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Semi-supervised learning is a family of classification methods
conceived to reduce the amount of required labeled information
in the training phase. Graph-based methods are among the most
popular semi-supervised strategies: a nearest neighbor graph is
built in such a way that the manifold of the data is captured
and the labeled information is propagated to target samples
along the structure of the manifold. Research in graph-based
semi-supervised learning has mainly focused on two aspects: i)
the construction of the k-nearest neighbors graph and/or ii) the
propagation algorithm providing the classification. Differently
from the previous literature, in this paper we focus on data
representation with the aim of incorporating semi-supervision
earlier in the process. To this end, we propose an algorithm that
learns a new knowledge-aware data embedding via an ensemble
of semi-supervised autoencoders to enhance a graph-based semi-
supervised classification. The experiments carried out on different
classification tasks demonstrate the benefit of our approach.

Index Terms—semi-supervised learning, autoencoders, data
embedding, ensembles

I. INTRODUCTION

Data labeling is a time-consuming and cost-prohibitive task.
To cope with this issue, semi-supervised learning (SSL) meth-
ods were conceived to reduce as much as possible the amount
of labeled information required to train a classification model
by taking advantage of the abundant and rich information
provided by unlabeled samples. Among the different algo-
rithmic solutions proposed, those based on graph-based label
propagation constitute one of the main families of transductive
semi-supervised techniques. In graph-based semi-supervised
learning (GBSSL), the data samples constitute the nodes of a
nearest neighbor graph that is constructed so as to capture the
manifold of the data. The classification is then performed by
propagating the information from labeled to unlabeled samples
along the edges of the graph.

Standard GBSSL pipelines usually involve two steps [1]: i)
construction of a k-Nearest Neighbors (kNN) graph without
using the information supplied by the labels, and ii) prop-
agation of the label information across the graph through a
learning algorithm. Figure 1(a) describes the standard pipeline
adopted for the GBSSL scenario where the kNN graph is de-
rived directly from the data and the labels are only introduced
as input of the classification algorithm. Most research efforts
related to GBSSL mainly address these two aforementioned
points. For instance, [1] proposes a solution to the problem of
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Fig. 1. Standard GBSSL pipeline (a) and knowledge-aware GBSSL pipeline
(b) where label information is considered earlier in the process.

over sparsification affecting the construction of kNN graphs.
Similarly, many approaches were proposed [2], [3], [4] to ad-
dress the label propagation problem, and the main differences
among them are related to which structural characteristic of
the graph is considered as predominant.

Despite the huge research efforts in improving SSL al-
gorithms, to the best of our knowledge, with the exception
of the work presented in [5], none of the previous work
on GBSSL addresses the challenge of integrating label in-
formation at an early stage of the pipeline. In this work,
we tackle exactly this problem: Figure 1(b) depicts our pro-
posed strategy according to which the label information is
exploited earlier in the pipeline. The kNN graph, in fact,
is built upon the new embedding representation learnt by
our approach, called SESAM (SEmi-Supervised Autoencoder
enseMble). Our contribution consists in learning a knowledge-
aware data embedding that successively feeds a standard trans-
ductive GBSSL pipeline. To this purpose, we propose to learn
such knowledge-aware embedding using a semi-supervised
autoencoder (SSAE). Autoencoders are neural network models
mainly employed to learn new data representations setting up
a reconstruction task that encodes and decodes the original
data. The encoder compresses the data into an embedded
representation while the decoder reconstructs the original
data from such embedding. The neural network layer that
produces the embedding is called bottleneck layer. A semi-
supervised autoencoder extends the autoencoder by integrating
a classification task alongside reconstruction. More precisely,
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the bottleneck layer is exploited for both reconstruction and
classification. Most of the previous literature involving semi-
supervised autoencoders [6], [7] makes the assumption that
all the examples, used to feed the deep learning model,
are associated to a label information and, successively, the
reconstruction as well as the classification task are managed
at the same time over all the data. Here, differently from
those strategies [8], [7], we do not have labels for all the
data seen by the model. More precisely, we have only a
small portion of the data with associated label information.
To cope with this scenario, we propose a different strategy
that does not require fully labeled data. More in detail, at
each training epoch, two learning mechanisms are alternated:
the first performs a reconstruction task involving the whole set
of data, while the second tackles the reconstruction as well as
the classification task considering only the portion of labeled
data. Furthermore, we leverage an ensemble of diverse SSAEs
to build the final data embedding. The intuition behind this
choice is that an ensemble of network models captures the
multifaceted relationships that naturally exist in the data [9],
[10]. Our experimental study demonstrates the effectiveness
of our proposal: by comparing the performances of SESAM
in conjunction with a state-of-the-art transductive GBSSL
algorithm w.r.t. the same GBSSL algorithm coupled with other
strategies, we show that injecting as soon as possible the label
information in the transductive classification process leads to
better classification results.

II. BACKGROUND

In a common transductive semi-supervised learning sce-
nario, we can distinguish two sets of examples: Xu = {xi}Ni=1

that is a set of N examples without associated class in-
formation, and X l = {(xj , yj)}Mj=1 of M examples with
an associated class information. More in detail, each data
example xj ∈ X l has an associated label variable yj ∈ C,
where C is the set of possible labels. Generally, the set of
unlabeled examples is much bigger than the set of labeled ones
(N >> M ) with the more realistic scenario where only very
few examples (e.g., one) per class exist. The objective of the
methods dealing with the semi-supervised learning scenario
is to propagate the label information from the labeled set X l

to the unlabeled Xu resulting in the classification of all the
unlabeled examples in the dataset according to the predefined
set of classes in C. Note that, in a transductive learning
scenario both training and test examples are available when
the model is learnt.

GBSSL is a class of approaches that enables classification
when very few information about labels exists. An algorithm
of this family first builds a nearest neighbor graph G = (V,E)
where the set V of nodes in the graph corresponds to the whole
set of examples (Xu ∪ X l), and E is a set of edges such
that (xi, xj) ∈ E iff xj is among the k nearest neighbors of
xi. Successively, it propagates the information from labeled
nodes to unlabeled ones through the edges E of G in a
transductive setting. Finally, a class value is assigned to each
unlabeled sample/node xi ∈ Xu according to the result of
the propagation process. It is worth noting that state-of-the-art
methods essentially differ on how propagation is performed.

One of the first label propagation algorithms for GBSSL
was proposed in [11]. The method iteratively propagates the
information from the labeled node to the unlabeled ones
leveraging a smooth diffusion kernel. In [12], the authors
proposed a propagation algorithm that handles the correlation
between labels for node classification. A different strategy is
proposed in [3]. Here, the algorithm assumes that nodes with
a large number of neighbors can be confidently classified.
Recently, [2] introduced a new algorithm that integrates most
advantages of the previous works. More in detail, the proposed
method is confidence-aware (it assumes that nodes with a
large number of neighbors can be confidently classified) and
the approach is applicable to both homophily and heterophily
networks.

III. THE SESAM ALGORITHM

In this section we first provide an overview of our frame-
work and successively we describe SESAM, an ensemble learn-
ing approach that uses semi-supervised autoencoders to learn
knowledge-aware representations with the aim of enhancing
transductive GBSSL strategies. One of the key point related to
SESAM is that it does not require that the data are fully labeled
since we set up a learning strategy, reported in Algorithm 2,
that alternates a reconstruction step involving the whole set of
data and a multi-task step (reconstruction and classification)
only considering labeled data.

A. Overview of the approach
The main goal of our framework is to introduce the use

of available knowledge as early as possible in the semi-
supervised learning process. Our contribution is mainly fo-
cused on the knowledge-aware representation step, which can
run independently of any standard k-nearest neighbors graph
construction approaches. To this purpose, differently from
standard pipelines (Figure 1(a)) where graph G is build on
top of the original data, here (Figure 1(b)), we propose to
build G on top of the knowledge-aware embeddings learnt
by an ensemble of semi-supervised autoencoders leveraging
both labeled and unlabeled information. Figure 2 depicts the
structure of a classical autoencoder as well as the structure
of our SSAE. In the remainder of this section we will first
introduce some basic notions about autoencoders, then we will
detail our contribution.

B. Autoencoders
An autoencoder is a multi-layer neural network that operates

successive linear (or non linear) transformations of the input
data with the goal to reconstruct the original data. It is com-
posed of two modules: i) an encoder network that extracts the
embeddings from the input data X and ii) a decoder network
that, from the low-dimensional embedding, reconstructs the
original data. Commonly, the last layer of the encoder (usually
denoted as bottleneck layer) provides the embeddings of the
data.

The function optimized by the autoencoder is as follows:

Lae(Θ1,Θ2) =
1

|X|

|X|∑
i=1

||Xi −AE(Xi,Θ1,Θ2)||2 (1)
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Fig. 2. Autoencoder (a) and Semi-Supervised Autoencoder (b) architectures.

where |X| is the cardinality of the example set X , || · || is
the `2 norm, Θ1 and Θ2 are the parameters of the encoder
and decoder part of the autoencoder, respectively. AE is the
function representing the autoencoder. The goal is to learn
the model parameters (Θ1, Θ2) such that AE reconstructs
the original data X . Typically, an autoencoder has as many
neurons in the output layer as the number of neurons in the
input layer. This is due to the fact that the autoencoder goal is
to reconstruct the original data. Furthermore, the autoencoder
network is layered and symmetric. In the encoder module, the
number of neurons in the hidden layers decreases gradually
while, symmetrically, the number of neurons increases in the
decoder module. Efficient reconstruction is obtained exploring
the search space considering the network parameters Θ1,Θ2.

C. Semi-supervised Autoencoder Ensemble

Inspired by the strategy proposed in [9], [10] where, instead
of a single autoencoder model, an ensemble of models is
leveraged, in our approach we rely on an ensemble learning
setting that train a set of semi-supervised autoencoders (SSAE)
with the goal of learning several diverse embeddings from the
same set of data. First, we learn a set of diverse SSAE from the
set of data X . Second, we extract and juxtapose together all the
different low-dimensional embeddings to obtain the new data
representation. Successively, such a new data representation is
exploited to construct G, the kNN Graph, finally handled by
the semi-supervised graph-based classification algorithm.

1) Semi-Supervised Autoencoder
A Semi-Supervised Autoencoder [10] (SSAE) is a multi-

task neural network architecture that extends simple autoen-
coder to solve two different tasks, simultaneously: i) an unsu-
pervised task in which the network reconstructs the original
data via an encoding-decoding schema (Equation 1), and ii) a
supervised task in which the bottleneck layer of the autoen-
coder is exploited to perform classification. The loss function
associated to the prediction task is the classical categorical
cross-entropy between the labels and the predictions:

Lcl(Θ1,Θ3) = − 1

|X l|

|Xl|∑
j=1

|C|∑
c=1

yjc · log(ŷjc) (2)

where yj. is the one hot encoding of the label information for
the example j, ŷj. = SSAE(Xj ,Θ1,Θ3) is the probability
distribution over the set of classes, Θ1 are the parameters
of the encoder (similarly to Equation 1), and Θ3 are the
parameters employed to make the supervised prediction. X l

is the subset of labeled examples. Merging the unsupervised
and the supervised components, the (multi-task) loss function
related to the SSAE is defined as:

LSSAE(Θ1,Θ2,Θ3) = Lae + λLcl (3)

where

Lae =
1

|X|

|X|∑
i=1

||Xi −AE(Xi,Θ1,Θ2)||2 (4)

Lcl = − 1

|X l|

|Xl|∑
j=1

|C|∑
c=1

yjc · log(ŷjc) (5)

We underline that, conversely to most previous works [8],
[7], the multi-task loss function involves two different subsets
of data. The unsupervised loss (Lae) considers the whole set
of examples X while the supervised loss (Lcl) only considers
the subset of the data Xl to which the label information is
associated. We remind that Xl ⊂ X . The joint optimization
of the reconstruction and classification tasks helps to learn
embeddings that effectively resume the information available
in the original data also considering the background knowledge
carried out by the small amount of labeled samples available
at training time. Here, we describe the strategy we adopt to
optimize Equation 3 that is inherited from a recent work con-
sidering the use of SSAE for semi-supervised clustering [10].
For all the layers of our neural network architecture we
employ the ReLU [13] activation function. The only exception
concerns the output layer associated to the reconstruction task
in which we use a sigmoid activation function due to the
fact that data attributes are rescaled in the interval [0, 1].
Considering the classification task, the bottleneck layer of our
encoder-decoder architecture is directly linked to an output
layer to provide classification. In this case, we adopt a linear
activation function combined with a SoftMax normalization.
Algorithm 1 reports the optimization procedure we employ. In
a generic epoch, the procedure optimizes: i) the unsupervised
loss associated to data reconstruction (Θ1 and Θ2) on the set of
data X (line 5-6), and ii) both the unsupervised and supervised
loss (Θ1, Θ2 and Θ3), corresponding to the reconstruction
and classification tasks respectively, considering the set of data
Xl (line 7-8). The learning of parameters Θ1, Θ2 and Θ3 is
achieved via mini-batches gradient descent based approaches.

2) Ensemble Construction
SESAM produces the new data representation exploiting an

ensemble of diverse SSAE. Diversity is a crucial characteristic
when an ensemble learning schema is proposed [9]. Stacking
together the embeddings obtained by a set of Semi-Supervised
Autoencoder with exactly the same network structure will
induce redundancy in the new data representation. To deal
with this aspect, we introduce diversity by generating a set of
SSAE with different sizes of both the hidden and bottleneck
layers. Varying the size of such layers, for each SSAE model,
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Algorithm 1 SSAE optimization
Require: Xu: the set of unlabeled examples, Xl: the set of labeled examples,

N EPS: the number of epochs, fl size: the first hidden layer size,
b size: the bottleneck layer size

Ensure: Θ1,Θ2,Θ3.
1: k = 0
2: X = Xu ∪ {x|(x, y) ∈ Xl}
3: initSSAE(fl size, b size)
4: while k < N EPS do
5: Update Θ1 and Θ2 by descending the gradient:
6: ∇Θ1,Θ2

1
|X|

∑|X|
i=1 ||Xi − SSAE(Xi,Θ1,Θ2)||2

7: Update Θ1, Θ2 and Θ3 by descending the gradient:
8: ∇Θ1,Θ2,Θ3

1
|Xl|

∑|Xl|
j=1 ||Xj − SSAE(Xj ,Θ1,Θ2)||2 −

λ
(

1
|Xl|

∑|Xl|
j=1 yj · log(SSAE(Xj ,Θ1,Θ3))

)
9: k + +

10: end while
11: return Θ1,Θ2,Θ3

Algorithm 2 Ensemble Construction Strategy
Require: X: the whole set of examples, Xl: the set of labeled examples,

ENS SIZE: the size of the ensemble
Ensure: XnewR: the concatenated representation generated by the ensemble

of SSAE
1: XnewR = ∅
2: p = getNumAttributes(X)
3: k = 0
4: while k < ENS SIZE do
5: fl size = rand(p/2, p)
6: b size = rand(p/4, p/2)
7: SSAE = constructSSAE(X,Xl, f l size, b size)
8: trep = extractEmbedding(SSAE,X,Xl)
9: XnewR = concat(XnewR, trep)

10: k + +
11: end while
12: return XnewR

provides a new data representation that include embeddings
carrying out information at different granularities.

For each SSAE model of the ensemble, diversity is imple-
mented by picking at random the size of the different hidden
layers of the network architecture. Each model has four layers
and we have that the output and input layers have the same size
that is equal to the number of attributes in the data. Conversely,
we can vary the size of the three other layers: the first, the
second (bottleneck) and the third hidden layers. Due to the
symmetric structure of the SSAE, the first and third hidden
layers may have the same size. Such constraint restricts the
number of randomly picked parameters to two: the size of the
bottleneck layer and the size of the first/third hidden layers.
Given the fact that the number of attributes describing our
data is equal to p, we sample uniformly at random the size
of the first/third hidden layer in the range [p/2, p) while we
sample uniformly at random the size of the bottleneck layer
in the range [p/4, p/2). To prevent possible information loss
due to high level of compression in the bottleneck layer, if
p/4 < 3, the bottleneck layer size is set to 3. The ranges
[p/2, p) and [p/4, p/2) are chosen since they represent the
two biggest and not overlapping intervals from which the
size of the hidden layers can be picked up. Once the set
of diverse SSAE is constructed and trained, each model is
applied to the original data and, successively, the new data
representation XnewR is obtained by concatenating together
all the different embeddings extracted by the SSAE neural

networks (line 4-9 of Algorithm 2). We underline that our
approach is different from dropout [14] and other similar
strategies. The main goal of dropout is to inhibit the different
connections avoiding the co-adaptation of neurons belonging
to the same layer. In our case, the models in the ensemble
set are completely independent from each other and the
embeddings extracted by each neural network are successively
combined. Furthermore, the reasoning behind our strategy is
to provide a new data representation exploiting an ensemble
of diverse models that are capable to extract embeddings at
different granularities describing coarse relationships as well
as fine-grained interactions.

IV. EXPERIMENTS

In this section, we first assess the performances of our
embedding strategy for GBSSL classification by comparing it
with several state-of-the-art competitors and baselines. Then,
we report the results of the sensitivity analysis w.r.t. the
ensemble size. Successively, we compare the alternating opti-
mization strategy introduced in Algorithm 1 with a sequential
alternative. Finally, we provide some insights about the visual
inspection of the representations learnt by SESAM.

Regarding the competitors, we compare the results achieved
using the original data representation (ORIG), with those
supplied by our framework (SESAM). As additional baseline,
following the work proposed in [5], we consider a modified
kNN graph that involve must-link and cannot-link constraints
derived by the available knowledge: an extra edge is added
between two nodes if they belong to the same class while
an edge connecting two nodes belong to two different classes
is deleted. We name such baseline SSGC (Semi-Supervised
Graph Construction). We introduce an unsupervised version
of SESAM that stacks together the low-dimensional repre-
sentations induced by an ensemble of fully unsupervised
autoencoders. We name this competitor AE. We also consider
the representation supplied by only one semi-supervised auto-
encoder to better understand the added value supplied by the
ensemble solution. This approach is named SSAE.

TABLE I
DATASETS CHARACTERISTICS

Dataset # Examples # Features # Classes Size of SESAM repr.
USPS [15] 9 298 256 10 2 865.22 ± 95.49
Coil20 [16] 1 440 1 024 20 11 536.14 ± 415.34
Sonar [16] 208 60 2 664.18 ± 23.61

Spambase [16] 4 601 57 2 645.57 ± 21.02
Gard [17] 1 673 592 7 6 559.82 ± 205.90

Landsat [16] 4 435 36 6 393.00 ± 12.63
Mushroom [16] 8 124 22 2 1 368.64 ± 48.17
Waveform [16] 5 000 40 3 435.10 ± 15.10
Botswana [18] 3 248 145 14 1 631.92 ± 58.88

We evaluate the performances of the different approaches
on nine multi-class classification tasks. The following datasets
characteristics are reported in Table I: dataset name and
reference, number of examples, number of features, number
of classes and the average size (with standard deviation) of
the representations generated by SESAM.

For each competing representation, we first construct the
mutual k-nearest neighbors graph [1] (K=20) then, to obtain
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Fig. 3. Results (in terms of F-Measure) of the graph-based SSL algorithm considering ORIG, AE, SSAE and SESAM data representations and varying the
number of labeled samples per class.

the final classification, we use the Confidence-Aware Mod-
ulated Label Propagation (CAMLP) algorithm [2], a recently
proposed label propagation strategy, one of the best performing
state-of-the-art methods. We assess the performances of the
different competing methods varying the level of supervision
in terms of labeled samples per class in the interval [10, 50]
with a step of 10. The sample selection process is repeated
30 times for each number of per-class labels and then average
results are reported. For SESAM, the kNN graph leverages the
embedding whose average size is reported in Table I.

As evaluation metric we choose the F-Measure [19] since
it is well suited to evaluate predictive performances in
class unbalanced scenarios. In our context, considering multi-
class classification task, we calculate the average F-Measure
weighted by the class support (the number of true examples
for each class). The per-class F-Measure is defined as the
harmonic mean between the Precision and Recall measures.
We can define the F-Measure for the class j as F-Measurej =

2 · Precisionj ·Recallj
Precisionj+Recallj

, where Precisionj and Recallj are the
precision and recall computed for class j, respectively. The

weighted multi-class F-Measure is defined as F-Measure =∑
j∈C

|Xu
j |

|Xu| · F-Measurej , where C is the set of classes, |Xu
j |

is the cardinality of the unlabeled examples set belonging to
class j and |Xu| is the number of unlabeled examples.

We fix the number of models in the ensemble to 30. Parame-
ters optimization is achieved via the RMSProp1 optimizer [20]
and we fix the learning rate to 5×10−4 with a decay factor of
5×10−5. Considering the whole evaluation, the deep learning
methods are trained for 200 epochs. The AE baseline is trained
with a batch size of 16. The same batch size is adopted for
the reconstruction task of each SSAE on the whole set of data
(Algorithm 1, line 5-6) while a batch size of 8 is used for
the multi-task optimization of the SSAE (Algorithm 1, line
7-8). The value of parameter λ is fixed to 1. Experiments are
carried out on a workstation with Intel(R) Xeon(R) E5-2667
v4@3.20Ghz CPU, 256Gb of RAM and a TITAN X GPU.
SESAM is implemented using Keras python library2.

1http://climin.readthedocs.io/en/latest/
2https://github.com/fchollet/keras
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(a) 10 labeled samples (b) 20 labeled samples (c) 30 labeled samples (d) 40 labeled samples (e) 50 labeled samples

Fig. 4. Critical difference plots of the Nemenyi test according to different numbers of labeled samples per class. In all plots, CD = 2.1288.

A. Results of the comparative analysis

Figure 3 summarizes the results of the comparison over the
different benchmarks. Although the benchmarks we used are
heterogeneous in terms of dimensionality and classification
task, we observe that the different representations exhibit
a coherent behavior, i.e., they influence in the same way
the classification performances. More in detail, the represen-
tation supplied by SESAM provides most of the time the
best classification results regardless of the values of labeled
samples per class. The only exception is constituted by the
Spambase dataset, in which SSAE and SESAM obtain com-
parable performances, with the former slightly outperforming
the latter. This is probably due to the fact that the ensemble
variation, in this scenario, induces some instability in the graph
construction process. Despite this fact, we can observe that the
other baselines are still less effective, in terms of F-Measure,
compared to our proposal. All these results support the fact
that introducing the available knowledge as soon as possible in
the GBSSL pipeline positively influences the whole process.
We can also note that SESAM systematically outperforms its
unsupervised counterpart (AE) as well as the original data
representation and the SSGC strategy. This means that, even
if the knowledge exploited to learn the new representation is
limited, it is still valuable to steer towards knowledge-aware
embeddings that incorporate class discriminating information.

To asses the statistical quality of our approach we use
the Friedman statistics and the Nemenyi test [21]. For any
number of labeled samples per class, the null hypothesis of the
Friedman test is comfortably rejected with p-value < 0.005,
so we can proceed with the post-hoc Nemenyi test. According
to this test (see the critical difference plots in Fig. 4), SESAM
is always significantly better than ORIG and SSGC (p-value <
0.1), although its improvement is not significant w.r.t. SSAE.
With 30 or more labeled samples, the improvement of our
approach is significant w.r.t. its unsupervised counterpart (AE)
as well. Instead, SSAE is significantly better than ORIG for any
level of supervision, while its improvement is significant w.r.t.
SSGC only with 40 labeled samples or more. Differently from
SESAM, SSAE never outperforms AE to a significant extent.

B. Sensitivity analysis w.r.t. the ensemble size

With the aim of assessing the sensitivity of SESAM w.r.t.
the number of SSAEs in the ensemble set, we vary the
ensemble size (number of models) between 10 and 50 with
a step of 10, and we fix the number of labeled samples per
class to 10. Figure 5 reports the results of this experiment.
We note that SESAM exhibits a stable behavior w.r.t. this
hyper-parameter over all the considered benchmarks. This

Fig. 5. Sensitivity analysis of the behavior of SESAM (in terms of F-Measure)
varying the number of models in the ensemble set (between 10 and 50 with
a step of 10) with the number of labeled samples per class fixed to 10.

indicates that, generally, 10 models are enough to obtain good
performances, and considering a bigger number of models in
the ensemble set does not bring any significant advantage to
the graph-based semi-supervised classification task.

C. Alternating vs sequential optimization of SESAM

Here, we evaluate the behaviour of SESAM considering
two different optimization schemes. The first one, that we
name ALT, corresponds to the optimization procedure depicted
in Algorithm 1. As we have explained in Section III, in
this optimization procedure, the learning of the parameters
involves the alternate optimization of the fully unsupervised
task and the semi-supervised one. The second optimization
scheme consists in a sequential optimization of the fully
unsupervised task followed by the semi-supervised one. Here,
we first optimize the unsupervised autoencoder over all the
data and, then, we fine-tune the parameters of the model w.r.t.
the semi-supervised task considering only the small set of
labeled samples. We name such variant SEQ. Figure 6 reports
the results of such comparison in terms of F-Measure.

We observe that the behavior of SESAM is not systemati-
cally the same according to the different ways of optimizing
its internal parameters. We can observe differences regarding
the following datasets: Coil20, GARD, Botswana, Spambase
and Waveform. More in detail, on the first three datasets
(Coil20, GARD, Botswana), ALT optimization seems more
effective than SEQ. The opposite phenomenon can be observed
on the two last datasets (Spambase and Waveform). On the
other datasets, the two optimization methods behave similarly.
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(a) USPS (b) Coil20 (c) Sonar
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Fig. 6. Results (in terms of F-Measure) of the graph-based SSL algorithm, considering SESAM trained according to ALT and SEQ optimization procedures.

Inspecting the characteristics of the different datasets, we
observe that ALT optimization performs better on datasets
with high-dimensional embeddings while, conversely, SEQ is
more effective when low-dimensional embeddings are gener-
ated. A possible explanation is that the alternate optimization
struggles to resume both the original data as well as the
discriminating information when the embedding dimension is
too small (as in Spambase and Waveform). In such cases,
reconstructing the data via unsupervised learning and then
fine-tuning the obtained representation via semi-supervised
autoencoders, allows to produce higher quality representation
for the transductive GBSSL task. On the other hand, when
the embedding dimension is bigger (as in Coil20, GARD, and
Botswana), the expressiveness of the induced representation
is such that the embedding contains, at the same time, the
information to reconstruct the data as well as the information
to discriminate among the different classes.

D. Visual Inspection of the new learnt representation

To better figure out why our method performs well, we
visually inspect the new data representation. Figure 7 shows

the two-dimensional projections of the original data versus
the new data representation learnt by SESAM considering a
number of labeled examples per class equal to 50 and both
alternating (ALT) and sequential (SEQ) optimization schemes
on Sonar (Figure 7(a), Figure 7(b) and Figure 7(c)) and Spam-
base (Figure 7(d), Figure 7(e) and Figure 7(f)) datasets. The
two dimensional representation is obtained via the t-distributed
stochastic neighbor embedding (TSNE) approach [22]. In
both datasets, we can visually observe that the representation
provided by SESAM induces a better discrimination (among
classes) compared to the one associated to the original data.
The native data representation does not allow to separate points
belonging to different classes and this fact has a negative im-
pact on distance based classifiers such as GBSSL approaches.
Conversely, due to the fact that our approach exploits some
(very limited) knowledge about labeled examples, it is able to
reduce class overlapping and stretch the manifold on which
examples are represented, thus increasing class separability.

The visual inspection is coherent with the behavior in terms
of F-Measure we reported in previous discussions: the visual
separability induced by a method is directly proportional to the
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(a) Sonar (original data)
s

(b) Sonar (SESAM – ALT) (c) Sonar (SESAM – SEQ)

(d) Spambase (orignal data) (e) Spambase (SESAM – ALT) (f) Spambase (SESAM – SEQ)

Fig. 7. Visual projection of the original data and the embeddings learnt by SESAM with alternating optimization (ALT) and sequential optimization (SEQ)
on Sonar and Spambase with 50 Labeled examples per class.

quality of classification (in terms of F-Measure) obtained by
the GBSSL approach. Moreover, the embeddings computed
with the two alternative optimization strategies for SESAM
exhibit similar separability between the two classes.

V. CONCLUSIONS

In this work, we have introduced SESAM, a strategy that
integrates knowledge about labeled samples in the GBSSL
pipeline in its early stages. Our approach leverages an ensem-
ble of diverse semi-supervised autoencoders to build the new
data representation. Diversity is induced by varying the struc-
ture (layer size) of each neural model. The experiments carried
out on different benchmarks have demonstrated the capacity
of our knowledge-aware embedding strategy to provide an
effective data manifold for the label propagation process. We
remind that, in our work, we have used SESAM in conjunction
with a classifier working in a transductive setting. As future
work, we plan to evaluate the ability of our framework to work
in an inductive setting where the classification model is trained
to classify samples not seen in the learning phase.
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