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Introduction & Objectives

Building on the Griffiths & Tavaré (1994a,b,c) approach, Stephens & Donnelly (2000) introduced an efficient importance 
sampling scheme for computing the likelihood of a genetic sample. Their method consists of approximating the conditional 
probability of the allelic type of an additional gene given those currently in the sample. This technique was further extended by 
De Iorio & Griffiths (2004a,b) to a subdivided population framework for various mutation models between gene types. 

For sequence loci, the results of De Iorio & Griffiths (DIG) represent an improvement in terms of efficiency over those of Bahlo 
& Griffiths (2000) but this hasn't been tested on more than a single panmictic population. DIG consider the DNA sequences to 
be evolving under an Infinitely-many Sites Mutation model (ISM). For allelic loci (microsatellites) evolving under a Step-wise 
Mutation model (SMM), we use the Importance Sampling proposal distributions of De Iorio et al. (2005).

Here, we used results from Griffiths & Tavaré (1994c) in order to implement the case of a single exponentially contracting 
population (see box: The demographic model) and contrasted the performance of estimation from sequence and allelic markers. 
This approach gave us an insight into the potential complementarity of the considered genetic markers for improving the 
precision of the demographic and mutational estimates.
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Software & Simulations
We have developed software which simulate data in the well known Genepop (for allelic data) and the Nexus (for sequence data) 
formats. These simulations were generated using IBDSim (http://raphael.leblois.free.fr/#softwares) which follows an exact 
coalescent algorithm. This data was then analysed by the Migraine software (http://kimura.univ-montp2.fr/~rousset/Migraine.htm) 
for inferring the demographic and mutational parameters (using DIG's method). Note that the current version of Migraine can also 
handle more complex demographic models than the one presented here such as Isolation by Distance (IBD) based on DIG's method.

We choose a simulation strategy which consisted of varying the time since the contraction began (D = T/2N) keeping the other 
parameters constant. A total of 10 demographic scenarios were thus obtained, each of which was repeated 200 times. The initial size 
of the population was set to 200 000 haploid individuals which progressively diminishes down to 200 individuals. Each sample 
consists of 100 individuals genotyped at 10 loci. 
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Perspectives

Overall estimation performance Differences between markersExample of Migraine's ouput (ISM, D = 1.25)

Likelihood ratio tests (LRT) 

The current version of Migraine includes implementations of 1D 
and 2D IBD models (including the island model as a subcase), as 
well as the two-populations model described in De Iorio et al.
(2005) and the elementary one-population model for allelic 
data. We are currently testing novel Importance Sampling 
proposals for the Generalized Stepwise Mutation model 
(GSM) and DIG's algorithms for sequence data (ISM). Other 
mutation models such as Single Nucleotide Polymorphisms 
(SNP's) will be available shortly. Planned developments also 
include Isolation with Migration models and continent-island
models.  Finally, a user friendly graphical interface is also 
underway in order to ease the use of Migraine (no pun intended).

An extreme scenario (ISM, D = 0.025)
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We accounted for the differences in the evolution of the 
genetic markers as follows: for microsatellites under a SMM, 
we assumed a mutation rate of 10-3 while for DNA sequences 
under an ISM we choose 5x10-5/sequence. The simulated data 
had the following number of haplotypes/alleles (Na) and 
expected heterozygosity (Hexp) for the cases presented here:

ISM
D = 1.25 : Na = 2.6, Hexp = 0.39

D = 0.025 : Na = 7.44, Hexp = 0.65
SMM

D = 1.25 : Na = 4.4, Hexp = 0.58
D = 0.025 : Na = 13.4, Hexp = 0.87

Results & Conclusions

Very recent and extreme contractions result in flat profile 
likelihoods (right) or saddle point like situations (left). Here, 
the surfaces indicate that the markers have little information 
on the bottleneck and thus the current population size. This 
results in very wide confidence intervals for the parameters D
and N. Finally large N values are confounded with the true 
values of Nanc resulting also in wide confidence intervals.
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LRT's were performed on each of the 
estimated parameters for a given bottleneck 
scenario. This consists of calculating 200 LR 
statistics (one for each repetition) using the 
likelihood values at the true parameters. 

As the LR statistic approximately follows a 
chi-square distribution, we calculated the 
corresponding p-values. The figures on the 
left plot the empirical cdf of the obtained p-
values. This helps us check whether the 
distribution of the p-values for each 
parameter is uniform.

The bottleneck scenario implemented here:
1° was successfully detected over a wide range of scenarios;
2° was inferred with reasonable precision for intermediate 
scenarios. The SMM estimates performed better than their ISM 
counterparts but this can be understood in terms of 
heterozygosity and the number of alleles/haplotypes present 
in the simulated data (see box: Differences between markers);
3° the time taken in comparision to typical "MCMC" 
approaches was very short (~4hrs for a single repetition). 
Slightly longer runs improve estimation performance (not 
shown here);
4° for all scenarios, the LRT's indicate a very good conformity 
of the likelihood surface generated by Migraine to the true 
likelihood.
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