HAL
open science

Resampling : an improvement in varying population size models

Coralie Merle, Raphaël Leblois, Pierre Pudlo

- To cite this version:

Coralie Merle, Raphaël Leblois, Pierre Pudlo. Resampling: an improvement in varying population size models. Mathematical and Computational Evolutionnary Biology 2015, Jun 2015, Porquerolles, France. , 2015. hal-02932290

HAL Id: hal-02932290
 https://hal.inrae.fr/hal-02932290

Submitted on 7 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Genetic polymorphism modelling

Evolution model

- A sample of n gene copies at a single locus from the popu-

lation of effective size $N(t)$.

- For any given locus, each individual has exactly one ances-
tor in the previous generation.

Likelihood of the data

Notations: $\mathbf{n}_{\text {obs }}$: observed data, $\mathcal{H}_{\mathbf{n}_{\text {ob }}}$: set of compatible histories with the observed data,

Problem

The histories are not observed. The likelihood of the data is obtained by summing over all the possibilities (not observed), which is not feasible in practice:

$$
L\left(\mathbf{n}_{\text {obs }} \mid \phi\right)=\int \mathbf{1}_{\left\{h \in \mathcal{H}_{\text {nobs }}\right.} P_{\phi}(h) \mathrm{d} h
$$

Solution

A class of Monte-Carlo methods, based on Sequential Important Sampling (SIS), allows the likelihood calculation despite the hidden process. The efficiency of these methods was been proven by [1], [2], [3] and [6].
In this schema, the IS distribution propose histories which contribute the most to the sum defining the likelihood. But changing effective population size introduce a strong inhomogeneity in the Wright-Fisher model and the IS distributions become inefficient. The computation time strongly increases for the same accuracy of the likelihood estimation, so that we can not have a correct estimation.

Evaluating the likelihood with SIS

$$
\left.L\left(\mathbf{n}_{\mathrm{obs}} \mid \phi\right)=\int \mathbf{1}_{\left\{h \in \mathcal{H}_{\text {nobs }}\right\}} \frac{P_{\phi}(h)}{Q_{\phi}(h)} Q_{\phi}(h) \mathrm{d} h=\mathbb{E}_{H \sim Q_{\phi}}\left[\mathbf{1}_{\left\{H \in \mathcal{H}_{\text {nobs }}\right.}\right\} \frac{P_{\phi}(H)}{Q_{\phi}(H)}\right]
$$

We approximate the likelihood with a Monte-Carlo estimator:

$$
L\left(\widehat{\mathbf{n}_{\mathrm{obs}}} \mid \phi\right)=\frac{1}{n_{H}} \sum_{j=1}^{n_{H}} \mathbf{1}_{\left\{H^{(j)} \in \mathcal{H}_{\mathrm{H}_{\text {obs }}}\right.} \frac{P_{\phi}\left(H^{(j)} \mid \phi\right)}{Q_{\phi}\left(H^{(j)}\right)}=\frac{1}{n_{H}} \sum_{j=1}^{n_{H}} w^{(j)},
$$

where $H^{(j)} \sim Q_{\phi}$ are n_{H} realizations of the latent inhomogeneous Markov process, Q_{ϕ} is the important sampling distribution and $w^{(j)}$ are the importance weights computed sequentially as follow:

$$
w_{k}^{(j)}=\prod_{i=1}^{k} \frac{P_{\phi}\left(H_{i-1}^{(j)}, H_{i}^{(j)} \mid \phi\right)}{Q_{\phi}\left(H_{i}^{(j)}, H_{i-1}^{(j)}\right)}=w_{k-1}^{(j)} \frac{P_{\phi}\left(H_{k}^{(j)} \mid H_{k-1}^{(j)}, \phi\right)}{Q_{\phi}\left(H_{k-1}^{(j)} \mid H_{k}^{(j)}\right)} .
$$

Correction of Importance Sampling distribution by Resampling (SISR)

The idea is to resample during the backward building of the histories, so that we learn which are the histories proposed by the IS distribution that really contribute most of the sum defining the likelihood and so save computation time.

We stop the SIS algorithm that builds the histories in parallel at a given checkpoint and we draw a new collection of n_{H} histories according to a multinomial distribution with parameter n_{H} and a resampling probability distribution \mathbf{v} that could be any distribution. This new algorithm is called SISR, see [5].

In this paper, we propose a new resampling probability distribution \mathbf{v} on the collection of histories. Since the information is mainly in the dependency between individuals of the sample, we propose to substitute the pairwise composite likelihood, noted $L_{2}(h \mid \phi)$, for the likelihood of the end of the history. It does not approximate the likelihood but it behaves the same way and it is fast to compute. Indeed, it is the product of the likelihoods of each pair of individuals in the sample. We propose to draw the j-st history $h^{(j)}$ with probability :

$$
v^{(j)}=\left(w^{(j)}\right)^{\alpha}\left(L_{2}\left(h^{(j)} \mid \phi\right)\right)^{\beta}, \alpha, \beta \in[0,1], \beta \ll 1 .
$$

Numerical results when comparing SIS and SISR

With the same computational cost, the Mean Square Error (MSE) between the true value of the likelihood and its estimate is lower when estimating with resampling (SISR) than without (SIS), for a range of values of α and $\beta: 0.4 \leq \alpha \leq 0.7,0 \leq \beta \leq 0.01$.

Boxplots of 100 estimates of the likelihood in a given parameter point with different estimation algorithms, on simulated data sets

The parameter of interest is the vector $\left(\theta, D, \theta_{a n c}\right)$. We estimate it by maximum likelihood inference when the likelihood of the data is estimated by the SIS or SISR algorithm. In all the following cases, the inference is difficult because of the strengh of the contraction or because it happened recently (see [4]).
With the same computational cost, the resampling allows to reduce the bias and MSE in the parameter estimation.

$\left(\theta, D, \theta_{\text {anc }}\right)$	$=$	$(0.4$,	$1.25,400)$	$(0.4$,	$0.25,40)$	$(0.4$,	$0.25,400)$
Algorithm		SIS	SISR	SIS	SISR	SIS	SISR
Rel. bias	θ	0.56	0.34	1.07	0.23	4.9	1.1
	D	-0.02	-0.017	0.23	0.571	-0.06	0.15
	$\theta_{\text {anc }}$	0.048	-0.042	0.032	0.023	0.044	-0.053
Rel. RMSE	θ	0.71	0.53	2	1.8	5.2	1.7
	D	0.14	0.14	0.45	0.8	0.14	0.37
	$\theta_{\text {anc }}$	0.37	0.38	0.29	0.27	0.25	0.23

Comparison of relative bias and Root Mean Squar Error (RMSE), analysis of data sets simulated under the ECP model, by SIS and SISR with $n_{H}=100$ (left) or $n_{H}=2000$ (center and right) histories sampled.

References

[1] Maria De Iorio and Robert C Griffiths. Importance sampling on coalescent histories. i. Advances in Applied Probability, pages 417-433, 2004
[2] Maria De Iorio and Robert C Griffiths. Importance sampling on coalescent histories. ii: Subdivided population models. Advances in Applied Probability, 36(2):434-454, 2004.

 evolution, page msu212, 2014

6] Matthew Stephens and Pe

Acknowledgments

Ginc
CBGP

