x, �))]Un(x, �),

Vn+1(x, 0) = (1 − �)Vn(x, �),
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Cub(ℝ) and C2
b
(ℝ) are endowed with the following (sup) norms

and

C2
b
(ℝ) endowed with the norm ‖ ⋅ ‖C2

b
(ℝ) is a Banach space.

We recall that we assumed that wV was an increasing C1(ℝ) function such that for all 
V ∈ ℝ,

Similarly, � is a decreasing C1(ℝ) function such that for all U ∈ Cub(ℝ),

For simplicity we note (Un(x, 0),Vn(x, 0)) = (Un,0(x),Vn,0(x)). In the sequel, we first address 
the question of the existence and uniqueness of solutions of the reaction–diffusion (RD) 
system (19) in unbounded domains.

For fixed n ∈ ℕ
∗ , we set � = (w1,w2) ∶= (Un,Vn) . System (19) can be written as the 

abstract Cauchy problem

where in the Banach space B = Cub(ℝ) × Cub(ℝ) we have

For X ∈ {Cub(ℝ),C
2
b
(ℝ)} and (a, b) ∈ X × X we define

We shall consider (25) as a nonlinear perturbation of the linear part that, in this case, con-
sists of two uncoupled diffusion equations. Thus, the corresponding semigroup is the diag-
onal semigroup consisting of the Gauss semigroups

where, for d = du, dv and f ∈ X,

and

C2
b
(ℝ) ∶= {f ∈ Cub(ℝ) ∶ f �� ∈ Cub(ℝ)}.

(21)‖f‖Cub(ℝ)
= ‖f‖∞ = sup

x∈ℝ

�f (x)�

(22)‖f‖C2
b
(ℝ) = ‖f‖Cub(ℝ)

+ ‖f ��‖Cub(ℝ)
.

(23)wV (0) = 0, w�
V
(0) = 0, 0 ≤ wV (V) < 1.

(24)𝜓(0) > 0, 𝜓 �(0) < 0, 0 < 𝜓(U) ≤ 1.

(25)

{
d�

dt
+ A� = �(�),

�(0) = �0,

(26)

⎧⎪⎨⎪⎩

D(A) = C2
b
(ℝ) × C2

b
(ℝ),

a = diag(du, dv),

A� = −a���,

� ∶ D(A) → D(A),�(�) = (Un(1 − Un), �Vn(1 − Vn − �Un)).

‖(a, b)‖X×X = ‖a‖X + ‖b‖X .

(27)�(t)� = diag(Gdu
(t) ⋆ w1,Gdv

(t) ⋆ w2), t > 0, �(0)� = �,

(28)(Sd(t)f )(x) = [Gd ⋆ f ](x, t) =
1√
4𝜋dt

∫
ℝ

exp

�
−
(x − y)2

4dt

�
f (y)dy,
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Then, by e.g. [10, Section 7.3.10], the family {�(t)}t≥0 is a C0−semigroup of contractions 
(even analytic) on B,   with the generator (A,  D(A)). Furthermore, since � is a quadratic 
function, it is continuously Fréchet differentiable in B and therefore (25) has a unique 
local in time (defined on [0, tmax) ) classical solution, provided �(0) ∈ D(A) (due to the 
analyticity, there is a local classical solution with �(0) ∈ B on (0, tmax) , see e.g. [66, 
Theorem 2.3.5]).

Our problem is posed on the whole line and thus comparison theorems for the solutions 
are a little more delicate. Though in various forms they appear in many papers, see e.g. 
[17, 38, 49, 51] and references therein, a comprehensive proof of them, starting from the 
first principles, is difficult to find. Therefore, for pedagogical reasons as well as because we 
shall need some intermediate estimates later on, we decided to provide a simple proof for 
the problem at hand that uses the positivity of the semigroup {Sd(t)}t≥0 and the triangular 
structure of the nonlinearity in (19). In fact, the semigroup for the scalar problem,

where |c(x, t)| ≤ L on ℝ ×ℝ+ , is positive. Indeed, the equation can be re-written as

where C(x, t) = c(x, t) + L ≥ 0 and �(x, t) = eLt�(x, t) and the positivity of the semigroup 
solving (30) follows from the Dyson-Phillips expansion [14, Theorem III.1.10]. Then, con-
sidering two solutions u1 and u2 with u1(x, 0) ≤ u2(x, 0) to the scalar nonlinear problem

on a common interval of existence [0, t�] , where F is a differentiable function on ℝ ×ℝ+ , 
we find that z = u2 − u1 satisfies

where c = F�((1 − 𝜃)u1 + 𝜃u2), 0 < 𝜃 < 1, is bounded on ℝ × [0, t�] . By the above linear 
result, u2 − u1 = z ≥ 0 . Returning now to (19), we see that the first equation is the Fisher 
equation and functions identically equal to 0 and to 1 are its solutions defined globally 
in time. Thus for any 0 ≤ U(x, 0) ≤ 1 we obtain 0 ≤ U(x, t) ≤ 1 on [0, tmax) . Hence U is 
defined globally in t and satisfies 0 ≤ U(x, t) ≤ 1 for all (x, t) ∈ ℝ ×ℝ+ . Now, let V be the 
solution of the second equation in (19) on the maximum interval of existence [0, tmax),

with 0 ≤ V(x, 0) ≤ 1 . Since the function identically equal to zero solves the above equa-
tion, as before we get V(x, t) ≥ 0 on [0, tmax) as long as V(x, 0) ≥ 0 . But then, using 
V(1 − U − V) ≤ V(1 − V) on account of U ≥ 0 we see, by e.g. Picard iterates, that V is 
dominated by the solution of the Fisher equation with the same initial condition and so, in 
particular, by 1. This gives the global in time existence of V and the bound 0 ≤ V ≤ 1 , and 
hence global in time solvability of the system (19) with initial conditions between 0 and 1.

Gd(x, t) =
1√
4�dt

exp

�
−

x2

4dt

�
.

(29)
𝜙t =d𝜙xx + c(x, t)𝜙, x ∈ ℝ, t ≥ 0,

𝜙(x, 0) =�̊�(x),

(30)
𝛷t =d𝛷xx + C(x, t)𝛷, x ∈ ℝ, t ≥ 0,

𝛷(x, 0) =�̊�(x),

(31)ut = duxx + F(u, t), x ∈ ℝ, t > 0,

(32)zt = dzxx + c(x, t)z, x ∈ ℝ, 0 < t ≤ t�

Vt = dvVxx + V(1 − U − V),
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Since the updating conditions (20) are non-increasing, if the initial data U1(⋅, 0),V1(⋅, 0) 
satisfy

then, for each n ∈ ℕ
∗ , the solutions (Un,Vn) of system (25) satisfy

The Existence of Equlibria of (19)–(20)

The First Coordinate Change

System (19) is monotone competitive and system (20) is not monotone. Therefore, the full 
system (19)–(20) is not monotone. Hence, in order to be able to apply results of Li et al. [29], 
we first apply a coordinate change in order to obtain a monotone cooperative system. We set

so that system (19)–(20) is transformed to

together with the updating conditions

Properties (34), (33) and (23) imply that wv is a decreasing C1(ℝ) function such that

We also deduce that system (36) is monotone cooperative and the sequence defined in (37) 
is monotone increasing. Hence system (36)–(37) is monotone cooperative as long as the 
initial conditions belong to [0, 1].

Space Implicit Model

Space homogeneous solutions of system (36)–(37), during the n + 1 inter-fire season, satisfy

together with the updating conditions

(33)‖U1(⋅, 0)‖∞ ≤ 1 and ‖V1(⋅, 0)‖∞ ≤ 1,

(34)‖Un‖∞ ≤ 1 and ‖Vn‖∞ ≤ 1.

(35)
{

un = Un,

vn = 1 − Vn,

(36)

⎧⎪⎨⎪⎩

𝜕un

𝜕t
= un(1 − un) + du

𝜕2un

𝜕x2
, 0 < t ≤ 𝜏, x ∈ ℝ,

𝜕vn

𝜕t
= − 𝜆vn(1 − vn) + 𝜆𝛾un(1 − vn) + dv

𝜕2vn

𝜕x2
,

(37)
{

un+1(x, 0) = (1 − wv(vn(x, �))�(un(x, �)))un(x, �),

vn+1(x, 0) = (1 − �)vn(x, �) + �.

(38)wv(1) = 0, w�
v
(1) = 0, 0 ≤ wv < 1.

(39)

⎧⎪⎨⎪⎩

dun+1

dt
= un+1(1 − un+1), 0 < t ≤ 𝜏, n ∈ ℕ

∗,

dvn+1

dt
= − 𝜆vn+1(1 − vn+1) + 𝜆𝛾(1 − vn+1)un+1,
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Solving the logistic equation (39)1 leads to

In addition, direct computations give

Now, returning to (39)2 and setting z = 1∕(1 − vn+1) , we get

Using the integrating factor e� ∫ t

0
(1−�un+1(s))ds = e�t[Iu(t)]

−�� , we get

so that

Using the updating condition (40) leads to

Thus, the solution of system (39)–(40) given by system (43) generates a discrete dynamical 
system. Space homogeneous steady states of system (36)–(37) are steady states of model 
(43).

Space Homogeneous Steady States of System (36)–(37)

In this section we compute the space homogeneous steady states of system (36)–(37) by 
solving the fixed point problem associated to system (43).

F̄1(u, v) = u implies u = 0 or

(40)
{

un+1(0) = (1 − wv(vn(�))�(un(�)))un(�),

vn+1(0) = (1 − �)vn(�) + �.

(41)un+1(t) =
un+1(0)

un+1(0) + (1 − un+1(0))e
−t
, 0 ≤ t ≤ �.

(42)

∫
t

0

un+1(s)ds =∫
t

0

un+1(0)

un+1(0) + (1 − un+1(0))e
−s
ds

=∫
t

0

un+1(0)e
s

un+1(0)e
s + (1 − un+1(0))

ds

= ln
(
1 + un+1(0)(e

t − 1)
)

=∶ ln Iu(t).

ż = 𝜆(1 − z + 𝛾un+1z) = 𝜆 − 𝜆(1 − 𝛾un+1)z.

z(t) = e−�t[Iu(t)]
�� 1

1 − vn+1(0)
+ �e−�t[Iu(t)]

�� ∫
t

0

e�s[Iu(s)]
−��ds

vn+1(t) = 1 −
(1 − vn+1(0))e

�t[Iu(t)]
−��

1 + �(1 − vn+1(0))∫
t

0

e�s[Iu(s)]
−��ds

.

(43)

⎧
⎪⎪⎨⎪⎪⎩

un+1(𝜏) =
(1 − wv(vn(𝜏))𝜓(un(𝜏)))un(𝜏)

e−𝜏 + (1 − e−𝜏 )(1 − wv(vn(𝜏))𝜓(un(𝜏)))un(𝜏)
=∶ F̄1(un(𝜏), vn(𝜏)),

vn+1(𝜏) = 1 −
(1 − 𝜂)(1 − vn(𝜏)))e

𝜆𝜏[Iu(𝜏)]
−𝜆𝛾

1 + (1 − 𝜂)(1 − vn(𝜏))𝜆∫
𝜏

0

e𝜆s[Iu(s)]
−𝜆𝛾ds

=∶ F̄2(un(𝜏), vn(𝜏)).
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Similarly, F̄2(u, v) = v implies v = 1 or

We therefore deduce the first space homogeneous steady state �0 = (0, 1) . Substituting 
u = 0 (i.e. I0(t) = 1 ) in (45) implies

Note that

where R0 ∶= (1 − �)e�� . Substituting v = 1 in (44) implies u = 1 . Hence, we obtain Lemma 
1.

Lemma 1 System (36)–(37) admits as trivial and semi-trivial space homogeneous steady 
states in the feasible region:

– �0 = (0, 1) and �u = (1, 1) that always exist;

– �v = (0, v̄) =

(
0,

𝜂

(1 − 𝜂)(e𝜆𝜏 − 1)

)
 if and only if

In this study, we are mainly concerned with the existence of traveling wave solutions of 
system (36)–(37) involving steady states �u and �v computed in Lemma 1. In order to use 
the results of Li et al. [29], we translate the steady state �v to 0 through another coordinates 
change.

The Existence of Traveling Waves

The Second Coordinate Change

Recall that

and

Recall also that 0 ≤ v̄ < 1 is equivalent to R0 > 1. Therefore, in this section we assume that

(44)1 − wv(v)�(u) = e−� + (1 − e−� )(1 − wv(v)�(u))u.

(45)1 + (1 − �)(1 − v)�∫
�

0

e�s[Iu(s)]
−��ds = (1 − �)e−�� [Iu(�)]

�� .

v̄ =
𝜂

(1 − 𝜂)(e𝜆𝜏 − 1)
> 0.

v̄ < 1 if and only if R0 > 1,

R0 = (1 − 𝜂) exp(𝜆𝜏) > 1.

v̄ =
𝜂

(1 − 𝜂)(e𝜆𝜏 − 1)

R0 = (1 − �)e�� .

R0 > 1.
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We set

Hence, system (36)–(37) becomes

together with the updating conditions

As previously, we deduce from properties (38) that w is a decreasing C1(ℝ) function such 
that

For simplicity, we set (un,0, qn,0) = (un(x, 0), qn(x, 0)) . We also set �n,0 = (un,0, qn,0) and let 
Q� denote the time-�-map operator solution of system (47). Then

where �(u, q) = (H1(u, q),H2(u, q)).
Using the coordinate change (46), system (43) becomes

and, using Lemma 1, it is straightforward to deduce that system (47)–(48) admits as space 
homogeneous steady states

Stability Analysis of Space Homogeneous Steady States of System (47)–(48)

We first focus on the integral term that appears in F2 (see Eq. (51)2 ). Recalling (42), we 
consider

and an auxiliary function Z ∶ ℝ
+ ×ℝ

+ × [0, �] → ℝ defined by

(46)
{

un = un,

qn = vn − v̄.

(47)

⎧
⎪⎨⎪⎩

𝜕un

𝜕t
= un(1 − un) + du

𝜕2un

𝜕x2
, 0 < t ≤ 𝜏, x ∈ ℝ,

𝜕qn

𝜕t
= − 𝜆(qn + v̄)(1 − qn − v̄) + 𝜆𝛾un(1 − qn − v̄) + dv

𝜕2qn

𝜕x2
,

(48)
{

un+1(x, 0) = (1 − w(qn(x, 𝜏))𝜓(un(x, 𝜏)))un(x, 𝜏) =∶ H1(un(x, 𝜏), qn(x, 𝜏)),

qn+1(x, 0) = (1 − 𝜂)qn(x, 𝜏) + 𝜂(1 − v̄) =∶ H2(un(x, 𝜏), qn(x, 𝜏)).

(49)w(0) > 0, w(1 − v̄) = 0, w�(1 − v̄) = 0, 0 ≤ w(q) < 1.

(50)�n+1,0 = �(Q� [�n,0]) =∶ Q[�n,0],

(51)

⎧⎪⎪⎨⎪⎪⎩

un+1(𝜏) =
(1 − w(qn(𝜏))𝜓(un(𝜏)))un(𝜏)

e−𝜏 + (1 − e−𝜏 )(1 − w(qn(𝜏))𝜓(un(𝜏)))un(𝜏)
=∶ F1(un(𝜏), qn(𝜏)),

qn+1(𝜏) = 1 − v̄ −
(1 − 𝜂)(1 − v̄ − qn(𝜏))e

𝜆𝜏[Iu(𝜏)]
−𝜆𝛾

1 + 𝜆(1 − 𝜂)(1 − v̄ − qn(𝜏))∫
𝜏

0

e𝜆s[Iu(s)]
−𝜆𝛾ds

=∶ F2(un(𝜏), qn(𝜏))

�0 = (0, 1 − v̄), �u = (1, 1 − v̄) and �v = (0, 0).

Y(u, q) ∶= ∫
�

0

e�s(1 + u(es − 1)(1 − w(q)�(u)))−��ds
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For every u, q ∈ ℝ
+ , the function s ↦ Z(u, q, s) is continuous on the interval [0, �] . In 

addition,

exists and is continuous for all (u, q, s) ∈ ℝ
+ ×ℝ

+ × [0, �] . Consequently, �Y
�u

= ∫
�

0

�Z

�u
ds . 

Similarly, �Y
�q

= ∫
�

0

�Z

�q
ds . For convenience, we set (see (51))

Computing the partial derivatives of A1,A2,B1 and B2 defined in (51) gives

Let J = {Jij}1≤i,j≤2 denote the Jacobian matrix of (51). Using (52), the quotient rule and the 
properties of w (see (49)) and � (see (24)), we obtain the following results:

– Local stability of �0 . At the steady state �0 = (0, 1 − v̄) the matrix J  has the following 
entries: 

 Indeed, for example, 

Z(u, q, s) = e�s(1 + u(es − 1)(1 − w(q)�(u)))−�� .

�Z

�u
= −��e�s(es − 1)

(
1 − w(q)(�(u) − u� �(u))

)
(1 + u(es − 1)(1 − w(q)�(u)))−��−1

F1(u, q) =
A1(u, q)

A2(u, q)
and F2(u, q) = 1 − v̄ +

B1(u, q)

B2(u, q)
.

(52)

𝜕A1

𝜕u
=1 − w(q)(𝜓(u) + u𝜓 �(u)),

𝜕A1

𝜕q
= − w�(q)𝜓(u)u,

𝜕A2

𝜕u
=(1 − e−𝜏 )

A1

𝜕u
,

𝜕A2

𝜕q
=(1 − e−𝜏 )

A1

𝜕q
,

𝜕B1

𝜕u
=𝛾𝜆(1 − 𝜂)(1 − q − v̄)e𝜆𝜏 (1 + (e𝜏 − 1)u(1 − w(q)𝜓(u)))−𝛾𝜆−1(e𝜏 − 1)(1 − w(q)(𝜓(u) + u𝜓 �(u))),

𝜕B1

𝜕q
=(1 − 𝜂)e𝜆𝜏 (1 + (e𝜏 − 1)u(1 − w(q)𝜓(u)))−𝛾𝜆

− 𝛾𝜆(1 − 𝜂)(1 − q − v̄)e𝜆𝜏 (e𝜏 − 1)uw�(q)𝜓(u)(1 + (e𝜏 − 1)u(1 − w(q)𝜓(u)))−𝛾𝜆−1,

𝜕B2

𝜕u
= − 𝛾𝜆2(1 − 𝜂)(1 − q − v̄)

× ∫
𝜏

0

e𝜆s(es − 1)(1 − w(q)(𝜓(u) + u𝜓 �(u))(1 + (es − 1)u(1 − w(q)𝜓(u)))−𝛾𝜆−1ds,

𝜕B2

𝜕q
= − (1 − 𝜂)𝜆∫

𝜏

0

e𝜆s(1 + (es − 1)u(1 − w(q)𝜓(u)))−𝛾𝜆ds

+ (1 − 𝜂)(1 − q − v̄)𝛾𝜆2 ∫
𝜏

0

e𝜆s(es − 1)uw�(q)𝜓(u)(1 + (es − 1)u(1 − w(q)𝜓(u)))−𝛾𝜆−1ds.

J11 =e
� ,

J12 =0,

J21 =0,

J22 =(1 − �)e�� .
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 because 

 thanks to w�(1 − v̄) = 0 (see (49)). Since e� is an eigenvalue of J  at �0 and e𝜏 > 1, the 
steady state �0 is unstable.

– Local stability of �u . At the steady state �u = (1, 1 − v̄) the matrix J  has the following 
entries: 

 Eigenvalues of the Jacobian matrix at �u are e−� and R1 with e−𝜏 < 1 . Therefore, �u is 
locally asymptotically stable (LAS) whenever R1 < 1.

– Local stability of �v . J  at the steady state �v = (0, 0) has the following entries: 

 Knowing the explicit value of J21 is not necessary since J12 = 0 . Eigenvalues of the 
Jacobian matrix at �v are J11 and J22 . Recall that we assumed R0 > 1 . Hence, J22 < 1 . 
Therefore, the steady state �v is LAS whenever 

Hence, the following lemma holds true.

Lemma 2 The space homogeneous steady states of system (47)–(48) have the following 
stability properties.

1. The steady state �0 = (0, 1 − v̄) is unstable.
2. The steady state �u = (1, 1 − v̄) is LAS whenever R1 < 1.
3. The steady state �v = (0, 0) is LAS whenever R2 < 1.

J12 =
𝜕F1(0, 1 − v̄)

𝜕q
=

𝜕A1

𝜕q
A2 − A1

𝜕A2

𝜕q

(A2)
2

|||||||||(u,q)=(0,1−v̄)
= 0,

𝜕A1(0, 1 − v̄)

𝜕q
= 0

J11 =e
−� ,

J12 =0,

J21 =0,

J22 =(1 − �)e��(1−�) =∶ R1.

J11 =(1 − w(0)�(0))e� ,

J12 =0,

J22 =
1

(R0)
2
.

R2 = (1 − w(0)𝜓(0))e𝜏 < 1.
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Application of the Results of [29]

In the sequel, we study the recursion operator Q defined in Eq. (50) and we check if it 
satisfies Hypotheses 2.1 of Li et al. [29]. Recall that �n,0 = (un,0, vn,0) and Q� is the time-
�-map solution operator of reaction–diffusion system (47). We consider the order inter-
val C�u = [�v, �u] , where �v = � and �u = (1, 1 − v̄) is the positive coexistence steady state 
defined in Lemma 2.

Lemma 3 (Some properties of Q� ) 

1. The operator Q� is order preserving in the sense that if � and � are any two functions in 
C
�u

 with � ≥ � , then Q� [�] ≥ Q� [�].
2. Q� is translation invariant.
3. For any �, � ∈ C

�u
 and fixed x, |Q� [�](x) − Q� [�](x)| is arbitrarily small, provided 

|�(y) − �(y)| is sufficiently small on a sufficiently long interval centered at x.
4. Every sequence �n(x) in C

�u
 has a subsequence �nl such that Q� [�nl ] converges uniformly 

on every bounded set.

Proof 

1. The reaction–diffusion system (47) is a cooperative system. Hence, following the analy-
sis at the beginning of this section, we deduce that the time-�-map solution operator of 
system (47) is order preserving.

2. Let � be the solution of system (47) initiated at �0 . For y ∈ ℝ , we set � = Ty[�] , where, 
as defined earlier, Ty is the translation operator. In particular �0 = Ty[�0] . We have 
�t = (Ty[�])t = Ty[�t] , A� = ATy[�] = Ty[A�] and �(�) = �(Ty[�]) = Ty[F(�)] since � 
does not explicitly depend on x ∈ ℝ . Therefore, �t + A� − �(�) = Ty[�t + A� − �(�)] = 0 
and, by the uniqueness of solutions, we have 

 Hence the time-�-map solution operator of system (47), Q� , is translation invariant.
  To prove 3. and 4. we write the solution, see e.g. [11, page 95], as 

 where 

Gd , d = du, dv , as well as the convolution ⋆ , were defined in (28) and the spatio-tempo-
ral convolution is given by 

3. Let (u, q) and (v, p) be two solutions of system (47) initiated at (u0, q0) and (v0, p0) 
respectively. We assume that (u0, q0) , (v0, p0) ∈ C

�u
 , hence (u, q) and (v, p) are also 

Ty[Q� [�0]](x) = Ty[�](x) = �(x) = Q� [Ty[�0]](x).

(53)
{

u = Gdu
⋆ u0 + Gdu

⋆ ⋆fdu (u, q),

q = Gdv
⋆ q0 + Gdv

⋆ ⋆fdv (u, q),

fdu (u, q) = u(1 − u), fdv (u, q) = −𝜆(q + v̄)(1 − q − v̄) + 𝜆𝛾u(1 − q − v̄),

Gd ⋆ ⋆fd = ∫
t

0

1√
4𝜋d(t − s) ∫ℝ

exp

�
−

(x − y)2

4d(t − s)

�
fd(u(y, s), q(y, s))dyds.
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uniformly bounded. Let {Sc
d
(t)}t≥0 denotes the (positive) semigroup solving (29) for 

some function c satisfying |c(x, t)| ≤ L . Using |Sd(t)u0| ≤ Sd(t)|u0|, u0 ∈ Cub(ℝ), where 
{Sd(t)}t≥0 is the diffusion semigroup (28), and the Phillips-Dyson expansion to (29) we 
ascertain that for any u0

 As before, we begin with solutions u and v to (47)1 . Repeating the argument leading to 
(32), we see that z(x, t) = u(x, t) − v(x, t) can be estimated as 

 Let, for 𝜖 > 0 , r > 0 be such that 

 Then let us fix x and let |u0(x) − v0(x)| ≤ � ≤ �∕2eL� on (x − r, x + r) so that we obtain 
for 0 < t ≤ 𝜏

 By choosing appropriate r, we see that the estimate is valid for x in any given bounded 
subset of ℝ.

  Considering now (47)2 , we see that Z(x, t) = q(x, t) − p(x, t) is a solution to 

 and considerations as above show that |Z(x, t)| ≤ eL1t� (x, t) , where 

 In the above, L1 is a constant bounding |1 − (p + q) − u|, 0 ≤ p, q, u ≤ 1 , and we used 
0 ≤ v ≤ 1 . Hence 

|Sc
d
(t)u0| ≤ SL

d
(t)|u0| = eLtSd(t)|u0|.

�z(x, t)� ≤ eLt[Sdu (t)�u0 − v0�](x) + eLt√
4�dut

�
ℝ

exp

�
−
(x − y)2

4dut

�
�u0(y) − v0(y)�dy.

⎛⎜⎜⎝�
−r

2
√
du�

−∞

+�
∞

r

2
√
du�

⎞⎟⎟⎠
e−z

2

dz ≤ �
√
�

4eL�
.

(54)

�z(x, t)� ≤ eLt√
4�dut

�
x+r

x−r

exp

�
−
(x − y)2

4dut

�
�u0(y) − v0(y)�dy

+
eLt√
4�dut

�
�

x−r

−∞

+�
∞

x+r

�
exp

�
−
(x − y)2

4dut

�
�u0(y) − v0(y)�dy

≤eLt� + 2eLt√
�

⎛⎜⎜⎝�
−r

2
√
dut

−∞

+�
∞

r

2
√
dut

⎞⎟⎟⎠
e−z

2

dz ≤ eL�� +
2eL�√

�

⎛⎜⎜⎝�
−r

2
√
du�

−∞

+�
∞

r

2
√
du�

⎞⎟⎟⎠
e−z

2

dz ≤ �.

(55)

Zt =dvZxx + (q − qu − q2 − p + pv + p2) = dvZxx + Z(1 − (p + q) − u) − p(u − v),

Z(x, 0) =q(x, 0) − p(x, 0) =∶ Z0(x, 0)

(56)
�t =dv�xx + e−L1tz,

� (x, 0) =|Z0(x, 0)|.
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 and the estimates follow as above where, in the second term, we use the fact that (54) 
is uniform on [0, �] and any bounded subset of ℝ.

4. For each t ∈ (0, �] , the functions Qt[�0] with �0 = (u0, q0) ∈ C
�u

 form an equicontinuous 
family. Indeed, for 0 < t ≤ 𝜏 , �0 ∈ C

�u
 and x ∈ ℝ , Qt[�0(x)] =∶ �(t, x) = (u(t, x), q(t, x)) , 

following (53) and by using the property of the spatial convolution, we obtain 

 Since (u0, q0) ∈ C
�u

 i.e. 0 ≤ u0 ≤ 1 and 0 ≤ q0 ≤ 1 − v̄ , we have ‖fdu (u, q)‖∞ ≤ 1 and 
‖fdv (u, q)‖∞ ≤ M for some M. In addition, by direct calculation or, more generally, by 
[18, Theorem 11], for d = du, dv , there exist positive constants �d and �d such that for 
t > 0

 Hence, 

 Evaluating the integrals in (58) we obtain 

 where �du (t) and �dv (t) do not depend on u0 , q0 and x ∈ ℝ . Thus the first spatial deriv-
ative of the solution � = (u, q) is uniformly bounded. Hence, using the Mean Value 
Theorem, we deduce that the family of solutions of system (47) is equicontinuous. 
Then, part 4 of Lemma 3 follows from the Arzela-Ascoli’s theorem, see e.g. [43, Cor-
ollary 41] (i.e. any bounded and equicontinuous sequence of continuous functions 
on a separable metric space contains a uniformly convergent subsequence on every 
bounded subset).

  ◻

�Z(x, �)� ≤ eL1�√
4�dv�

�
ℝ

exp

�
−
(x − y)2

4dv�

�
�q0(y) − p0(y)�dy

+ �
�

0

eL1(�−s)√
4�dv(� − s) �ℝ

exp

�
−

(x − y)2

4dv(� − s)

�
z(y, s)dyds

(57)

⎧⎪⎨⎪⎩

𝜕u

𝜕x
=

𝜕Gdu

𝜕x
⋆ u0 +

𝜕Gdu

𝜕x
⋆ ⋆fdu (u, q),

𝜕q

𝜕x
=

𝜕Gdv

𝜕x
⋆ q0 +

𝜕Gdv

𝜕x
⋆ ⋆fdv (u, q).

||||
�Gd(x, t)

�x

|||| ≤
�de

−�d
x2

t

t

(58)

⎧⎪⎪⎨⎪⎪⎩

����
𝜕u

𝜕x
(x, t)

���� ≤ �
ℝ

𝛼due
−𝛽du

(x−y)2

t

t
dy + �

t

0 �
ℝ

𝛼due
−𝛽du

(x−y)2

t−s

t − s
dyds,

����
𝜕q

𝜕x
(x, t)

���� ≤ (1 − v̄)�
ℝ

𝛼dve
−𝛽dv

(x−y)2

t

t
dy +M �

t

0 �
ℝ

𝛼dve
−𝛽dv

(x−y)2

t−s

t − s
dyds.

(59)

⎧
⎪⎪⎨⎪⎪⎩

����
𝜕u

𝜕x
(x, t)

���� ≤ 𝛼du

�
𝜋

𝛽du t
+ 𝛼du

�
𝜋t

𝛽du

=∶ 𝛿du (t),

����
𝜕q

𝜕x
(x, t)

���� ≤ (1 − v̄)𝛼dv

�
𝜋

𝛽dv t
+M𝛼dv

�
𝜋t

𝛽dv

=∶ 𝛿dv (t),
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In order to obtain properties of the operator Q defined in (50), we first formulate results 
for the nonlinear operator � ∶ B → B . Recall that the Banach space considered here is 
B = Cub(ℝ) × Cub(ℝ) endowed with the sup-norm. For � = (u, q) ∈ B,

Lemma 4 (Some properties of � ) 

1. The nonlinear operator � is order preserving in the sense that if � and � are any two 
functions with � ≥ � , then �(�) ≥ �(�).

2. � is translation invariant.
3. For any two functions � and � , ‖�(�) −�(�)‖B ≤ C‖� − �‖B , where C ∈ ℝ and depends 

on ‖�‖B , ‖�‖B.
4. If a sequence �n(x) converges uniformly on every bounded set, then �(�n(x)) also has 

the same property.

Proof Let � = (u, q) and � = (v, p) be such that � ≤ � . Hence 
(1 − w(q)�(u))u ≤ (1 − w(p)�(v))v since w (resp. � ) is increasing (resp. decreasing) and 
(1 − 𝜂)q + 𝜂(1 − v̄) ≤ (1 − 𝜂)p + 𝜂(1 − v̄) . Thus �(�) ≤ H(�) and part 1 of Lemma 4 holds. 
Since � does not explicitly depend on x ∈ ℝ , then � is translation invariant and part 2 of 
Lemma 4 is valid. Part 3 follows from the local Lipschitz property of �, while part 4 fol-
lows from the continuity of � . This ends the proof.   ◻

Combining Lemmas 3 and 4, we deduce the following result for the recursion operator 
Q ∶= �◦Q� , defined in (50).

Lemma 5 (Some properties of Q) 

1. The operator Q is order preserving in the sense that if � and � are any two functions in 
C
�u

 with � ≥ � , then Q[�] ≥ Q[�].
2. Q is translation invariant.
3. For any fixed x, |Q[�](x) − Q[�](x)| is arbitrarily small, provided |�(y) − �(y)| is suf-

ficiently small on a sufficiently long interval centered at x.
4. Every sequence �n(x) in C

�u
 has a subsequence �nl such that Q[�nl ] converges uniformly 

on every bounded set.

In the sequel, we assume that R0 = (1 − 𝜂)e𝜆𝜏 > 1 and R1 = (1 − 𝜂)e𝜆𝜏(1−𝛾) < 1 ; that 
is, the coexistence steady state �u = (1, 1 − v̄) exists and is stable. We also assume that 
R2 = (1 − w(0)𝜓(0))e𝜏 > 1 ; that is, �v = (0, 0) is unstable.

Taking into account Lemma 5, we deduce that the recursion operator Q defined in (50) 
verifies all conditions of Hypothesis 2.1. Consequently, we can apply the results of Li et al. 
[29] that deal with the spreading speeds and existence of traveling wave solutions for sys-
tems (47)–(48). Recall that a traveling wave of speed c is a solution of the recursion (50) 
which has the form �n(x, 0) = �(x − nc) with �(s) being a function in C

�u
 . That is, the solu-

tion at time n + 1 is simply the translate by c of its value at n. Using the definition of c∗ (see 
(12)) and c∗

f
 (see (15)), the following result holds true.

�(�) = ((1 − w(q)𝜓(u))u; (1 − 𝜂)q + 𝜂(1 − v̄)).
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Theorem 4 (Spreading speeds and traveling waves) 

 (a). Slowest spreading speed: There is an index j ∈ {1, 2} for which the following 
statement is true: Suppose that the initial function �0(x) is 0 for all sufficiently large 
x, and that there are positive constants 0 < 𝜌 ≤ 𝜎 < 1 such that � ≤ �0 ≤ ��u for all x 
and �0 ≥ ��u for all sufficiently negative x. Then for any positive � the solution �n of 
the recursion (50) has the properties

and

that is, the j th component spreads at a speed no higher than c∗ , and no component 
spreads at a lower speed.

 (b). Fastest spreading speed: There is an index i ∈ {1, 2} for which the following 
statement is true: Suppose that the initial function �0(x) is 0 for all sufficiently large 
x, and that there are positive constants 0 < 𝜌 ≤ 𝜎 < 1 such that � ≤ �0 ≤ ��u for all x 
and �0 ≥ ��u for all sufficiently negative x. Then for any positive � the solution �n of 
the recursion (50) has the properties

and

that is, the i th component spreads at a speed no less than c∗
f
 , and no component 

spreads at a higher speed.
 (c). Monostable traveling wave: If c ≥ c∗ , there is a non-increasing monostable trave-

ling wave solution �(x − nc) of speed c with �(−∞) = �u and �(+∞) a steady state 
other than �u.

   If there is a traveling wave �(x − nc) with �(−∞) = eu such that for at least one 
component i ∈ {1, 2}

then c ≥ c∗ . If this property is valid for all components of � , then c ≥ c∗
f
.

Proof Since the recursion operator Q defined in (50) verifies Hypothesis 2.1., the proof of 
Theorem 4 follows directly from Theorems 2.1, 2.2 and 3.1 of Li et al. [29].   ◻

Let us point out that if, instead of the first coordinates change (35), we considered

(60)lim
n→+∞

[
sup

x≥n(c∗+�)
{�n}j(x)

]
= 0

(61)lim
n→+∞

[
sup

x≤n(c∗−�)
{�u − �n(x)}

]
= �;

(62)lim sup
n→+∞

[
inf

x≤n(c∗
f
−𝜀)

{�n}i(x)

]
> 0

(63)lim
n→+∞

[
sup

x≥n(c∗
f
+�)

�n(x)

]
= �;

lim inf
x→∞

Zi(x) = 0,
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then we would obtain a monotone increasing system (see Appendix B). Hence, by reason-
ing as before, one can study the case where the steady state � is stable and the steady state 
�u is unstable. However, the bistable case, i.e. when both 0 and �u are simultaneously stable, 
remains an open problem.

Numerical Simulations

In this section we provide numerical simulations of the impulsive tree–grass reaction–dif-
fusion model (3)–(4). We note that the parameters with ̃ below refer to this system and can 
be derived from the corresponding parameters related to the normalized system (47)–(48), 
see Appendix A. Thus, we consider fire events as periodic and pulse perturbations with 
the time period 𝜏 . The form of the functions �G(�) , �T (�) , KG(�) , KT (�) , � and wG is 
considered following Yatat Djeumen et al. [63]. The readers are referred to Appendix A for 
their definition and parametrization. The parameter values used in the following simula-
tions are also given in Appendix A: see Tables 1 and 2.

Using the parameters values given in Table 1, Fig. 1 depicts the spreading of tree and 
grass biomasses toward the stable forest homogeneous steady state �T = (273.3955, 0) . 
In this case, R̃0 = 1.3667 , R̃1 = 0.0058 and R̃2 = 3.3801 . Recall that �T is LAS when-
ever R̃1 < 1 , while the grassland homogeneous steady state �G = (0, 3.3888) exists when 
R̃0 > 1 and is LAS whenever R̃2 < 1 . In terms of tree–grass interactions, Fig. 1 illustrates 
the spreading of forest or the so-called ’forest encroachment’ phenomenon (Yatat Djeumen 
et al. [59]).

In the setting of the forest encroachment phenomenon, we carry out numerical simu-
lations to compute the spreading speed of forest biomass. We investigate the relation-
ship between the tree biomass diffusion coefficient and its spreading speed. To estimate 
the spreading speed of the tree biomass that undergoes a forest encroachment, grass bio-
mass diffusion coefficient dG is kept constant and equal to 0.002 while tree biomass dif-
fusion coefficient dT varies in the range [0.001, 0.9]. In the diffusive logistic equation, a 
linear relationship is obtained between the wave speed and the square root of the diffu-
sion coefficient (e.g. Volpert [52], Yatat Djeumen et al. [59], Yatat Djeumen and Dumont 
[61]). Hence, for the tree biomass, we consider an equation of the form cT (dT ) = a1d

a2
T

 
to be fitted for the data shown in Fig.  2(b), where cT ∈ [0.0865, 1.6899] . We found that 
a1 ∈ (1.7624, 1.7861) and a2 ∈ (0.4816, 0.4911) with 95% confidence. In fact, a1 = 1.7743 
and a2 = 0.48634 , with r2 = 1 , indicating that 100% of the variance of the data is explained 
by the equation.

With the parameter values given in Table 2, Fig. 3 illustrates the spreading of both tree 
and grass biomasses toward the grassland homogeneous steady state �G = (0, 2.1096) . In 
this case, R̃0 = 2.0425 , R̃1 = 1.2541 and R̃2 = 0.9932 . Recall that �G exists when R̃0 > 1 
and is LAS whenever R̃2 < 1 . We further investigate the relationship between the diffusion 
coefficient and the spreading speed of the grass biomass. We assume that dT = 0.001 and 
dG ∈ [0.001, 1] . Motivated by the linear relationship obtained between the wave speed and 
the square root of the diffusion coefficient in the diffusive logistic equation, an equation 
like cG(dG) = a1d

a2
G

 was fitted to the data shown in Fig. 4b, where cG ∈ [0.0465, 1.0877] . 
We found that a1 ∈ (1.0829, 1.0935) and a2 ∈ (0.4839, 0.4915) with 95% confidence. In 

(64)
{

un = 1 − Un,

vn = Vn,
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fact a1 = 1.0882 and a2 = 0.48769 , with r2 = 1 , indicating that 100% of the variance of the 
data is explained by the equation.

Conclusion

In this paper, we used the vector-valued recursion equation theory (e.g. Weinberger et al. 
[56], Weinberger [54, 55], Lewis et al. [28], Li et al. [29]) to propose a framework in which 
we can systematically address the questions of the existence of traveling waves for mono-
tone systems of impulsive reaction–diffusion equations and the computation of spreading 
speeds. This study extends the previous one that dealt with the impulsive Fisher-Kolmog-
orov-Petrowsky-Piscounov (FKPP) equation (Yatat Djeumen and Dumont [61]) but is 
restricted to monostable situations; that is, when only one of the steady states is stable. 
However, the bistable case (i.e. when two steady states are simultaneously stable) is also 
meaningful and needs to be studied for monotone systems of impulsive reaction–diffusion 
equations. Traveling waves in bistable reaction–diffusion systems without impulsive per-
turbations are treated in Volpert [52] (see also Yatat Djeumen et al. [60] for application in 
the context of bistable tree–grass reaction–diffusion model).

The computation of spreading speeds and the existence of traveling waves for bistable 
monotone systems of impulsive reaction–diffusion equations will be the aim of future stud-
ies. It first requires to elaborate a recursion equations theory that includes bistable cases 
and thus extending the results of Li et al. [29] that also deal only with monostable cases. 
Last but not least, in a recent work (Yatat Djeumen et al. [62]) we studied a space-implicit 
model that gives quite satisfactory results, in term of the model’s predictions, across the 

Table 1  Parameter values related to system (3)–(4) at � = 1200 mm.year−1 and 𝜏 = 2 year. In this setting, 
the forest steady state �

T
= (K�

T
, 0) is stable, while the grassland steady state �

G
= (0, Ḡ) is unstable

cG , t.ha−1 cT , t.ha−1 bG , mm.year−1 bT , mm.year−1 aG , year−1 aT , year−1

20 450 501 1192 0.0029 0.0045
dG , − dT , − �G , year−1 �T , year−1 �G , year−1 �T , year−1

14.73 106.7 1.5 2 0.3 0.1
� , − �min

fT
 , − �max

fT
 , − pT , t −1ha �G , t.ha−1 �TG , ha.t−1year−1

�.7 0.05 0.6 0.01 � 0.01

Table 2  Parameter values related to system (3)–(4) at � = 450 mm.year−1 and 𝜏 = 2 year. In this setting, 
the forest steady state �

T
= (K�

T
, 0) is unstable, while the grassland steady state �

G
= (0, Ḡ) is stable

cG , t.ha−1 cT , t.ha−1 bG , mm.year−1 bT , mm.year−1 aG , year−1 aT , year−1

20 450 501 1192 0.0029 0.0045
dG , − dT , − �G , year−1 �T , year−1 �G , year−1 �T , year−1

14.73 106.7 1.5 2 0.3 0.1
� , − �min

fT
 , − �max

fT
 , − pT , t −1ha �G , t.ha−1 �TG , ha.t−1year−1

�.1 0.05 0.6 0.01 �.2 0.01
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rainfall gradient and improving already published results obtained with tree–grass interac-
tions models of similar complexity or less. Hence, it is desirable to also study its space-
explicit counterpart acknowledging impulsive fire events. The aim will be to analyse the 
impact of impulsive fires on the dynamics of the vegetation mosaics like forest-grassland 
and forest-savanna in humid tropical savannas (see also Yatat Djeumen et al. [59]).
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Appendices

Normalization procedure and model’s parameter values

We first assume that there are no fire events. In this setting, Eqs. (3)–(4) become

where 𝜏 denotes the fire period. Following Yatat Djeumen et al. [63], we have

– �G(�) =
�G ×�

bG +�
 and �T (�) =

�T ×�

bT +�
 where �G and �T (in year−1 ) express maximal 

growth of grass and tree biomasses, respectively, while half saturations bG and bT (in 
mm.year−1 ) determine how quickly they increase with water availability.

– KT (�) =
cT

1 + dTe
−aT�

 , where cT (in t.ha−1 ) stands for maximum value of the tree bio-

mass carrying capacity, aT (mm−1year) controls the steepness of the curve, and dT con-
trols the location of the inflection point. Similarly, KG(�) =

cG

1 + dGe
−aG�

 , where cG 

(in t.ha−1 ) denotes the maximum value of the grass biomass carrying capacity, aG 
(mm−1year) controls the steepness of the curve, and dG controls the location of the 
inflection point.

– The function wG is defined by 

(65)

⎧⎪⎪⎨⎪⎪⎩

𝜕T

𝜕t
= dT (�)

𝜕2T

𝜕x2
+ 𝛾T (�)

�
1 −

T

KT (�)

�
T − 𝛿TT ,

𝜕G

𝜕t
= dG(�)

𝜕2G

𝜕x2
+ 𝛾G(�)

�
1 −

G

KG(�)

�
G − 𝛿GG − 𝜂TGTG,

0 ≤ t ≤ 𝜏, x ∈ ℝ,

http://creativecommons.org/licenses/by/4.0/
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 where G, in tons per hectare (t.ha−1 ), is the grass biomass and �G is the value taken 
by G, when the fire intensity is half of its maximum. However, the proofs are valid for 
general wG.

– the function � is defined by 

 where T, in tons per hectare (t.ha−1 ), stands for the tree biomass, �min
fT

 (in year−1 ) is the 
minimal loss of tree biomass due to fire in systems with a very large tree biomass, �max

fT
 

(in year−1 ) is the maximal loss of tree/shrub biomass due to fire in open vegetation (e.g. 
for an isolated woody individual having its crown within the flame zone), pT (in t −1.ha) 
is proportional to the inverse of biomass suffering an intermediate level of mortality.

Assuming that requirement (2) is satisfied or, equivalently, RT =
𝛾T (�)

𝛿T
> 1 and 

RG =
𝛾G(�)

𝛿G
> 1 , we set

Hence, with straightforward computations, system (65) becomes

Now, letting

in (66), (67) and (69), we recover system (19)–(20). Furthermore, scaling (68) redefines the 
parameters as follows.

– The threshold R0 = (1 − �) exp(��) becomes 

– The threshold R1 = (1 − �) exp(�(1 − �)�) becomes 

(66)wG(G) =
G2

G2 + �2
G

,

(67)�(T) = �min
fT

+ (�max
fT

− �min
fT

)e−pTT ,

(68)

⎧⎪⎨⎪⎩

K�
T
= KT (�)(1 − 1∕RT ), K�

G
= KG(�)(1 − 1∕RG), U = T∕K�

T
, V = G∕K�

G
,

r = 𝛿T (RT − 1)t, 𝜏 = 𝛿T (RT − 1)𝜏, z = x
√
𝛿T (RT − 1),

𝜆 =
𝛿G(RG − 1)

𝛿T (RT − 1)
, 𝛾 =

𝜂TGK
�
T

𝛿G(RG − 1)
.

(69)

⎧⎪⎪⎨⎪⎪⎩

�U

�r
= dT (�)

�2U

�z2
+ (1 − U)U,

�V

�r
= dG(�)

�2V

�z2
+ �(1 − V − �U)V .

0 ≤ r ≤ �, z ∈ ℝ,

(70)
t ∶=r, x ∶= z, dT ∶= du, dG ∶= dv, p ∶= pTK

�
T
,

amin ∶=�
min
fT

, amax ∶= �max
fT

, � =
�G

K�
G

(71)
R̃0 =(1 − 𝜂) exp

(
𝛾G(�) − 𝛿G

𝛾T (�) − 𝛿T
× (𝛾T (�) − 𝛿T )𝜏

)
,

=(1 − 𝜂) exp((𝛾G(�) − 𝛿G)𝜏).
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– From v̄ =
𝜂

(1 − 𝜂)(exp(𝜆𝜏) − 1)
 one deduces that 

Ḡ =

(
1 −

𝜂

1 − 𝜂
×

1

(exp((𝛾G(�) − 𝛿G)𝜏) − 1)

)
K�
G

 . Let us set wḠ =
(Ḡ)2

(Ḡ)2 + 𝛼2
G

 and 

w0 =
(1 − v̄)2

(1 − v̄)2 + 𝛼2
 . Then, the threshold R2 = (1 − amaxw0) exp(��) becomes 

Recall that R0 , R1 , v̄ and R2 are related to the normalized system (47)–(48), while R̃0 , R̃1 , 
Ḡ and R̃2 are related to the original system (3)–(4).

In Tables 1 and 2, we summarize the parameter values that are used for numerical simu-
lations. They are chosen according to [58, 60, 63].

Another Monotone Increasing Impulsive System

If, instead of the first coordinates change (35), one considers

then the normalized systems (19)–(20) becomes

together with the updating conditions

As we mentioned in Sect. 3.3, this is a monotone increasing system and hence, reasoning 
as before, one can study the case where the stability of the steady states is reversed.
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