Past demographic history of Astrocaryum sciophilum: chloroplast genetic structure and restricted seed dispersal

Christophe Girod, Raphaël Leblois, Bernard Riera, Hélène Fréville

To cite this version:

Christophe Girod, Raphaël Leblois, Bernard Riera, Hélène Fréville. Past demographic history of Astrocaryum sciophilum: chloroplast genetic structure and restricted seed dispersal. Frugivores and seed dispersal, Jun 2010, Montpellier, France. 2010. hal-02932338

HAL Id: hal-02932338
https://hal.inrae.fr/hal-02932338
Submitted on 7 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1. INTRODUCTION

Existence of Quaternary refuges in the Neotropics has long been debated since Haffer (1969) and remains controversial for the Guiana shield despite recent paleoecological (Tardy, 1998) and phylogeographic data (Caron, 2000; Dutcher 2003). Several theories have been developed:

- **Quaternary refuge theory** (Haffer, 1969): the climate changes induced fragmentation of the forest cover, which in some places was replaced by savannas. Remaining fragments of forest acted as isolated refuges for fauna and flora, leading to high species diversification by allopatric speciation.

- **The Disturbance-Vicariance theory** does not imply a reduction of forest cover. Instead, it suggests that the 5 to 6°C cooling in temperature allowed colonization of forests by Andean species (Colinvaux et al., 2004). Several colonization-regression events occurred, leading to changes in communities’ composition.

- **An Intermediate theory** has been developed for the Guianan Shield. During drier periods, wet forests were preserved in some refuges along the coast (macro-refuge) and at the basis of rocky formations called inselbergs (micro-refuges), located in the centre and the south of the Guianan Shield (Figure 1). Outside the refuges, migration of taxa originating from Venezuelan drier forest induced a change in forest composition.

Using genetic data, we aim at reconstructing the past demographic history of an understory palm to test these different theories and to identify potential routes of recolonization in French Guiana.

2. THE MODEL

Astrocaryum sciplium (Miq.) Pulle

- endemic to the Guiana shield
- scipliphous species, only growing in understory
- mean first age of reproduction of 170 years
- pollinated by bees
- slow colonization speed: average dispersal distance of 11 meters
- dispersed by agoutis, acouchis and squirrels (Figure 3)

⇒ Suitable model for genetic analysis to infer demographic changes in response to climate variations from the Quaternary

3. MATERIALS AND METHODS

- 166 individuals (38 populations, 1-5 individuals/population)
- 9 outgroups (8 Astrocaryum, 1 Bacthis)
- 5 cpDNA regions (trnL intron, trnL-trnF, psbM-trnD, atpA-trnH)
- Primers and PCR conditions are described in Shaw et al. (2007).
- Sequences edited and aligned manually using Bioedit v.7.0. Insertion/deletion and microsatellite length polymorphisms coded as single-base polymorphisms.
- Data analysis conducted using DNAsp v.5. Network 4.5.
- Genetic structure and isolation by distance assessed using SPAGeDi.

4. RESULTS

- 18 different haplotypes, 2 of them frequent (A: 38%, H: 33.7%)
- 10 haplotypes with 3 or less individuals
- Only a few populations with more than 1 haplotype
- 3 different distict groups, closer to other Astrocaryum species than to each other
- Phylogeographic signal within populations (Nst = 0.84, Gst = 0.73, p = 0.008)
- Phylogeographic signal among populations (p<0.0001) ⇒ Isolation by Distance pattern

5. DISCUSSION AND PERSPECTIVES

We detected a strong genetic structure at the scale of the French Guiana, which was further correlated with geographic distance. This isolation-by-distance pattern was explained by limited seed and pollen dispersal (mean seed dispersal distance = 11 m). Three different groups of haplotypes were identified: ‘blue’, ‘yellow’ and ‘gray’. The haplotype network showed star-like shapes with many different haplotypes diverging slightly from the two most common ones (A & H, see Figure 1). This pattern is often characteristic of expansion events.

Moreover, we detected three geographic zones where highly divergent haplotypes co-existed (Kaw, Nouragues, Trinité Mountains, Figure 1). These areas may correspond to contact zones of different recolonization routes. Overall, our results do not support the intermediate theory. Furthermore, we did not find higher frequencies of rare haplotypes in the areas identified by Tardy (1998), so our results do not support the refuge theory either.

In addition to chloroplastic sequences, we will use nuclear microsatellite markers 1) to get a better understanding of the demographic history of *A. sciophilum*, 2) to estimate more precisely pollen and seed dispersal distances with parentage analysis.