A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes

Timothée Bonnet Raphaël Leblois François Rousset Pierre-André Crochet

UMRs CBGP & ISEM & CEFE, (INRA - CNRS, Montpellier, France) raphael.leblois@supagro.inra.fr

Motivation

Examples of massive mitochondrial introgressions combined with no or very limited nuclear introgressions (i.e. mito-nuclear discordance) are accumulating, stimulating the development of various hypotheses to explain this pattern. On the one hand, selective hypotheses propose a selective advantage of the introgressing mitochondrial variants, or counter-selection of the nuclear genome; On the other hand, **neutral hypotheses** invoke sex-biased processes and/or drift and/or spatial invasions. The neutral hypotheses however are mostly verbal and have not been quantitatively evaluated. Here we reassess all these hypotheses using simulations under a wide range of demographic and genetic scenarios.

General simulation settings

► Spatially explicit simulations of a secondary contact:

- \triangleright 2 habitats, each with 15 x 10 demes of N=10 diploid adult pairs ($N_1=N_2=3,000$)
- ▶ Forward individuals-based simulations of 6,000 generations of secondary contact considering spatially limited dispersal (IBD), sex-biased processes, spatial invasion, and selection
- Standard coalescent to simulate 80,000 generations of divergence between the ancestral populations

► Multi-locus **nuclear genome**:

- Done Chromosome with 20 pairs of loci (1 neutral & 1 selected)
- ▶ Recombination within and between pairs of loci

► Mitochondrial genome:

- \triangleright One chromosome with one pair of linked loci (1 neutral + 1 selected)
- ► Local adaptation is modeled with one nuclear "speciation" locus (proxy for many co-adapted loci in LD):
 - ▶ Lower fitness in the non-original habitat
 - ▶ Lower fitness for hybrids in both habitats

Additional demographic and genetic processes explored

▶ Sex-biased processes:

- > asymmetric crosses: one sex is preferred by both taxa e.g. the female cow in the Bison/Cow example
- > sex-specific dispersal: one sex disperses more than the other
- > sex-specific survival: one sex has higher mortality than the other

► Spatial invasion combined with sex-biased dispersal:

- One habitat expands over the other after secondary contact, gradually but completely.
- Direction and strength of sex-biased dispersal varies among different scenarios

► **Strong drift** (single hybridization event in small populations):

- \triangleright Only 3 x 10 demes in each habitat ($N_1 = N_2 = 600$)
- ▷ Single inter-taxa mating event allowed between two pure individuals
- ▶ Then no restrictions on matings between hybrids
- No sex-biased processes

For all scenarios, we considered **both high** (0.1) and **low migration** rates (0.001)

Outputs of the simulation study: introgression measures

M: proportion of introgressed Mt copies in the most introgressed taxon

- a: vector of proportions of introgressed nuclear gene copies
 - We are mostly interested in the following output:

$ightharpoonup M - \bar{a}$ the mito-nuclear introgression discordance and we define a Massively Discordant Mitochondiral Introgression (MDMI) when $M - \bar{a} > 0.8$

Results

Conclusions

Gene flow	Sex-biases	Invasion	Nu Selection	Mt Selection	MDM
High	-	-	-	-	No
	Yes	_	2	121	No^1
	-	Yes	-	-	No
	_	_	Yes	72	Yes
	-	-	-	Yes	No
Low	-	-	-	-	No
	Yes	-	_	7-1	No
	-	Yes	-	-	No
	-	-	-	Yes	\mathbf{Yes}
Single hybridization	-	-	-	1-1	No^2

- ► Neutral processes (sex-biases, strong drift and spatial invasion) fail to explain MDMI
- ► Only positive selection on Mt with low migration rates or counter selection on the whole nuclear genome can create MDMI
- but no detection of positive selection using Tajima's D or Fu' Fs on Mt polymorphism observed in the introgressed taxon

Take home message

- ► Neutral processes can't dissociate nuclear and mitochondrial introgression... because females too have nuclear genes!
- ► Our results are in line with recent and increasing evidence that **selection** on Mt DNA may be common
- ▶ Beware of verbal models, do not trust but **test** them **using models**

Acknowledgements: This work was partly funded by the Institut de Biologie Computationelle (IBC), and recurrent funds from INRA and CNRS.