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Abstract: European satellite missions Sentinel-1 (S1) and Sentinel-2 (S2) provide at high spatial
resolution and high revisit time, respectively, radar and optical images that support a wide range of
Earth surface monitoring tasks, such as Land Use/Land Cover mapping. A long-standing challenge
in the remote sensing community is about how to efficiently exploit multiple sources of information
and leverage their complementarity, in order to obtain the most out of radar and optical data. In this
work, we propose to deal with land cover mapping in an object-based image analysis (OBIA) setting
via a deep learning framework designed to leverage the multi-source complementarity provided by
radar and optical satellite image time series (SITS). The proposed architecture is based on an extension
of Recurrent Neural Network (RNN) enriched via a modified attention mechanism capable to fit the
specificity of SITS data. Our framework also integrates a pretraining strategy that allows to exploit
specific domain knowledge, shaped as hierarchy over the set of land cover classes, to guide the
model training. Thorough experimental evaluations, involving several competitive approaches were
conducted on two study sites, namely the Reunion island and a part of the Senegalese groundnut
basin. Classification results, 79% of global accuracy on the Reunion island and 90% on the Senegalese
site, respectively, have demonstrated the suitability of the proposal.

Keywords: land cover classification; multi-source remote sensing; satellite image time series; object
based image analysis; deep learning; neural networks pretraining

1. Introduction

Remotely sensed data collected by modern Earth Observation systems, such as the European
Sentinel programme [1], are getting increasing attention in recent years to cope with Earth surface
monitoring. In particular, the Sentinel-1 and Sentinel-2 missions are of interest, since they provide
publicly available multi-temporal radar and optical images respectively, with high spatial resolution
(up to 10 m) and high revisit time (up to five days). Thanks to these unprecedented spatial and temporal
resolutions, data coming from such sensors can be arranged in Satellite Image Time Series (SITS).
SITS have been employed to deal with several tasks in multiple domains ranging from ecology [2],
agriculture [3], land management planning [4], and forest and natural habitat monitoring [5,6].
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Among these fields, Land Use/Land cover (LULC) mapping has received large attention in the
last years [7–10], since it provides essential components on which further indicators can be built on [11].
As example, an accurate mapping of croplands and crop types is the cornerstone of agricultural
monitoring systems, as it allows providing information on food production for developing countries
or global market. However, cropland mapping has been identified as an important gap in agricultural
monitoring systems [12].

As regards LULC mapping, both radar and optical sources have been employed, often solely,
disregarding the well-known complementary existing between them, as recently underlined [13–16].
Additionally, when both sources of information are jointly used, they are independently processed
without really leveraging the interplay between them, i.e., through a simple concatenation with
machine learning algorithms [7,17,18] or an integration via a data fusion techniques [19,20]. In addition,
such techniques ignore the spatial and temporal dependencies carried out by SITS.

Furthermore, concerning LULC mapping domain, specific knowledge about LULC classes can be
available. LULC classes can be organized hierarchically via class/subclass relationships. For instance,
agricultural land cover can be organized in crop types and subsequently crop types in specific
crops. A notable example of such hierarchical organization is the Food and Agriculture Organization
(FAO)–Land Cover Classification System (LCCS) [21]. Because of the presence of such class/subclass
relationships, most of the time, we can derive a hierarchical or taxonomic organization of LULC
classes that could be appealing to consider in subsequent land cover mapping process. Only few
studies, today, have considered the use of such hierarchical information to deal with land cover
mapping [22–24]. Generally, such frameworks build an independent classification model for each level
of the hierarchy and the decision made at a certain level of the taxonomy cannot be modified, further,
in the decision process.

Another challenge to deal with when carrying out land cover mapping is related to the spatial
granularity at which the remote sensing time series data are analysed: pixel or object [25]. While in the
pixel based analysis, the basic units are the pixels, in object-based image analysis (OBIA), the images are
first segmented obtaining groups of radiometrically homogeneous pixels: the objects, which become
the basic units in any further analysis. Considering objects instead of pixels has the main advantage
to work with more coherent piece of information that are simpler to interpret [26] for an end user or
field expert.

Nowadays, Deep Learning (DL) is pervasive in many domains including remote sensing [27–30].
When considering the use of multi-source (radar and optical) data in the context of LULC mapping,
authors in [3] employed a Convolutional Neural Network (CNN) based architecture to combine
Sentinel-1 and Landsat-8 images for land cover and crop types mapping. This CNN architecture
processed the data with convolutions in both spatial and spectral domains while the temporal domain
was not taken into account. Authors in [14] proposed the TWINNS architecture, a combination
of CNN and Convolutional Recurrent Neural Network [31] (ConvRNN) aiming to leverage both
spatial and temporal dependencies in the SITS data as well as the complementarity of radar and
optical sensors. Such approaches work at pixel level and do not exploit additional background
information (i.e., class/subclass relationships) during their learning process. Furthermore they are not
directly transferable to object-level analysis as it is. Recently, authors in [15] proposes a preliminary
investigation of Recurrent Neural Network (RNN) approaches introducing the OD2RNN model for
multi-source land cover mapping. Recurrent Neural Networks are exploited to deal with SITS in an
OBIA framework instead of ConvRNN, since the latter cannot be applied to the agglomerate statistics
describing the object-level SITS.

We introduce in this work the DL-based HOb2sRNN (Hierarchical Object based two-Stream
Recurrent Neural Network) architecture in order to deal with land cover mapping at object level
using multi-source (radar and optical) SITS data and exploiting hierarchical relationships among land
cover classes. Our framework is tailored for a common OBIA setting, where a prior segmentation is
typically performed to provide a suitable object layer, and the so-obtained segments are attributed
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using agglomerate statistics starting from the available image set, to be subsequently used as samples
for training and classification. HOb2sRNN is therefore conceived to perform object-based LULC
mapping given the radar and optical object SITS available on the study area, the relative ground truth
data and the associated land cover class hierarchy. Building upon the preliminary work presented
in [15], as a major further contribution, here, we propose an architecture that is based on an extended
RNN model enriched via a modified attention mechanism capable of fitting the specificity of SITS data.
In addition, we also introduce a pretraining strategy to get the most out of the information available
under the shape of hierarchical relationships between land cover classes. Last but not least important,
differently from previous works on multi-source and multi-temporal land cover mapping that exploits
DL methods [14,15], we also provide, in this study, a contribution related to the interpretability of the
proposed model. More specifically, we investigate and discuss how the side information provided by
HOb2sRNN can be leveraged to draw some connections between the way in which the model takes its
decision and the agronomic knowledge we have.

With the aim to provide an in-depth assessment of the HOb2sRNN behaviour, an extensive
experimental evaluation is conducted on two study sites with diverse land cover characteristics,
namely the Reunion island and a part of the Senegalese groundnut basin, the latter being dominated
by small scale agriculture and limited in the amount of available data. The results have underlined
the effectiveness of our proposal when compared to competitive and recent approaches commonly
leveraged to deal with land cover mapping task, including the work presented in [15].

The remainder of this work is structured, as follows: first, the study sites and associated data are
introduced in Section 2; and then Section 3 describes the proposed method while the experimental
settings and the evaluations are carried out and discussed in Section 4 and Section 5, respectively,
and finally, Section 6 draws the conclusion.

2. Materials

The analysis was carried out on 2 study sites characterized by different landscapes and land
cover classes: the Reunion island, a French overseas department located in the Indian Ocean and
a part of the Senegalese groundnut basin located in central Senegal. The Reunion island covers an
area of a little over 3000 km2, while the Senegalese site area is about 500 km2. The former benchmark
involves 26 Sentinel-1 (S1) and 21 Sentinel-2 (S2) satellite images acquired during the year 2017 while
the latter consists of 16–S1 and 19–S2 images collected between May and October 2018 (see Figure 1 for
acquisition date details).
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Figure 1. Overview of the acquisition dates of Sentinel-1 (S1) and Sentinel-2 (S2) images over the two
study sites. S2 acquisitions were sparsed due to the ubiquitous cloudiness.

2.1. Sentinel-1 Data

The radar images were acquired in C-band Interferometric Wide Swath (IW) mode with dual
polarization (VH and VV) and in ascending orbit. All images as retrieved at level-1C Ground Range
Detected (GRD) from the PEPS platform (https://peps.cnes.fr/) were first radiometrically calibrated

https://peps.cnes.fr/
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in backscatter values (decibels, dB) using parameters that were included in the metadata file, then
coregistered with the Sentinel-2 grid and orthorectified at the same 10-m spatial resolution. Finally,
multi-temporal filtering was applied to the time series in order to reduce the speckle effect.

2.2. Sentinel-2 Data

The optical images were downloaded from the THEIA pole platform (http://theia.cnes.fr) at
level-2A top of canopy reflectance. Only 10-m spatial resolution bands (i.e., Blue, Green, Red and
Near Infrared spectrum) containing less than 50% of cloudy pixels were considered in this analysis.
A preprocessing was performed over each band to replace cloudy observations as detected by the
supplied cloud masks through a multi-temporal gapfilling [4]. Cloudy pixel values were linearly
interpolated using the previous and following cloud-free dates. Finally, the Normalized Difference
Vegetation Index (NDVI) [32] was calculated for each date. NDVI was considered as supplementary
optical descriptor since it captures well the vegetation activity which is subject to change over time.

2.3. Ground Truth

Considering the Reunion island (Reunion island land cover dataset is available online on the
CIRAD dataverse under doi:10.18167/DVN1/TOARDN), the ground truth (GT) was built from
various sources: the Registre Parcellaire Graphique (RPG) (RPG is part of the European Land Parcel
Identification System (LPIS), provided by the French Agency for services and payment) reference
data for 2014, GPS land cover records from June 2017 and the visual interpretation of very high
spatial resolution (VHSR) SPOT6/7 images (1.5-m) completed by a field expert with knowledge of
territory. Additional information about this dataset can be found in [33]. As regards the Senegalese
site, the ground truth was built from GPS land cover records that were collected during the 2018 field
campaign with the same approach as for the Reunion site followed by a visual interpretation of a VHSR
PlanetScope image (3-m). Both operations were conducted by a specialist of the study area. For each
site, the GT was assembled in Geographic Information System vector file, containing a collection of
polygons each attributed with the corresponding land cover class. The Reunion island GT includes
6265 polygons that were distributed over 11 classes while the Senegalese site includes 734 polygons
distributed over nine classes (See Tables 1 and 2).

Table 1. Characteristics of the Reunion island ground truth.

Class Label Polygons Segments

0 Sugarcane 869 1258
1 Pasture and fodder 582 869
2 Market gardening 758 912
3 Greenhouse crops or shadows 260 233
4 Orchards 767 1014
5 Wooded areas 570 1106
6 Moor and Savannah 506 850
7 Rocks and natural bare soil 299 573
8 Relief shadows 81 107
9 Water 177 261
10 Urbanized areas 1396 725

Total 6265 7908

In order to inject specific knowledge in the learning process, we obtained from field experts,
for each study site, a taxonomy of land cover classes (See Figures 2 and 3), getting two levels of
representation before the target classification level described in Tables 1 and 2.

http://theia.cnes.fr
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Table 2. Characteristics of the Senegalese site ground truth.

Class Label Polygons Segments

0 Bushes 50 100
1 Fallows and Uncultivated areas 69 322
2 Ponds 33 59
3 Banks and bare soils 35 132
4 Villages 21 767
5 Wet areas 22 156
6 Valley 22 56
7 Cereals 260 816
8 Legumes 222 676

Total 734 3084

Figure 2. Overview of the taxonomy derived from the Reunion island land cover classes.

Figure 3. Overview of the taxonomy derived from the Senegalese site land cover classes.

To analyse data at object-level, a segmentation was performed for each study site in close
collaboration with the field experts to provide a convenient object layer. To this end, we used the VHSR
images at hand (i.e., SPOT6/7 and PlanetScope) which have been coregistered with the corresponding
Sentinel-2 grid to ensure a precise spatial matching. The VHSR images were segmented using the Large
Scale Generic Region Merging (LSGRM) module in the Orfeo Toolbox [34] obtaining 14,465 segments
on the Reunion island and 116,937 segments on the Senegalese site, respectively. The segmentation



Remote Sens. 2020, 12, 2814 6 of 28

algorithm parameters were adjusted by visual interpretation via several trial processes, so that the final
obtained segments fit as closely as possible land cover units of the study sites. Figures 4 and 5 show
some details about the segmentation outcomes. Subsequently, for each study site, the GT polygons
were spatially intersected with the obtained segments to provide radiometrically homogeneous class
samples. This process resulted in new labeled segments of comparable size: 7908 for the Reunion
island and 3084 segments for the Senegalese site (see Tables 1 and 2). Finally, the average pixel values
corresponding to each of these segments were extracted over the time series, giving 157 features per
segment (26 time stamps × two bands for S1 + 21 time stamps × five bands for S2) for classification
on the Reunion island and 127 features per segment (16 time stamps × two bands for S1 + 19 time
stamps × five bands for S2) for classification on the Senegalese site.

Figure 4. Some details about the segmentation performed on the Reunion island.

Figure 5. Some details about the segmentation performed on the Senegalese site.
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3. Method

Figure 6 depicts the proposed deep learning architecture, named HOb2sRNN, for the multi-source
SITS classification process. The architecture involves two branches: one for the radar SITS (left) and
one for the optical SITS (right). At the end of the per-source analysis, the results of the two branches
are merged and a final decision is made. The model automatically combines the multi-source and
multi-temporal information in an end-to-end process. The output of the model is a land cover
classification for each pair of time series (radar and optical). Each branch of the HOb2sRNN
architecture can be decomposed in two parts: (i) the time series analysis through the extended Gated
Recurrent Unit cell, we named FCGRU and (ii) the multi-temporal combination to generate per-source
features employing a modified attention mechanism. Moreover, the per branch FCGRU outputs
are concatenated and the attention mechanism is employed again to extract fused features. Finally,
the extracted per branch and fused features are leveraged to produce the final land cover classification.
Such learned features, named f eatrad, f eatopt, and f eat f used, indicate, respectively, the output of the
radar branch, the optical branch, and the source fusion. In addition, the architecture is trained
leveraging domain knowledge represented under the shape of hierarchy that organizes land cover
classes in a taxonomy with class/subclass relationships. The hierarchical information is exploited to
pretrain the HOb2sRNN architecture considering tasks of increasing complexity. Section 3.4 details
the process.

FCGRU

AttentionAttention

Fused ClassifierAuxiliary Classifier

RADAR Features
+ +

t0 t1 tm

RADAR Time Series Branch

FUSED Features

FCGRU FCGRU...

...

+

FCGRU

Attention

Auxiliary Classifier

OPTICAL Features
+

t0 t1 tn

OPTICAL Time Series Branch

FCGRU FCGRU...

...

+

Figure 6. Overview of the HOb2sRNN method. The architecture is composed of two branches, one for
each source (radar and optical) SITS. Each branch processes the SITS by means of an enriched RNN cell
we named FCGRU and an attention mechanism is employed on its outputs to extract the per source
features. Furthermore, the same attention mechanism is employed on the concatenation of the per
source outputs allowing to extract fused features. Finally, the per-source and fused feature sets are
leveraged in order to provide the final classification.

3.1. Fully Connected Gated Recurrent Unit (FCGRU)

The first part of each branch is constituted by an enriched Gated Recurrent Unit that extends
standard GRU [35]. We name such enriched GRU as Fully Connected GRU (FCGRU). In Figure 7 we
illustrate the standard GRU unit and the introduced FCGRU. The FCGRU cell extends the GRU unit
by involving two fully connected layers namely FC1 and FC2 at the beginning of the cell pipeline.
Such layers preprocess the input time series information before starting the standard GRU unit
transformation. Therefore, they allow for the architecture to extract an useful input combination
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for the classification task, enriching the original representation of the object time series. More
specifically, FC1 takes as input the object time series (radar or optical) and its output is used to feed FC2.
A Hyperbolic Tangent (tanh) non-linearity is associated to each of the fully connected layers for the
sake of consistency with the GRU unit that is mainly based on Sigmoid and tanh functions. The tanh
activation function has an S-shape and is delimited in the range [−1, 1]. Successively, the standard
GRU unit transformation is employed over the enriched representation (output of FC2). It is composed
of a hidden state ht−1, the reset gate rt, and the update gate zt. The gates regulate the information to
be forgotten or remembered during the learning process and deal with the vanishing and exploding
gradient problem. The output of the unit is the new hidden state ht. Dropout was employed in the
FCGRU cell on the ongoing states and between the two fully connected layers to prevent overfitting.
The following equations formally describe the extended GRU cell:

xt′ = tanh(W2 tanh(W1xt + b1) + b2) (1)

zt = σ(Wzxxt′ + Wzhht−1 + bz) (2)

rt = σ(Wrxxt′ + Wrhht−1 + br) (3)

ht = zt � ht−1 + (1− zt)� tanh(Whxxt + Whr(rt � ht−1) + bh) (4)

The � symbol indicates an element-wise multiplication while σ and tanh represent Sigmoid and
Hyperbolic Tangent function, respectively. xt is the time stamp input vector and xt′ is the enriched
input vector representation. The different weight matrices W∗, W∗∗, and bias vectors b∗ are the
parameters learned during the training of the model.

Figure 7. Visual representation of the GRU and FCGRU cells.

3.2. Modified Attention Mechanism

The second part of the branches consists of a modified neural attention mechanism on top of
the output hidden states produced by the FCGRU cell. Attention strategies [36–38] are widely used
in one-dimensional (1D) signal or natural language processing to combine RNN outputs at different
time stamps through a set of attention weights. In the traditional attention mechanism, the set of
weights is computed using a So f tMax function so that their values ranges in [0, 1] and their sum
is equal to 1 providing at the same time a probabilistic interpretation. Due to the sum constraint,
the So f tMax attention has the property to prioritize one instance over the others making it well
suited for tasks such as machine translation where each target word is aligned to one of the source
word [39]. However, in the remote sensing time series classification context, forcing the sum of weights
to 1 may not be fully beneficial for the attention model. In fact, considering a specific time series
classification task where almost all of the time stamps are relevant for the problem, the use of a SoftMax
function to compute attention weights will squash towards zero the attention weights since their
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sum should be one and finally the attention combination may not be efficient as expected. Therefore,
relaxing this constraint could help the model to better weight the relevant time stamps independently.
In our attention formulation, we attempted to address this point by substituting the So f tMax function
with a Hyperbolic Tangent to compute attention weights. The motivation behind the tanh attention,
in addition to the sum constraint relaxation, is that the learned attention weights will be in a wider
range i.e., [−1, 1], also allowing negative values. The equations below describe the tanh attention
formulation that we introduced:

score = tanh(H ·W + b) · u (5)

λ = tanh(score) (6)

f eat =
N

∑
i=1

λihti (7)

where H ∈ RN,d is a matrix obtained by vertically stacking all hidden state vectors hti ∈ Rd learned at
the N different time stamps by the FCGRU; λ ∈ Rd is the attention weight vector traditionally
computed by a So f tMax function that we replaced by a tanh function; matrix W ∈ Rd,d and
vectors b, u ∈ Rd are parameters learned during the process.

The described attention mechanism is employed over the FCGRU outputs (hidden states) in the
radar and optical branches to generate per-source features ( f eatrad and f eatopt). Such features encode
the temporal information related to the input sources. Furthermore, the per-source hidden states
are concatenated and an additional attention mechanism is employed over them to generate fused
features ( f eat f used). Such features encode both temporal information and complementarity of radar
and optical SITS. Thus, the architecture involves learning three sets of attention weights: λrad, λopt and
λ f used, which refers, respectively, to the attention mechanisms employed over the radar, optical and
concatenated hidden states.

3.3. Feature Combination

Once each set of features has been yielded, they are directly leveraged to perform the final land
cover classification. The combination process involves three classifiers: one main classifier on top of
the fused features and two auxiliary classifiers, one for each source features. The main classifier is
composed of two fully connected layers and a So f tMax layer. The fully connected layers are associated
to a ReLU non linearity and followed by a dropout layer each. The auxiliary classifiers are composed
of one So f tMax layer each. Auxiliary classifiers [10,14,40] are used to strengthen the complementarity
as well as the discriminative power of the per-source learned features. Their goal is to stress the fact
that the learned features need to be discriminative alone i.e., independently from each other [10,14,41].
Subsequently, the cost function associated to the optimization of the three classifiers is:

Ltotal = L( f eat f used) + α ∑
source∈{rad,opt}

L( f eatsource) (8)

where L( f eat) is the loss computed by the categorical Cross-Entropy function and associated to the
classifier fed with the features f eat. The contribution of the auxiliary classifiers is weighted by the
parameter α. The final land cover class is obtained by combining the three classifier outcomes with the
same weighting schema employed in the loss computation:

score = score f used + α ∑
source∈{rad,opt}

scoresource (9)

where score f used and scoresource are respectively the prediction scores of the fused classifier and the
auxiliary classifier associated to one of the radar or optical branch. We empirically set the value of
α to 0.5 with the aim to enforce the discriminative power of the per-source learned features while
privileging the fused features in the combination.
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3.4. Hierarchical Pretraining Strategy

With the aim to leverage specific domain knowledge about the LULC classes, the HOb2sRNN
parameters were learned exploiting the taxonomic organization associated to the classes. The training
of the model is repeated for each level of the taxonomy, from the more general to the most specific
(the target classification level). Specifically, we start training the model from the highest level of the
hierarchy and then, continue training at the next level by reusing the previously learned weights for
the whole architecture, excepting those that are associated to the classifiers, since level specific (see
Figure 8). New weights were learned for the classifiers at each level of the taxonomy. The process
is performed until we reach the target classification level. In summary, the hierarchical pretraining
strategy allows for the model to focus first on high level classification problems (i.e., crops vs non crops)
and, step by step, to smoothly adapt its behaviour to deal with classification problems of increasing
complexity. In addition, this process allows the model to tackle the classification at the target level
integrating a kind of prior knowledge on the task (based on high level classes) instead of addressing it
completely from scratch.

Figure 8. Overview of the hierarchical pretraining strategy adopted for HOb2sRNN architecture.

4. Experiments

In this section, we present and examine the experimental results obtained on the study sites
introduced in Section 2. We carried out several experimental analysis to provide a deep assessment of
the HOb2sRNN behaviour:

• an in-depth evaluation of the quantitative performances of HOb2sRNN model with respect to
several other competitors;

• a sensitivity analysis of the α hyperparameter to weight the auxiliary classifier contributions
and an ablation study of input sources and main components of the architecture in order to
characterize the interplay among them;

• a qualitative analysis of land cover maps produced by HOb2sRNN and its competitors; and,
• an inspection of the attention parameters learnt by the HOb2sRNN model with the aim to

investigate to what extent such side information contributes to the model interpretability.

4.1. Experimental Settings

To assess the quality of HOb2sRNN, we chose several approaches as competitors: a version of the
Random Forest classifier that works on the early fusion of the radar/optical sources: the radar and
optical information are concatenated together and the model is fed with this information [17] (RF);
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a version of the Random Forest classifier that works on the late fusion of the source information,
as described in [42]: a RF model is trained for each of the input sources and, then, the combination is
achieved via the product of per-source RF model outputs (RFPOE); a Support Vector Machine (SVM),
a Multi Layer Perceptron (MLP) as the one employed as main classifier of the HOb2sRNN
architecture, the Temporal Convolutional Neural Network (TempCNN) proposed by [43] that performs
convolutions on the temporal dimension of the time series information and the OD2RNN model
proposed in [15]. Like the RF, the SVM and MLP models were run on the concatenation of the
multi-temporal and multi-source data. For the TempCNN model, we set up an architecture with
2 branches, one per source, sharing the same convolutional structure as described in [43]. The outputs
of the two branches were successively concatenated and fed into the classifier module. The OD2RNN
model was employed with the same structure and parametrization considered in [15]. Trainable
parameters of neural network approaches i.e., MLP, TempCNN, OD2RNN, and HOb2sRNN models
are reported in Table 3 .

Table 3. Trainable parameters of neural network approaches i.e., MLP, TempCNN, OD2RNN,
and HOb2sRNN on both study sites.

Trainable Parameters Reunion Senegal

MLP 349,195 332,809
TempCNN 465,739 268,617
OD2RNN 2,173,761 2,160,667

HOb2sRNN 4,391,810 4,382,576

The values of the datasets were normalized per band, when considering the time series, in the
interval [0, 1]. The datasets were split into training, validation and test set with a proportion of 50%,
20% and 30% of samples (labeled segments), respectively. We imposed that segments belonging
to the same ground truth polygon before the spatial intersection (see Section 2.3) were exclusively
assigned to one of the data partition (training, validation or test) with the aim to avoid possible spatial
bias in the evaluation procedure. The models were optimized via training/validation procedure [28]
(settings are reported in Table 4). Their assessment was done using test set and considering following
metrics: Accuracy (global precision), F1 score (harmonic mean of precision and recall), and Cohen’s
Kappa (level of agreement between two raters relative to chance). Because the model performances
may vary depending on the split of the data due to simpler or more complex samples involved in
the different partitions, all metrics were averaged over ten random splits of the datasets following
the strategy mentioned above. Experiments were carried out on a workstation with an Intel Xeon
CPU, 256 GB of RAM and four TITAN X GPU. In such environment, the HOb2sRNN model takes
approximately 16 h (resp. 4.5 h) to complete training on Reunion island (resp. Senegalese site) while
testing needs around one minute on both study sites. The neural net models were implemented
using the Python Tensorflow library, while other implementations were obtained from the Python
Scikit-learn library [44]. The implementation of the HOb2sRNN model is available at https://github.
com/eudesyawog/HOb2sRNN.

https://github.com/eudesyawog/HOb2sRNN
https://github.com/eudesyawog/HOb2sRNN
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Table 4. Hyperparameter settings of the competing methods. RF and SVM method hyperparamaters
were optimized by varying associated values while MLP, TempCNN, OD2RNN and HOb2sRNN model
hyperparameters were empirically fixed.

Method Hyperparameter Value or Range

RF
Number of trees {100, 200, 300, 400, 500}
Maximum depth {20, 40, 60, 80, 100}

Maximum features {’sqrt’, ’log2’, None}

SVM
Kernel {’linear’, ’poly’, ’rbf’, ’sigmoid’}

Gamma {0.25, 0.5, 1,2}
Penalty {0.1, 1, 10}

MLP
Hidden units 512
Hidden layers 2
Dropout rate 0.4

HOb2sRNN

FCGRU units 512 for each hidden state
FC1 units 64
FC2 units 128

Main classifier units 512 for each layer
Dropout rate 0.4

All neural network models

Batch size 32
Optimizer Adam [45]

Learning rate 1× 10−4

Number of epochs 2000 (per level for HOb2sRNN)

4.2. Comparative Analysis

In this evaluation, we compare the results that were obtained by the different competing methods,
considering their overall and per-class behaviours.

4.2.1. General Behaviour

Table 5 reports the average performances obtained on the two study sites. We can note that the
proposed method outperformed its competitors on both study sites, although the performance gap is
more pronounced on the Reunion island dataset than on the Senegalese site. This behaviour may be
due to the fact that the Reunion island benchmark has more ground truth samples (about eight times)
than the Senegalese dataset. In fact, deep learning models are known to be effective when trained on
huge volumes of data. Concerning the other competing methods, RF and SVM achieve similar scores
on the Reunion island, while SVM surpasses RF on the Senegalese site. On this latter benchmark,
the SVM algorithm demonstrates to be well suited for dataset characterized by a limited set of labeled
samples. We also note that, on both study sites, the RFPOE competitor was less effective than the RF
variant which is fed with the concatenated sources. As regards the MLP and TempCNN competitors,
both achieved lower scores than HOb2sRNN on the Reunion island, while the performance of the
MLP is comparable to that of HOb2sRNN on the Senegalese site. Moreover, the OD2RNN model
performances on both study sites indicate the added value of extensions provided by the HOb2sRNN
model. It should be noted that the relatively better performance obtained on the Senegalese site
compared to the Reunion island (90.78 vs. 79.66) may come from the topography of the two sites.
In fact, Reunion island is characterized by a rugged topography while the Senegalese site is essentially
flat. Relief effects, like shadow or orientation, can induce biases in the discrimination of land cover
classes impacting much more the Reunion island [14].
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Table 5. F1 score, Kappa, and Accuracy considering the different methods on each study site (results
averaged over ten random splits). We have highlighted the best scores in bold.

Reunion F1 Score Kappa Accuracy

RFPOE 74.26 ± 0.75 0.713 ± 0.009 74.72 ± 0.78
RF 75.62 ± 1.00 0.726 ± 0.011 75.75 ± 0.98

SVM 75.34 ± 0.88 0.722 ± 0.010 75.39 ± 0.89
MLP 77.96 ± 0.70 0.752 ± 0.008 78.03 ± 0.66

TempCNN 77.76 ± 1.06 0.749 ± 0.012 77.79 ± 1.05
OD2RNN 74.39 ± 1.14 0.712 ± 0.012 74.50 ± 1.09

HOb2sRNN 79.66 ± 0.85 0.772 ± 0.009 79.78 ± 0.82

Senegal F1 Score Kappa Accuracy

RFPOE 85.31 ± 0.50 0.816 ± 0.006 85.45 ± 0.48
RF 86.31 ± 0.91 0.828 ± 0.012 86.35 ± 0.90

SVM 89.95 ± 0.85 0.875 ± 0.011 89.96 ± 0.85
MLP 90.05 ± 0.56 0.876 ± 0.007 90.07 ± 0.57

TempCNN 88.81 ± 0.58 0.861 ± 0.007 88.83 ± 0.58
OD2RNN 88.35 ± 0.72 0.855 ± 0.009 88.34 ± 0.72

HOb2sRNN 90.78 ± 1.03 0.885 ± 0.013 90.78 ± 1.03

4.2.2. Per-Class Analysis

Figures 9 and 10 show the per-class F1 scores obtained by the different methods on the
Reunion island and the Senegalese site, respectively. Concerning the Reunion site, we can observe
that HOb2sRNN achieves the best performances on the majority of land cover classes excepted some
classes where other competing methods i.e., RF or MLP obtained slightly better scores that are still
comparable to the ones achieved by our framework. It is worth noting how the proposed method
outperforms its competitors particularly on agricultural/vegetation classes such as Sugarcane, Pasture
and fodder, Market gardening or Orchards. This particular efficiency on such classes suggests that
the HOb2sRNN architecture is well suited to deal with the temporal dependencies characterizing
these land cover classes. As regards the Senegalese site, HOb2sRNN per-class scores are moderate.
It achieved the best scores on 4 land cover classes over 9 namely Fallows, Ponds, Cereals and Legumes
while other competing methods outperformed its results especially on the Valley class. Nonetheless,
it should be remarked that also in this case, HOb2sRNN obtained the best results on land cover classes
that exhibit a time-varying behaviour. It is common to observe natural vegetation activity on fallows
areas; ponds appear during the rainy season while cereals and legumes follow crop growth cycle.
These findings are inline with the previous observations made on the Reunion island and confirm the
fact that the proposed method is capable to leverage temporal dependencies to made its decisions.
To go further with the per-class analysis, we also investigated the confusions matrices of each method
on the two study sites. Concerning the Reunion island (Figure 11), all of the methods exhibit similar
behaviours. This is particularly evident between Greenhouse crops and Urbanized areas classes
even if confusions between land cover classes are reduced from RFPOE (Figure 11a) to HOb2sRNN
(Figure 11b) as can be observed. Overall, the per-class analysis is coherent with the findings we
got from the previous analysis. Apropos of the Senegalese site (Figure 12), confusions vary sensibly
regarding the different methods. RFPOE (Figure 12a) and RF (Figure 12b) exhibits more confusions on
Bushes and Fallows classes that are highly misclassified with Cereals and a little bit less with Legumes,
while Ponds are often confused with Wet areas. The other competitors tend to reduce these confusions,
as underlined by their confusion matrix.
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Figure 9. Per-Class F1 score for the Reunion island (average over ten random splits).

Figure 10. Per-Class F1 score for the Senegalese site (average over ten random splits).

(a) RFPOE (b) RF

(c) SVM (d) MLP

Figure 11. Cont.
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(e) TempCNN (f) OD2RNN

(g) HOb2sRNN

Figure 11. Confusion matrices of the land cover classification produced by (a) RFPOE, (b) RF, (c) SVM,
(d) MLP, (e) TempCNN, (f) OD2RNN and (g) HOb2sRNN on the Reunion island. See Table 1 for
corresponding labels.

(a) RFPOE (b) RF

(c) SVM (d) MLP

Figure 12. Cont.
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(e) TempCNN (f) OD2RNN

(g) HOb2sRNN

Figure 12. Confusion matrices of the land cover classification produced by (a) RFPOE, (b) RF, (c) SVM,
(d) MLP, (e) TempCNN, (f) OD2RNN and (g) HOb2sRNN on the Senegalese site. See Table 2 for
corresponding labels.

4.3. Sensitivity and Ablation Analysis

In this part of the evaluation, we conduct a sensitivity analysis regarding the influence of the
weights of the auxiliary classifiers and, then, we perform several ablation studies to better characterize
the behaviour of our framework. For the latter point, we considered the role of multi-source
information (radar vs optical SITS), the role of the different architecture components disentangling
their contributions and the interplay between spectral bands and radiometric indices (NDVI) regarding
the optical signal.

4.3.1. Sensitivity Analysis on the Weights of Per-Source Auxiliary Classifiers

Here, we analyse how the α weights that are associated to the contribution of the auxiliary
classifiers influence the classification performances of our framework. To this end, we vary α in the
range [0.1, 0.7] with a step of 0.1 and we consider the F1 score measure. Figure 13 reports the results of
such analysis. Regarding the Senegal study site, the F1 score varies from 89.35 when α is equal to 0.1 to
90.78 when α is equal to 0.5. Concerning the Reunion study site, the F1 score varies from 79.02 when α

is equal to 0.4 to 79.87 when the weight is equal to 0.6.
Generally, we can note that all of the obtained F1 score are competitive w.r.t. the behaviour

exhibited by the other methods (see Table 5) and, the performances of HOb2sRNN are quite stable
when considering the different values on which α ranges.
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Figure 13. Sensitivity analysis of the α weights that are associated to the importance of the auxiliary
classifiers in HOb2sRNN regarding the F1 score. Standard deviation is displayed as error bar.

4.3.2. Ablation on the Multi-Source Data

In this stage of experiments, we considered only one source time series (radar or optical) to
perform the land cover classification. An unique branch was employed for the TempCNN, OD2RNN
and HOb2sRNN models. Regarding the results that are reported in Tables 6 and 7, the radar time series
has a specific behaviour for each of the considered study site. If radar signal is quite discriminating
on the Senegalese site, this is not really the same for the Reunion island, considering how poorly the
competing methods trained on the radar SITS performed, especially the SVM algorithm. As mentioned
earlier (Section 4.2.1), the Reunion island is characterized by a rugged relief compared to the Senegalese
site which is almost flat. Because radar signal is much more sensitive to high ground relief than optical,
the performances of the competing methods are negatively impacted when trained with radar data
only on the Reunion. Thus, the majority of the models i.e., (RF, SVM, MLP, TempCNN, and OD2RNN)
performed slightly worst or equally when combining both sources due to the noise that seems to
come from the radar signal. However, HOb2sRNN was able to better leverage the complementarity
between radar and optical data to improve with both sources. This behaviour is also noticeable on the
Senegalese site where HOb2sRNN achieved better performances than its competitors even though all
the competitors improved with both sources. For the rest, regardless of the study site, there is no trend
on which competing the method better deals with radar or optical time series. Nonetheless, we have
observed on both sites that the SVM algorithm seems not well suited to exploit radar information.

Table 6. F1 score, Kappa, and Accuracy of the different methods considering the per-source ablation
analysis on the Reunion island (results averaged over ten random splits). We have highlighted the best
scores in bold.

Sentinel-1 F1 Score Kappa Accuracy

RF 36.77 ± 0.93 0.291 ± 0.011 37.85 ± 0.95
SVM 6.56 ± 0.36 0.018 ± 0.009 16.85 ± 0.53
MLP 34.93 ± 1.42 0.271 ± 0.016 36.01 ± 1.39

TempCNN 32.28 ± 1.19 0.239 ± 0.013 33.17 ± 1.17
OD2RNN 31.83 ± 0.98 0.234 ± 0.012 32.71 ± 1.01

HOb2sRNN 31.80 ± 1.10 0.231 ± 0.011 32.39 ± 1.04

Sentinel-2 F1 Score Kappa Accuracy

RF 76.24 ± 0.59 0.732 ± 0.007 76.32 ± 0.63
SVM 75.55 ± 0.80 0.724 ± 0.009 75.60 ± 0.80
MLP 77.95 ± 0.69 0.751 ± 0.008 77.98 ± 0.73

TempCNN 78.25 ± 0.88 0.755 ± 0.010 78.27 ± 0.90
OD2RNN 74.55 ± 0.81 0.714 ± 0.008 74.66 ± 0.72

HOb2sRNN 78.69 ± 0.95 0.761 ± 0.010 78.79 ± 0.91
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Table 6. Cont.

Both Sources F1 Score Kappa Accuracy

RFPOE 74.26 ± 0.75 0.713 ± 0.009 74.72 ± 0.78
RF 75.62 ± 1.00 0.726 ± 0.011 75.75 ± 0.98

SVM 75.34 ± 0.88 0.722 ± 0.010 75.39 ± 0.89
MLP 77.96 ± 0.70 0.752 ± 0.008 78.03 ± 0.66

TempCNN 77.76 ± 1.06 0.749 ± 0.012 77.79 ± 1.05
OD2RNN 74.39 ± 1.14 0.712 ± 0.012 74.50 ± 1.09

HOb2sRNN 79.66 ± 0.85 0.772 ± 0.009 79.78 ± 0.82

Table 7. F1 score, Kappa, and Accuracy of the different methods when considering the per-source
ablation analysis on the Senegalese site (results averaged over ten random splits). We have highlighted
the best scores in bold.

Sentinel-1 F1 Score Kappa Accuracy

RF 75.71 ± 1.03 0.703 ± 0.013 76.56 ± 1.00
SVM 71.27 ± 0.82 0.653 ± 0.010 72.82 ± 0.78
MLP 78.96 ± 1.28 0.738 ± 0.015 79.05 ± 1.23

TempCNN 77.79 ± 0.79 0.725 ± 0.010 78.01 ± 0.80
OD2RNN 75.07 ± 1.59 0.692 ± 0.019 75.34 ± 1.50

HOb2sRNN 77.42 ± 1.33 0.721 ± 0.016 77.63 ± 1.27

Sentinel-2 F1 Score Kappa Accuracy

RF 84.51 ± 1.17 0.806 ± 0.015 84.60 ± 1.17
SVM 88.64 ± 0.47 0.858 ± 0.006 88.63 ± 0.45
MLP 88.38 ± 0.61 0.855 ± 0.008 88.40 ± 0.62

TempCNN 87.42 ± 1.02 0.843 ± 0.013 87.42 ± 1.04
OD2RNN 86.03 ± 0.75 0.826 ± 0.010 86.01 ± 0.75

HOb2sRNN 87.56 ± 1.33 0.845 ± 0.017 87.55 ± 1.33

Both Sources F1 Score Kappa Accuracy

RFPOE 85.31 ± 0.50 0.816 ± 0.006 85.45 ± 0.48
RF 86.31 ± 0.91 0.828 ± 0.012 86.35 ± 0.90

SVM 89.95 ± 0.85 0.875 ± 0.011 89.96 ± 0.85
MLP 90.05 ± 0.56 0.876 ± 0.007 90.07 ± 0.57

TempCNN 88.81 ± 0.58 0.861 ± 0.007 88.83 ± 0.58
OD2RNN 88.35 ± 0.72 0.855 ± 0.009 88.34 ± 0.72

HOb2sRNN 90.78 ± 1.03 0.885 ± 0.013 90.78 ± 1.03

4.3.3. Ablation on the Main Components of the Architecture

In this part, we investigate the interplay among the different components of HOb2sRNN and
we disentangle their benefits in the architecture. We considered both time series (radar and optical),
but excluded one of the following components at a time: the three attention mechanisms involved
in the architecture (naming NoAtt), the hierarchical pretraining process (naming NoHierPre) and
the enrichment step involved the FCGRU cell which is equivalent to using a GRU cell (naming
NoEnrich). We also investigated the use of traditional So f tMax attention mechanism instead of the
modified one in the HOb2sRNN architecture. More in detail, this variant also involves the feature
enrichment component in the FCGRU cell and the hierarchical pretraining process. We named it
SoftMaxAtt. The results are reported in Table 8. Concerning the use of attention mechanisms
or not (NoAtt, So f tMaxAtt and HOb2sRNN), we can observe how these components contribute
to the final classification performances on both study sites, more on the Reunion island (about
2 points of improvement) than the Senegalese site (approximately one point). We can also note
that the So f tMaxAtt variant performs similarly to the NoAtt variant and lower than the HOb2sRNN
architecture confirming our hypothesis that relaxing the constraint that the attention weights may
sum to 1 in the attention process could be more suitable for remote sensing context. As regards the
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use of the hierarchical pretraining process (noHierPre vs HOb2sRNN), we can note the added value
of such step on both study sites obtaining more than 1 point of improvement. These results seem to
underline that involving domain specific knowledge in the pretraining process of neural networks can
improve the final classification performances. Finally, the enrichment step carried out in the FCGRU
cell (noEnrich vs. HOb2sRNN) also demonstrates its usefulness in both study sites, however it seems
to be more effective on the Senegalese site.

Table 8. F1 score, Kappa, and Accuracy considering different ablations of HOb2sRNN on the study
sites (results averaged over ten random splits). We have highlighted the best scores in bold.

Reunion F1 Score Kappa Accuracy

noAtt 77.66 ± 0.99 0.749 ± 0.011 77.74 ± 0.99
So f tMaxAtt 77.32 ± 1.22 0.746 ± 0.013 77.47 ± 1.18

noHierPre 78.35 ± 0.70 0.756 ± 0.007 78.43 ± 0.66
noEnrich 79.09 ± 0.57 0.764 ± 0.006 79.10 ± 0.50

HOb2sRNN 79.66 ± 0.85 0.772 ± 0.009 79.78 ± 0.82

Senegal F1 Score Kappa Accuracy

noAtt 89.86 ± 0.62 0.874 ± 0.008 89.89 ± 0.63
So f tMaxAtt 89.91 ± 0.54 0.874 ± 0.007 89.92 ± 0.52

noHierPre 89.25 ± 0.88 0.866 ± 0.011 89.24 ± 0.87
noEnrich 89.12 ± 0.64 0.864 ± 0.008 89.11 ± 0.64

HOb2sRNN 90.78 ± 1.03 0.885 ± 0.013 90.78 ± 1.03

4.3.4. Ablation on Optical Information

We evaluate here whether the NDVI index as additional optical descriptor has an impact on the
final land cover classification obtained using the HOb2sRNN architecture. Indeed, considering NDVI
index as additional feature in land cover classification task was obvious when training conventional
machine learning algorithms, since such techniques cannot extract specialized features for a specific
task at hand [46]. Nowadays, the new paradigm related to deep (representational) learning [46] is
emerging and demonstrating to be more and more effective in the field of remote sensing [47]. Neural
networks have the ability to extract features optimised for a specific task (when enough data are
available) avoiding the necessity to extract hand-crafted features. Thus, employing spectral indices,
like NDVI, as additional features to deal with land cover classification could not be necessary when
using neural networks. Therefore, we evaluate on the two study sites our model performances while
excluding the NDVI index from the input (optical) time series. We named such variant noNDVI.
The results are reported in Table 9.

Table 9. F1 score, Kappa, and Accuracy when considering the exclusion of Normalized Difference
Vegetation Index (NDVI) index on the study sites (results averaged over ten random splits). We have
highlighted the best scores in bold.

Reunion F1 Score Kappa Accuracy

noNDVI 79.83 ± 0.70 0.774 ± 0.008 79.95 ± 0.68
HOb2sRNN 79.66 ± 0.85 0.772 ± 0.009 79.78 ± 0.82

Senegal F1 Score Kappa Accuracy

noNDVI 90.46 ± 0.82 0.881 ± 0.010 90.46 ± 0.82
HOb2sRNN 90.78 ± 1.03 0.885 ± 0.013 90.78 ± 1.03

We can note on both study sites that there is no significant difference in the model performance
when NDVI is excluded. noNDVI performs slightly better than HOb2sRNN on the Reunion island and
inversely on the Senegalese site. These small variations come from model properties such as kernel
weight initialization or parameter optimization that can induce such kind of performance fluctuations.
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To conclude, this experiment underlines that our model, considering the two study sites involved
in the experimental evaluation, is able to overcome the use of such common hand-crafted features
achieving the same performances in the land cover classification task. Such a result makes a step
further on the comprehension of which hand-crafted features are convenient (or not) to be extracted
during the preprocessing step as well as save time, computation, and storage resources during the
analysis pipeline.

4.4. Qualitative Analysis of Land Cover Maps

With the purpose to investigate some differences in the land cover maps produced by the
competing methods, we highlight in Figures 14 and 15 some representative map details of the Reunion
island and the Senegalese site, respectively. For each study site, we remind that land cover maps were
produced by labeling each of the segments (14,465 on the Reunion island or 116,937 on the Senegalese
site) obtained after the VHSR image segmentation (SPOT6/7 or PlanetScope). For each example,
we supplied the corresponding VHSR image displayed in RGB colour as reference. Concerning
Reunion island, we focused in the first example (Figure 14b–h), on the Saint-Pierre mixed coastal
urban and agricultural area. In this example, we can note the confusions highlighted in the per-class
analysis between urbanized areas and greenhouse crops. Visually, RF models (RFPOE particularly)
better classifies urbanized areas. The second example (Figure 14j–p) depicts a mixed agricultural
area with natural vegetation neighboring. We can note here that HOb2sRNN detects a realistic
amount of orchards with respect to other methods, according to field experts. In addition, we can
also observe on the right of this extract that RF wrongly classified as sugar cane plantations some
wooded areas, moor, and savannah objects. Moreover, at the bottom left of the OD2RNN map, we can
highlight the misclassification that arises between Rocks and Water classes. Regarding the Senegalese
site, the first example (Figure 15b–h) depicts a wet area near the Diohine village located in the east.
While other competitors tend to provide the correct representation of the wet area, RF methods wrongly
detect villages. As pointed out in previous map details concerning Sugarcane and Orchards on the
Reunion island study site, RF predictions is sometimes biased towards most represented classes in
the training data i.e., Sugarcane, Orchards in the case of Reunion island and Villages here. In fact,
RF is known to be sensible to class imbalance [48]. The second example (Figure 15j–p) focused on a
rural landscape, including built-up (villages) and agricultural activities. Here, RF models map more
legumes than the other methods while the rest of the approaches detect fallows and cereals instead.
To sum up, these visual inspections of land cover maps are consistent with the previously obtained
quantitative results.

Detail 1: A mixed coastal urban and agricultural area

(a) RGB Image (b) RFPOE (c) RF (d) SVM

(e) MLP (f) TempCNN (g) OD2RNN (h) HOb2sRNN

Figure 14. Cont.
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Detail 2: A mixed agricultural and natural vegetation area

(i) RGB Image (j) RFPOE (k) RF (l) SVM

(m) MLP (n) TempCNN (o) OD2RNN (p) HOb2sRNN

Figure 14. Qualitative investigation of land cover map details produced on the Reunion island study
site over a mixed urban/agricultural area (top) and an agricultural/natural vegetation area (bottom).

Detail 1: A rural landscape including a wet area

(a) RGB Image (b) RFPOE (c) RF (d) SVM

(e) MLP (f) TempCNN (g) OD2RNN (h) HOb2sRNN

Detail 2: A rural landscape including buildings and agricultural activities

(i) RGB Image (j) RFPOE (k) RF (l) SVM

Figure 15. Cont.



Remote Sens. 2020, 12, 2814 22 of 28

(m) MLP (n) TempCNN (o) OD2RNN (p) HOb2sRNN

Figure 15. Qualitative investigation of land cover map details produced on the Senegalese study site
over heterogeneous landscapes including buildings, agricultural, and wet areas.

4.5. Attention Parameters Analysis

In this last part of our experimental results, we explore the side information provided by
the attention mechanism introduced in Section 3.2 in order to get meaningful insights about how
HOb2sRNN handles the multi-source time series for the land cover classification task. Attention
weights have been successfully employed in the field of NLP [36,38,49] to explain which parts of the
input signal contribute to the final decision of RNN models. With the aim to set up an analogous
analysis in the remote sensing time series classification context, we considered attention weights on the
Senegalese site with a particular interest on crops (cereals and legumes) motivated by the agronomic
knowledge we obtained from discussions with field experts.

Figure 16 depicts the distribution of the attention weights on cereals and legumes land covers.
For the sake of simplicity, we only focused on the attention mechanism employed to support the fused
classifier. At first glance, we can observe that the model weights quite similarly the radar and optical
time stamps on both classes. We can also notice that some time stamps towards the end of each time
series are highly weighted. It is interesting to note that correlation exists between these high attention
values and the crops growth. In the Senegalese groundnut basin, vegetation reaches its peak activity,
in fact, during the August month (middle of the time series) also characterized by heavy rain amount,
all inducing more differentiation among land cover classes. However, on the two last optical time
stamps (25/10/2018 and 30/10/2018), attention weights were differently attributed when considering
the two crop types. Cereals get more important weights for these two timestamps than legumes.
This behaviour seems to be associated to the agricultural practices adopted in the area at the end of the
season. While cereals (mainly millet) are harvested cutting only the ears, legumes (mainly groundnut)
are torn off. Thus, on these latter time stamps, cereal plots are covered by senescent plants while
legume plots turn into bare soils. These practices are visible in the SITS and illustrated in Figure 17.
To wrap up this analysis, we have observed that correlations exist between the attention weights learnt
by HOb2sRNN and agricultural practices that characterized the considered study areas. As underlined
by our findings, the exploration of the attention parameters can support the understanding of the
decision made by our model and provides useful insights about the information that is contained in
the SITS under the lens of agricultural field practices.
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(a) Cereals class

(b) Legumes class

Figure 16. Box plots of the attention weights on cereals and legumes land covers considering the
multi-source time series.

(a) 05/10/2018 (b) 10/10/2018

(c) 25/10/2018 (d) 30/10/2018

(e)

Figure 17. Visualization of end of season agricultural practices in the Senegalese groundnut basin
concerning cereals and legumes land covers. Background images come from the Sentinel-2 time series
and are displayed in Green–Red–Infrared composite colours.
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5. Discussion

To summarize, the proposed deep learning framework exhibits convincing performances in
land cover mapping considering situations characterized by a realistic amount of available training
samples. The comparison with other machine learning approaches underlines three points: (i) our
approach clearly outperforms the RF classifier that is a common strategy employed to deal with SITS
classification; (ii) other standard machine learning methods, i.e., SVM and MLP, exhibit competitive
behaviours with respect to our method on a study site that involves a small amount of labeled
samples; and, (iii) our proposal surpasses, on both study sites, the adaptation of the recent TempCNN
competitor for the multi-source scenario. Such result points out again that, beyond modelling the
temporal correlation exhibited by SITS data via RNN or CNN approaches, in a multi-source context
other features be worthy to be considered: the hierarchical class relationships as well as the way in
which radar/optical information may be combined.

The ablation study indicates that HOb2sRNN is capable to exploit the complementarity between
the radar and optical information, always improving its performances with respect to using only one
of the two sources. Our framework integrates background knowledge via hierarchical pretraining
leveraging taxonomic relationships between land cover classes. The experiments highlight that such
knowledge seems valuable for the model and it systematically ameliorates its behaviour. On the other
hand, some other type of considered knowledge, i.e., the NDVI index, seems less effective due to
the fact that, probably, the model is capable to overcome it. Such observation was also highlighted
by [43]. These points clearly pave the way to further investigation about which and how knowledge
can be injected to guide/regularize the learning process of such techniques. In addition, the analysis
conducted on the α hyperparameter demonstrates that the integration of the auxiliary classifiers, in the
training procedure, brings added value still considering small weighting values.

When considering the model interpretability, we have also provided some qualitative studies
about the side information that can be extracted from our framework. The qualitative results we obtain
are in line with the agronomic knowledge we obtained from the considered study area. Make the
black box grey is an hot topic today in the machine learning community [50] and we can state, with a
certain margin of confidence, that solutions or answers associated to this question will be available in
a near future.

We recall that our framework works under an OBIA setting. This means that its performances
are tightly related to the quality of the underlying segmentation process that is sensitive to several
elements [51], for example: the employed segmentation algorithm, since different algorithms show
different pros and cons; the determination of the scale parameter for the particular segmentation
algorithm, since useful information can be available at different scales and the co-registration among
different sources when working with multi-source data. If on one side, all of these elements carrying
in opportunities to properly model the underlying information available in the considered remote
sensing data for the analysis at hand, on the other side they can constitute possible sources of errors
that are propagated until the land cover mapping result. We underline that it is out of the scope
of this work to investigate how such elements impact the subsequent analysis since they deserve a
complete and extensive study also in light of the recent adoption of deep learning techniques in the
remote sensing domain. Here, we have focused our effort on the multi-source land cover mapping task
assuming that the object layer, derived by the segmentation, is an input of our framework. For this
reason, we believe that progress in the OBIA field, improving the extraction of the object layer from
remote sensing data, can only ameliorate downstream analysis, like the one proposed in this work.

Finally, we remind that operational/realistic constraints might be considered when dealing with
remote sensing analysis. Constraints can be related to available resources, i.e., timely production of land
cover maps or limited access to training samples. We are aware that, in operational/realistic scenario
characterized by the almost real-time production of land cover maps (i.e., disaster management [52]),
more computationally efficient solutions needs to be preferred (i.e., MLP or SVM) to deep learning
approaches. On the other hand, in our work, we deal with (agricultural-oriented) land cover mapping
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where, land cover maps need to be provided with a relative low time frequency (once or twice per
year). Due to this fact, here, the operational constraints are mainly intended regarding the limited
amount of available labeled samples. In such data paucity setting, our approach clearly outperforms
the Random Forest classifier, which is the de facto strategy involved in the operational classification
of SITS data [53]. In addition, the experimental evaluation pointed out that, less explored machine
learning techniques in the context of SITS analysis, i.e., SVM and MLP, deserve much attention, since
they constitute valuable strategies to which compare future proposals.

6. Conclusions

In this work, we propose dealing with land cover mapping at object level, from multi-temporal
and multi-source (radar and optical) data. Our approach is based on an enriched RNN cell and
involved a modified attention mechanism devised to better suit the SITS data context. We also
introduce a hierarchical pretraining approach for the architecture which integrates specific knowledge
from land cover classes to support the land cover mapping task. Extensive quantitative and qualitative
evaluations on two study sites demonstrate the effectiveness of our solution as compared to competitive
approaches in the field of land cover mapping with SITS data. As future work, we plan to extend the
current framework in order to also leverage spatial dependencies in multi-source SITS, which are often
neglected, especially in the OBIA setting. In addition, the great popularity of Transformer models [54]
in the field of Natural Language Processing for handling sequential data makes them a potential way
of fusing multi-temporal and multi-source remote sensing data in subsequent research.
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