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Abstract
• Model: The population evolves under a Wright-Fisher

model. Hence, the sample evolves according to the King-
man coalescent.

• Problem: The likelihood is the sum over all possible histo-
ries (not observed), which is not feasible in practice.

• Solution : A class of Monte-Carlo methods, based on Se-
quential Important Sampling (SIS), allows the likelihood

calculation despite the hidden process. The efficiency of
these methods was been proven by [1], [2], [3] and [5].
In the IS sheme, the importance sampling distributions
propose histories which contribute most to the sum. But
these distribution are not efficient for equilibrium popula-
tion models and the computation time strongly increases for
the same accuracy of the likelihood estimation, so that we

can not have a correct estimation.
• Improvement : For changing population size model, we

decide to use : Sequential Important Sampling with Resam-
pling (SISR). The idea is to resample, during the backward
building of the histories, so that we learn wich are the histo-
ries proposed by the IS distribution which really contribute
most of the sum and so save computation time.

Genetic polymorphism modelling
Evolution Model

• A sample of n gene copies at a single locus from the popu-
lation of effective size N(t).

• For any given locus, each individual has exactly one ances-
tor in the previous generation.

• The ancestral relationships between the individuals of the
sample going back in time to the MRCA are described by a
gene tree, distributed according to the n-coalescent.

Gene tree of
microsatellite markers.

Demographic model

We consider a demographic model, never treated before, where the
population effective size varies in the time, notes N(t). In partic-
ular we work with an Exponentially Contracting Population. If
we look backward in time, we have :

N(t) =

N0

(
Nanc
N0

)t/D
si 0 ≤ t ≤ D

Nanc si t ≥ D. Exponentially
contracting population

model.

Likelihood of the data

The histories are not observed. The likelihood of the data is obtained by summing over all the
possibilities :

Prob(nobs|θ) =

∫
H

p0(n0)
m+1∏
`=1

(
ps` (n` |n`−1) f (s` |n`−1, s`−1)

)
dH

=

∫
g(nobs,H|θ)dH.

Where :
nobs : observed data,
(n0, . . . ,nm+1) count vector of lenght (m + 2), such as nm = nobs and |nm+1| = |nobs| + 1,
s0, s1, s2, . . . : dates of jump (in forward time),
g(nobs,H|θ) = 1{H ∈ H}p(H),
H : set of compatible histories with the observed data.

Correction of Importance Sampling distribution by resampling (SISR)
Changing effective population size introduce a strong inhomogeneity in the
WF model and the IS distributions become inefficient.
We decide to resample in our collection of simulated histories :

• to prune the bad histories,
• to produce multiple copies of good histories, to generate futur better

histories.

How ? We stop the SIS algorithm that builds the genealogies in parallel

at a given time and we modify the composition of the histories collection
according to the partial importance weights at this date. This new algorithm
is called SISR, voir [4].

Numerical results when comparing SIS and SISR
Our parameter of interest is the vector (θ,D, θanc). We try to estimate this parameter by maximum likelihood inference. The likelihood of the data is estimated by the SIS or SISR algorithm.

Comparison of relative Effective Sample Size when the true parameter
is θ = 0.4, D = 0.25 and θanc = 40.

Histogram Plot

Comparison of relative bias and Root Mean Squar Error (RMSE), analysis with 100 (left) or 2000 (center and
right) genealogies, by SIS and SISR of data sets simulated under the ECP model.

SIS SISR
Rel. bias θ 0.56 0.364

D −0.0201 −0.0308
θanc 0.0479 −0.138

RMSE θ 0.711 0.557
D 0.142 0.142
θanc 0.369 0.305

With θ = 0.4, D = 1.25 and
θanc = 400.

SIS SISR
Rel. bias θ 4.92 1.62

D −0.0606 0.177
θanc 0.0438 −0.00967

RMSE θ 5.17 1.82
D 0.141 0.417
θanc 0.245 0.21

With θ = 0.4, D = 0.25 and
θanc = 400.

SIS SISR
Rel. bias θ 1.35 0.188

D 0.191 0.687
θanc 0.0522 0.0196

RMSE θ 2.98 1.82
D 0.442 0.909
θanc 0.322 0.267

With θ = 0.4, D = 0.25 and
θanc = 40.
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