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Abstract 

Nitrogen (N) and Phosphorus (P) are the two most essential nutrients ensuring food 
production and security. The ever growing population demands more N and P based 
fertilizers. Even though the N provision to the agricultural system is virtually infinite 
(Haber and Bosch process) it triggers pollution when it is not used by the plant and 
leaks into the environment. On the other hand, P is predicted to be a limited source 
worldwide. P use is also responsible for water eutrophication. Thus understanding plant 
response to combinations of N and P has clear implications for sustainable human 
development. Recent works have shed new light on how N and P closely interact to 
control plant responses. Several molecular actors have been revealed controlling the 
molecular interaction between these two essential elements drafting a working model of 
N and P interactions. We summarize here these new findings as well as several 
previous lines of evidence in agronomy and physiology studies preceding this new trend 
of investigation in the molecular world. 
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Introduction  

Terrestrial and marine ecosystems are accepted to be nutrient limited [1]. This 
explains life blooms following diverse fertilizations [2]. Nitrogen (N) and Phosphorus (P) 
are among the most essential elements that sustain yield in agricultural systems since 
they alleviate such limitations. N and P are ensuring food security worldwide, and 
fertilizations have been considered as a key factor of the human population growth and 
is part of the so called green revolution. Since the 60’s, anthropic activities have 
dramatically modified the cycle of these elements in the biosphere threatening natural 
ecosystems [3]. Thus a basic knowledge of such phenomenon is essential for a 
sustainable human development. 

To date, the effect of N and P have been largely considered in isolation but many 
literatures report that these elements are interacting at several levels of integration. The 
present report is meant to summarize the different levels of P and N interactions, 
starting from an ecological and an agronomic perspective to physiological and more 
recent molecular insights. 
 
Historical observation about N/P interactions.  

Liebig’s law of the minimum, proposed in the nineteenth century, states that 
plants’ growth is constrained by a single limiting nutrient. Since then, the law has been 
applied as a basic principle in various ecological and agronomic studies on N and P 
[4,5]. However, a number of studies have suggested that there are interactions between 
them [6–8]. For instance, Elser et al. (2007) analyzed the nature of their interaction in a 
meta-analysis of N- and P-amendment experiments in aquatic and terrestrial 
ecosystems [3]. They concluded that N and P co-limitation is widespread in ecosystems 
and there is a synergistic interaction between them because addition of both nutrients 
together produces a much higher response than adding either one alone. In agronomic 
studies, a synergistic effect of N and P co-fertilization on yield are well documented in 
many crops, including wheat, rice, corn, and cotton (reviewed in [9–11]). Physiological 
observations that N act positively on P uptake [12,13] and P starvation negatively on 
nitrate uptake and assimilation [14–16] have suggested that there is a mutual interaction 
between N and P. Together, it is now clear that the interaction exists. Such interaction 
must be a strategy for plants to coordinate N and P acquisition and usage under 
fluctuating nutrient conditions for growth optimization, however, our understanding of 
the molecular basis of the interaction is still in its early stage.  
 
 
 
  
Control of Phosphate molecular responses by Nitrogen 



Description of N and P related simple pathways 

P and N-related signaling pathways have been studied for decades. They can be 
sorted into 2 classes. Pathways triggered when the nutrient is removed or when mineral 
is provided. 
  For P, the most studied phenomenon is named Phosphate Starvation Response 
(or PSR; Figure 1) that is characterized by the slow (within days) activation of 
Phosphate Starvation Induced (PSI) genes (IPS1, At4, miR399s, PHTs) when P is 
removed from the media [17,18]. P sensing mechanism upstream of PSR is performed 
by the inositol polyphosphate (insP) triggered protein-protein interaction between the 
transcription factor PHOSPHATE STARVATION RESPONSE (PHR) and SPX-domain-
containing (SPX) proteins [19–22]. When P is sensed it prevents the PSR activation. 
PHR1 thus induces miR399 (and IPS1, target mimicry that dampers miR399 effect) that 
represses PHOSPHATE 2 (PHO2), an ubiquitin conjugase that works with NITROGEN 
LIMITATION ADAPTATION (NLA) to repress phosphate transporters (PHOSPHATE 
TRANSPORTER 1.1, PHOSPHATE 1) [23,24].  

N related signaling pathways are more diverse. The most studied N related 
signaling pathway is named the Primary Nitrate Response (or PNR, Figure 1) being 
rapidly (within minutes) triggered when plants deprived of NO3- are provided with this 
nutriment [25,26]. Transcriptional markers of the PNR are for instance NIA1, NIR, 
HYPERSENSITIVITY TO LOW PI-ELICITED PRIMARY ROOT SHORTENING 1 
(HRS1) [27]. One of the identified sensors in PNR is the NO3- transceptor 
CHLORINA1/NITRATE TRANSPORTER 1.1 (CHL1/NRT1.1) [28]. CHL1/NRT1.1 
triggers calcium response likely decoded by CALCIUM-DEPENDENT PROTEIN 
KINASEs (CPK) that phosphorylate NIN-LIKE PROTEINs (NLP)  [29–31]. These latter 
are central transcription factors controlling PNR marker genes [32,33]. This constitutes 
the backbone of PNR but many other genes, including kinases, phosphatases, and 
other transcription factors have been shown to belong to this pathway (for detailed 
review see [34]). 

Nitrogen Starvation Response (NSR) is manifested when N is removed from the 
media. It is characterized by a slow (days) activation of marker genes NRT2.4, NRT2.5, 
GDH3 [35]. Recently genes belonging to this pathway have been identified. They 
include NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIONAL REPRESSOR 
1/HRS1/HRS1 HOMOLOGs (NIGT1/HHOs) [36–38], LBD36,37,38 [39], NFYA [40], 
CBL7[41]. But the interplay between these molecular elements is still under 
investigation.  

Finally it is worth mentioning that PNR and NSR pathways are not independent. 
For instance NIGT1/HHOs being marker genes of PNR are key regulators of the NSR 
(Figure 1, [36–38]).  These pathways can also be studied in the context of their role in 
distant organs as they trigger long distance signaling adding a layer of complexity to 
their interactions (for review see [42]). 



 
Control of Development by N x P 

Variations in N and P are known to control plant development adaptation. For 
instance P starvation triggers primary root shortening and lateral root outgrowth [43] via 
the action of several molecular elements including LPR1/2, STOP1, ALMT [44,45]. This 
affects plant architecture to explore shallow soil horizons supposed to contain more 
abundant P. Root responses to N fluctuation are quite diverse and was recently 
reviewed in an excellent paper [46]. In short, nitrate provision triggers lateral root 
initiation and elongation, when N starvation tends to repress LR development and favor 
primary root elongation to seek for N (supposed to leak in the form of NO3- towards 
deeper soil horizons). Several dozens of genes are involved in these responses [46], 
including some genes also controlling PNR and NSR, as well as long distance 
components. Concerning root development, several studies pointed to N and P 
interactions [47] but only a few so far identified molecular actors. 

The study of direct targets of the HRS1 (NIGT/HHO family) transcription factor, 
being an excellent marker of the PNR [27], showed that P-related genes are enriched in 
this target list [48]. This brought Medici et al, [48] to study the interaction of P and  N 
signals and the role of this transcription factor in the N/P interaction. It has been shown 
that hrs1,hho1 double mutant is resistant to P limitation primary root response only 
when limitation is applied in presence of NO3-. This interaction is supposed to be the 
result of the strong transcriptional control of HRS1 and a post-translational control of the 
protein level by P [48]. Interestingly, recent work also demonstrated that 
NPF7.3/NRT1.5 (nitrate transporter) mutants display a very strong root phenotype on -P 
conditions [49]. 
 

 

Regulation of Phosphate Starvation Response (PSR) by Nitrogen 

Availability 

A number of physiological evidences have shown that N availability affects PSR. 
Under P starvation N supplement activates PSR, while N starvation strongly represses it 
[12,50–54], indicating that plants have a regulatory system to prioritize N over P. 
Considerable progress has been made recently in understanding the underlying 
mechanism of the system and three major PSR signaling factors at N-P interface have 
been identified. They are SPXs, PHRs and PHO2. In Arabidopsis, the expression of 
SPX1, SPX2, and SPX4 is repressed in response to N supplement by NIGT1/HHOs 
[36,55]. In rice, OsSPX4 is degraded by the 26S proteasome pathway in a nitrate-
stimulatory manner. It was shown that the interaction between OsSPX4 and 
OsNRT1.1B (a homologue of CHL1/NRT1.1 in rice), which is facilitated by nitrate, 
triggers degradation of OsSPX4 by recruiting NRT1.1B INTERACTING PROTEIN 1 
(OsNBIP1), an E3 ligase [53]. PHRs are positively regulated by N at transcriptional and 



post-transcriptional levels. The expression of PHR1-LIKE 1 and OsPHR3 is activated by 
N supplement [56,57] and PHR1 protein stability is decreased by N-starvation [52], 
though the N-related factor involved in these regulations is unknown. PHO2 is 
recognized as an important interface because pho2 mutants display severe impairment 
in N starvation repression of PSR [52,58]. PHO2 expression is upregulated by N 
starvation, and NIGT1/HHOs and CHL1/NRT1.1 are implicated in the regulation [36,52]. 
Furthermore, the mutant of NLA shows pho2-like phenotype in N-dependent PSR 
regulation and the translation of NLA is repressed by N starvation [58,59], suggesting 
that PHO2 and NLA act together in N-dependent PSR regulation. In addition to these, 
several potential factors involved in N-dependent PSR regulation have been reported in 
Arabidopsis, including miR399 [60] and NPF7.3/NRT1.5 [49]. However, their exact roles 
in N-dependent PSR regulation remain to be explored. 
  

Control of Nitrogen molecular responses by Phosphorus 

    The effect of P availability on N response has been almost exclusively studied from 
the aspect of P starvation. Typical symptoms of P starvation on N response is reduction 
of uptake, translocation, and assimilation [14–16]. Transcriptome analysis in 
Arabidopsis revealed that many PNR genes, including NR1, NIR, and CHL1/NRT1.1, 
are repressed as early as 24 h after the onset of P deprivation treatment [17,23], 
suggesting that PSR and PNR pathways are closely connected. Two N signaling factors 
have been identified to be regulated by PSR pathway. Firstly, AtCHL1/NRT1.1 is 
negatively regulated by P starvation in transcript accumulation and protein stability [48]. 
PHO2 and LEAF TIP NECROSIS 1 (a homologue of PHO2 in rice) are implicated as 
positive regulators of the transceptor expression in Arabidopsis and rice because the 
mutants of both species have reduced transceptor expression and are affected in PNR 
[52,61,62]. Secondly, NIGT1/HHOs are directly activated by PHR1 and PHL1 under P 
starvation [36,38]. Recently it was reported that OsNLP3 action is hindered by OsSPX4 
in rice. OsSPX4 interacts with OsNLP3 and abrogates nitrate-induced cytoplasmic-
nuclear shuttling of OsNLP3 [53]. The amount of OsSPX4 available for interaction is 
controlled by inositol phosphates-facilitated OsSPX4-OsPHR complex formation [53], 
and degradation via SPX4 DEGRADATION E3 LIGASEs (OsSDELs) under P starvation 
[63] and via OsNBIP1 in response to nitrate [53]. Hu et al. proposed that OsSPX4 action 
on OsNLP3 is intricately regulated at the protein level and interacting affinity to yield 
optimal N response under different N and P conditions. However, further experimental 
evidence would be required to validate this proposal and to know whether such 
regulation is universal in plants.  
 

Since PSR is strongly attenuated under N starvation [52,53,55], it is reasonable 
to assume that P starvation has little effect on NSRHowever, there are a few studies 
against this assumption. For example, N starvation induced expression of PtNRT1.1 



and PtNRT2.1 was shown to be down-regulated by N and P co-starvation in poplar [64]. 
P starvation might negatively regulate NSR in certain phases of N starvation (e.g. early 
phase). Given that NIGT1/HHOs have roles in controlling genes for both NSR and PSR 
[36], it is tempting to speculate that NIGT1/HHOs are involved in the regulation. 
 

  
Conclusions: Towards a more complex picture and perspective to unleash plant 

nutrition  
We believe that the important control of P responses by N and vice versa are 

likely the tip of the iceberg. Indeed, it is now quite obvious that plants monitor signal 
combinations (nutritional or not) rather than any simple signals to adapt their 
physiological and molecular responses [47,65,66]. So we expect investigations to be 
extended to Light, C, N, P, K, S, Fe, ... in the near future. 
For instance, light through the HY5 transcription factor action could be a relevant nexus 
since it represses PHR1 expression [67], while it activates NRT2.1 by traveling from 
shoot to roots [68]. This shows that many more connections from other signaling 
pathways are forking on N and P signalings, and probably the other way around. 

To conclude and open perspectives, we would like to emphasize two particular 
striking examples of signal interactions taking place at the level of single sensor 
proteins. The first one is going beyond simple nutritional control. Indeed the presence of 
insP6 has been reported as a potential co-factor in the auxin sensing system made of 
TIR1 and IAA17 [69]. Even if the function of insP6 in auxin sensing still needs to be fully 
investigated, this demonstrates that signals of different kinds can interact very closely 
and that nature have evolved proteins being able to intimately mediate crosstalk. The 
second very elegant example is the control of IRT1 (iron/metal transporter) by metals 
[70]. A cytoplasmic loop of IRT1 is able to bind metals (Mn2+, Zn2+) and recruit the 
sequential activation of CIPK23 and ubiquitination that remove the transporter from the 
membrane, preventing the plant from poisoning itself with heavy metals [70]. This again 
shows that nature evolved highly responsive sensing proteins having several tasks in 
the cell that necessitate a tight control of their function by a combination of signaling 
elements. 

Finally, N and P interconnections are complex traits that plants evolved in natural 
environments and they may not be optimal in agricultural practices. For instance, we 
observe that plants seem to wait for N to trigger PSR [52]. Being able to uncouple N and 
P signal by pho2 mutation [52] may provide an advantage to plants in conditions where 
P and N are lacking. This would allow plants to react to P starvation with or without N. In 
the same line, NIGTs/HHOs manage a P connection towards NSR (Figure 1). We 
observe that NIGTs/HHOs mutations derepress nitrate transport activity which can raise 
up to 2.5 fold increase of HATS [36,37]. This may be the results of uncoupling N and P 
signals.  We thus think that a fundamental knowledge of signal interactions may be an 



interesting path to enhance N and P Use Efficiency (NUE and PUE) by giving the plant 
a new degrees of freedom in reaction to the fluctuating environment. 
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Recommended reading 

*         Of special interest 
**        Of outstanding interest 
  
**Kiba et al (2018) 
The authors demonstrate cross talk between NSR and PSR, in which NIGT1/HHOs act 
as a hub in Arabidopsis. They show that NIGT1/HHOs directly repress the expression of 
NSR genes and negative regulators of PSR (SPXs and PHO2), resulting in suppression 
of NSR and activation PSR. 
  
**Maeda et al (2018) 
This paper shows that NIGT1/HHOs act as integrators of PNR and PSR signaling in 
Arabidopsis. The authors demonstrated that NIGT1/HHOs are directly activated by 
NLPs and PHR1 at the transcription level and act as negative regulators of PNR genes. 
  
 
 
*Medici et al (2019) 
This study proposes an interesting model describing convergent points of N signals into 
the PSR signaling pathway in Arabidopsis. Observations indicating that 
NPF6.3/NRT1.1, PHR1 and PHO2 are the molecular actors playing roles in the process 
are presented. Furthermore, authors provide evidence that control of PSR by N signals 
is a general mechanism across a wide range of plant species. 



  
**Hu et al (2019) 
The authors revealed a mechanism for coordinated utilization of N and P in rice. They 
identified OsSPX4 as a factor acting at the N-P interface. OsSPX4 is degraded by 26S 
proteasome pathway in a nitrate-stimulatory manner through the action of OsNRT1.1B 
and OsNBIP1 and inhibits the action of OsPHR2 and OsNLP3 through protein-protein 
interaction, thus coordinates PSR and PNR in response to nitrate. 
 
*Ueda et al (2019) 
In this work, authors provide evidence for the involvement of NIGT1-SPX-PHR1 module 

in nitrate-responsive regulation of PSR in Arabidopsis. They show that repression of 

SPXs by nitrate-inducible NIGT1/HHOs and subsequent modulation of PHR1 activity is 
the main pathway for the regulation. 
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Figure legend 

 

Figure 1. Inter-relationships between Primary Nitrate Response (PNR), Nitrogen 

Starvation Response (NSR) and Phosphate Starvation Response (PNR) explaining 

N/P interactions identified so far. 

Molecular elements belonging to PNR, NSR and PSR (see text for their thorough 
definition) are organized vertically from sensors to marker genes (red font). Cross talks 
between pathways are represented using orange arrows. Some arrows originate from 
defined molecular actors, other arrow origins are undefined yet (orange ball).  PHRs are 
the master transcriptional regulators of Phosphate Starvation Response that is 



characterized by the activation of Phosphate Starvation Induced (PSI) genes and 
activation of phosphate uptake and translocation by phosphate transporters (PHT1s and 
PHO1). PHRs are negatively regulated by SPXs through inositol polyphosphate (insP)-
triggered protein-protein interaction. Under P starvation, PHRs upregulate the 
expression of PSI genes, including miR399 and IPS1. miR399 represses PHO2, an E2 
ubiquitin conjugase that acts in concert with an E3 ligase NLA to target phosphate 
transporters (PHT1s and PHO1) for degradation. OsSPX4 is degraded by the 26S 
proteasome pathway in response to N supplement (+N) through the action of 
OsNRT1.1B and an E3 ligase OsNBIP1 (OsNRT1.1-OsNBIP). The transcription of 
SPXs is directly repressed in response to +N by NIGT1/HHOs (NIGT1s). PHRs are 
transcriptionally activated in +N and post-translationally repressed by N-starvation (-N) 
through yet unidentified mechanisms. PHO2 expression is down-regulated in response 
to +N by NIGT1/HHOs and CHL1/NRT1.1 (NRT1.1). Together, PSR is attenuated under 
N-starvation because the level of negative regulators, SPXs and PHO2, is increased, 
while that of the positive regulator PHRs is decreased. 
NLPs are the master transcriptional regulators of PNR. Nitrate (NO3-) triggers calcium 
waves ([Ca2+]) through NRT1.1. Then the calcium signal is decoded by CPKs that 
phosphorylate NLPs. Upon phosphorylation, NLPs activate the expression of PNR-
related genes (PNR genes), including the transcriptional repressor NIGT1s. NIGT1s 
directly repress NSR marker genes (NRT2.4, NRT2.5). NIGT1s also directly repress 
genes involved in Nitrogen Starvation Response (NSR genes). NRT1.1 is negatively 
regulated by P starvation in transcript accumulation and protein stability. PHO2 is 
implicated in NRT1.1 regulation. NIGT1s are directly activated by PHRs under P 
starvation.  
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