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Abstract

Background: Nipah virus (NiV) is a fatal zoonotic agent that was first identified amongst pig farmers in Malaysia in
1998, in an outbreak that resulted in 105 fatal human cases. That epidemic arose from a chain of infection, initiating
from bats to pigs, and which then spilled over from pigs to humans. In Thailand, bat-pig-human communities can
be observed across the country, particularly in the central plain. The present study therefore aimed to identify high-
risk areas for potential NiV outbreaks and to model how the virus is likely to spread. Multi-criteria decision analysis
(MCDA) and weighted linear combination (WLC) were employed to produce the NiV risk map. The map was then
overlaid with the nationwide pig movement network to identify the index subdistricts in which NiV may emerge.
Subsequently, susceptible-exposed-infectious-removed (SEIR) modeling was used to simulate NiV spread within
each subdistrict, and network modeling was used to illustrate how the virus disperses across subdistricts.

Results: Based on the MCDA and pig movement data, 14 index subdistricts with a high-risk of NiV emergence were
identified. We found in our infectious network modeling that the infected subdistricts clustered in, or close to the central
plain, within a range of 171 km from the source subdistricts. However, the virus may travel as far as 528.5 km (R0 = 5).

Conclusions: In conclusion, the risk of NiV dissemination through pig movement networks in Thailand is low but not
negligible. The risk areas identified in our study can help the veterinary authority to allocate financial and human
resources to where preventive strategies, such as pig farm regionalization, are required and to contain outbreaks in a
timely fashion once they occur.
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Background
Nipah virus (NiV) is a negative-sense, single-stranded RNA
virus. The virus belongs to the genus Henipavirus, family
Paramyxoviridae [1]. In late September 1998, NiV first
emerged amongst pig farmers and pigs in peninsular
Malaysia [2]. The outbreak, which was associated with
respiratory illness in pigs, and was first considered to be
Japanese encephalitis [1]. Subsequently, a new virus closely
related to Hendra virus, namely Nipah virus, was isolated [3].

By mid-June 1999, 265 individuals had fallen ill, 105 of which
passed away (39.6% case-mortality rate). Consequently, over
one million pigs were culled to control the outbreak [1, 3].
The NiV epidemic in Malaysia was subsequently found to
have been initiated from bats to pigs, which then spilled over
to humans [4]. In pigs, the virus is highly contagious and the
morbidity rate may reach 100%, with a mortality rate of
approximately 40%. The infected animals manifested either
respiratory or neurological signs depending on age. A high
proportion of pigs were infected asymptomatically [5], sug-
gesting silent zoonotic transmission.
Three years later, a different strain of NiV emerged in

Bangladesh and India [6, 7]. These genetically distinct
strains were mainly driven by bat-to-human and human-
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to-human transmission, and the outbreaks appeared to
occur annually [8–10]. Recently, another episode of NiV
an outbreak was identified in India in May 2018, which
resulted in 21 deaths among 23 confirmed cases (18 with
laboratory results) [11]. Unsurprisingly, there was evi-
dence suggesting that the fruit bat was likely to be the
primary reservoir host responsible for the outbreaks
[12]. Basically, NiV transmission was believed to occur
through the consumption of foods contaminated with
bat urine, such as date palm sap [13]. Pigs appeared to
be an amplifying host for the 1998 NiV outbreaks in
humans in Malaysia and Singapore, and direct contacts
between bats and pigs were observed in the farm associ-
ated with the index case of the epidemic. Some of the
evidence was piggeries placed under fruit trees, and half-
consumed fruits were found within the piggeries [14].
To date, the spillover of NiV into pig and human popu-
lations has only been observed in Malaysia, Singapore,
India, and Bangladesh [6, 8, 15, 16]. However, the

genetic material of NiV in bats has been recovered from
many more extended geographic locations, including
Thailand [17, 18]. However, actual virus isolation has
been limited.
In Thailand, bat-pig-human communities can be ob-

served across the country, particularly in the central
plain, a combination of the central and eastern regions.
The distribution density of humans and pigs in relation
to bat roosting sites is illustrated in Fig. 1. This kind of
environment ideally facilitates NiV emergence and dis-
semination. It has been suggested that pig farms with
low biosecurity around Bangkok were at risk for NiV in-
fection, as colonies of flying foxes (bats in the genus
Pteropus) are located close by [19]. Flying foxes are the
predominant bats found across the central plain, the
area where human population density is high (232.07 in-
dividuals/km2 around the bat colonies). In addition,
these bats are free to roam around the country, as bat
hunting is completely prohibited, and bats are protected

Fig. 1 Human and pig population density, and the locations of bat roosting sites in Thailand, 2015. a. Human population density and the locations of
flying fox colonies, and b. pig population density and the locations of flying fox colonies (the figure was originally created)
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by the Wildlife Preservation and Protection Act, B.E.
2535 (1992). In the central plain, 22 colonies of flying
foxes have been identified. Based on a satellite telemetry
study, the foraging distances of these bats were esti-
mated to be as far as 23.6 km [20]. Thirty-four food
plants were consumed by the flying foxes, with the most
common fruits recorded being mango, followed by ba-
nana and tamarind, respectively [20] and orchards of
these fruits are found ubiquitously in the central plain of
Thailand. Along their daily flying routes, the bats may
occasionally visit some pig farms as previously evidenced
in Malaysia [14]. Moreover, the genetic materials of both
Malaysian and Bangladesh NiV strains have been de-
tected in flying foxes (Pteropus lylei) [17].
The pig industry is an active and important business

in Thailand. Pork meat is preferred in many Thai trad-
itional dishes. Pig farming practice in Thailand is
roughly divided into smallholder (a farm with less than
50 pigs) and large-scale (a farm with 50 pigs or more)
farming systems, according to the Thai ‘Good Agricul-
tural Practices for Pig Farms’ [21]. According to the De-
partment of Livestock Development (DLD), a total of 10,
191,784 pigs were recorded nationwide in 2017. These
pigs were raised in 180,606 farms, and most farmers
(93.6%) were considered smallholders [22]. In terms of
pig types, the pigs in the farms can be either native,
breeding, or fattening pigs. However, the majority of the
smallholders raised native pigs, and their farms are gen-
erally located in rural areas to serve local consumption
[21]. With limited budgets and resources, the biosecurity
level in these small farms is relatively low [23]. Import-
antly, nearly half (49.1%) of all the pigs in the country
are found in the central plain [22]. Considering the
home ranges of the flying foxes, human density and
number of pigs, NiV epidemics may occur at any time.
Surprisingly, no trace of NiV infection has been reported
in pig or human populations in Thailand. However, the
dynamic transmission of the virus is worth exploring.
Mathematical modeling is a tool to forecast the magni-

tude of disease outbreaks, and epidemic models have
been constructed for different diseases in different loca-
tions, for instance, foot-and-mouth disease in the US
[24] and Mexico [25] as well as rabies in Australia [26].
In many cases, infectious diseases were found to spread
via contact networks, driven by animal trade and move-
ment [27].
As NiV has not yet impacted pig populations in

Thailand, it is critically important to foresee how the
disease could spread so that relevant preventive mea-
sures, such as pig farm regionalization, can be imple-
mented in the right geographical locations. Moreover,
the preparedness for possible epidemics is essential for
future disease prevention and control. The present
study, therefore, aimed to identify the high-risk areas in

which NiV may emerge and then model how the virus is
likely to spread along the pig trade network nationwide
so that budgets and workforce can be allocated effect-
ively once an outbreak occurs.

Results
Index subdistricts identification for the spread of NiV
Based on our MCDA method, we identified 17 high-risk
subdistricts together with 764, 442, and 870 medium,
low, and very low-risk subdistricts, respectively. The
high-risk subdistricts (Table 1) were overlapped with a
list of subdistricts where pig movement activity was
known to occur. The risk map of NiV detection is
depicted in Fig. 2. The complete list of NiV occurrence
probability for the 2093 subdistricts analyzed in this
study is given in Additional file 1.
In the pig movement database, the translocation of

pigs was recorded in 3292 subdistricts nationwide, and
specifically, pig movement was found in 14 out of 17
identified high-risk subdistricts. The three subdistricts
without any pig movement records were Asa, Bang Lao,
and Bang Rakam, and therefore these subdistricts were
excluded from the list of index subdistricts.

NiV transmission modeling
In this study, we varied the values of transmission rate
(β) and removal rate (γ) as the actual values from field

Table 1 The list of high-risk subdistricts for NiV occurrence in
Thailand

Geocode Subdistrict Province Probability of NiV
occurrence

240211 Sao Cha-Ngo Chachoengsao 0.767383

170403 Bang Nam
Chiao

Sing Buri 0.744118

260304 Asa Nakhon Nayok 0.72053

200602 Na Phrathat Chon Buri 0.716989

240107 Khlong Chuk
Khachoe

Chachoengsao 0.709265

260307 Phikun Ok Nakhon Nayok 0.707236

150306 Norasing Ang Thong 0.67296

250106 Bang Boribun Prachin Buri 0.659102

240212 Samet Nuea Chachoengsao 0.637756

240106 Bang Phai Chachoengsao 0.637532

200605 Na Roek Chon Buri 0.631063

140908 Phra Kaeo Phra Nakhon Si
Ayutthaya

0.619647

200617 Na Wang Hin Chon Buri 0.615036

241103 Bang Lao Chachoengsao 0.614749

260308 Pa Kha Nakhon Nayok 0.613451

150406 Bang Rakam Ang Thong 0.612812

190502 Nong Khwai So Saraburi 0.604876
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observations are not available. Figure 3 illustrates how β
and the basic reproduction number (R0) affect the NiV
spreadability. Unsurprisingly, the more these two values
increased, the more disease dissemination was observed.
As shown in Fig. 3a, the probability that an index sub-
district may spread NiV outwards is around 1.00% (In-
ter-quartile range (IQR): 0.00–7.75%). However, a
probability higher than 75% was observed in three sub-
districts, including Phra Kaeo (140908), Bang Nam
Chiao (170403), and Bang Boribun (Geocode 250,106).
As shown in Fig. 3b, our models showed that at an R0 of
50, the virus might spread from Bang Boribun (Geocode
250,106) to another 27 destination subdistricts. The me-
dian number of possible infected subdistricts, across all
iterations, originating from one initial subdistrict is 1
(IQR: 0–2). Focusing on the average epidemic size
(Fig. 3c), 40.95% of all scenarios showed that NiV would
never spread out. Interestingly, at an R0 of 2, the virus
may diffuse to two other subdistricts, whereas the me-
dian of all average epidemic size observed in our models

(excluding the epidemic size of 0) is 1 (IQR: 1–1.10). In-
deed, the maximum epidemic size (unaveraged) was
found in Phra Kaeo (Geocode 140,908), and Bang Bori-
bun (Geocode 250,106) subdistricts at a value of 5. Fig-
ure 3d shows the average risk estimated for each initial
subdistrict. In general, the risk was less than 0.13%.
However, again higher risk was observed in Phra Kaeo
(Geocode 140,908), and Bang Boribun (Geocode 250,
106) subdistricts at a maximum of 0.55, and 0.18,
respectively.
The spatial distribution of NiV spread (R0 = 5.0)

through the pig trade chain and its corresponding risk
level from our model is illustrated in Fig. 4. All 14 index
subdistricts could infect 14 other subdistricts, with Pra
Kaew subdistrict in Phra Kakhon Si Ayutthaya (Geocode
140,908), as the highest infectious index subdistrict. This
subdistrict may spread the virus to other 9 subdistricts.
Most of the infected subdistricts are clustered in, or
close to the central plain of Thailand, within a range of
171 km from their source subdistricts (see Fig. 4a and c).

Fig. 2 The spatial risk level of NiV occurrence in the central plain of Thailand identified by the MCDA method. a. The distribution of the study
subdistricts on the map of Thailand, and b. The magnified map focusing on the central plain of Thailand (the figure was originally created)
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Interestingly, the subdistrict Pra Kaew could introduce
NiV infected pigs much further to the Northern region,
which are Chom Pu subdistrict in Lampang (Geocode 520,
106; 440.8 km), and Dok Khamtai subdistrict in Phayao
(Geocode 560,501; 528.5 km), respectively (Fig. 4b).

Discussion
The present study primarily identified the spatial risk
areas from which NiV may emerge, based on different
contributing factors. The high-risk areas were then used
to determine how NiV would spread across Thailand
through the pig trade network. Our underlying assump-
tion was that the virus would originate from the super-
imposed areas where both bat-pig spillover risk and
concentrated pig trade activities were identified. Finally,
disease transmission models were employed to illustrate
how the virus would disseminate within and between
subdistricts.
Based on our spatial risk modeling, the number of

identified high-risk areas was only 0.3% (7/2093) of

all subdistricts analyzed in the model. This might be
the reason why an outbreak of NiV has not occurred
in the pig population in Thailand. Importantly, our
results are in line with a previous study using another
spatial risk identification method, namely, potential
surface analysis (PSA) [19]. High-risk areas were iden-
tified in the central plain of the country (Fig. 2),
where a high density of pigs and bat colonies have
been observed [19]. In addition, the genetic material
of NiV has been recovered in the same region [17,
18]. In our study, we mainly used the multi-criteria
decision analysis (MCDA) method, which is a
knowledge-based approach using existing knowledge
to create decision rules and to integrate them with
some potential factors to ultimately identify the risks
[28, 29]. The MDCA methodology is an appropriate
technique to be applied to this study, as the identifi-
cation of relevant risk factors, their weights, and the
way they increase the risk spatially may be defined
more explicitly and thoroughly in using this approach

Fig. 3 The NiV infectious modeling results, in which the disease transmission rate β and the basic reproduction number R0 were varied. a.
Number of positive iterations observed from 100 iterations of each conditional simulation, b. Number of possible destination subdistricts that an
index subdistrict of interest can spread the virus to, across 100 iterations, c. Average epidemic size calculated from the mean number of infected
subdistricts an index subdistrict can infect in each iteration, and d. Average risk calculated from eq. 5. In total, 21,000 iterations were carried out
to produce the results
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[30]. The method has also been used in similar situa-
tions. For example, Paul and colleagues (2006) used
MCDA to assess the suitability of areas for highly
pathogenic avian influenza H5N1 in Thailand and ap-
plied this model to Cambodia [29].
As expected, outgoing pig movements were observed

in 82.4% (14/17) of the identified high-risk subdistricts.
The central plain was identified in a previous study as
the main pig production area of Thailand, where differ-
ent types of pig production systems are recognized [21].
The 14 subdistricts were then chosen to initiate NiV
spread. In general, the probability that NiV can escape
from the initial subdistricts is low except for the scenarios
with extremely high R0 values (Fig. 3a). It is noteworthy
that each index subdistrict can infect only a small number
of other subdistricts (Fig. 3b). The virus was able to move
to only one to two steps (Fig. 3c) before dying out, as no
infected pigs were transported or no trade activities were
observed in the dead-end subdistricts. Therefore, the

overall risk of NiV transmission from these initial subdis-
tricts is low (Fig. 3d) even with a high R0.
In this study, we also tried to explore what would hap-

pen with extreme situations, for example, using R0 values
of 100 and 500. Surprisingly, we found that in many cases
the risks were still low in such scenarios. Our models fully
support the fact that the NiV has not emerged and spread
in the pig populations in Thailand. Indeed, the DLD has
conducted annual active surveillance for NiV detection in
pigs in the country for more than 20 years, since the out-
break of NiV in Malaysia that emerged in 1998, and none
has been detected. It is empirical and concrete evidence
confirming that NiV has never emerged in our pig popula-
tions. Nonetheless, two high-risk initial subdistricts were
identified in our models, including Phra Kaeo (Geocode
140,908) subdistrict, Phachi district, Phra Nakhon Si Ayut-
thaya province and Bang Boribun (Geocode 250,106) sub-
district, Mueang district, Prachinburi province. The
former is a subdistrict with the second-highest number of

Fig. 4 Geographical distribution of the index subdistricts (red pinpoints) and the destination subdistricts with different risk levels, based on R0 = 5
(β = 0.5, γ = 0.1). The risk level was categorized as ‘High’ (greater than 9.55 × 10− 4), ‘Medium’ (greater than 2.13 × 10− 4 to 9.55 × 10− 4), ‘Low’
(greater than 0 to 2.13 × 10− 4), and ‘No risk’ (risk = 0). a. The identified subdistricts are illustrated on the map of Thailand, b. A magnified map
focusing on the northern part of Thailand and, c. A magnified map focusing on the central plain of Thailand where both index and destination
subdistricts are concentrated (the figure was originally created)
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outgoing pig transportation among the initial subdistricts.
This explains the link between the number of animals
moved and associated risk observed, as it has been sug-
gested that the volume of animal movement is a key pre-
dictor of animal disease dissemination [31]. Moreover, the
pigs exported from this subdistrict can travel quite far
from the origin (Fig. 4b). The long-distance transportation
of outgoing animal movements has been previously ob-
served in different livestock species in Thailand, including
cattle [32] and goats [33]. The socioeconomic motivations
behind this trading behavior is worth exploring as
moving animals across long distances is costly and
time-consuming. There must be some convincing fac-
tors, for example, a higher selling rate compared to
selling locally, that motivate animal traders to do so.
To extend the study into this aspect, knowledge, and
tools of social science and economics are needed. An
insight into these motivations will help us in dealing
with the behavior of the traders once an outbreak of
infectious disease occurs.
We did face some potential limitations. Firstly, the pig

movement data we used are the official animal move-
ment data recorded electronically. This data recording
system was designed to capture any inter-provincial live-
stock movements. However, the intra-provincial ship-
ment of the animals is not recorded, and thus it is likely
that we missed some hidden links that occurred within
the provinces. This weakness was also pointed out in a
previous study [34]. Thai veterinary authorities should
reconstruct their procedures to include movement at the
district or even subdistrict level. Secondly, we analyzed
the spatial risk of NiV occurrence in less than one-third
of all subdistricts in Thailand (2093/7416), as we focused
on Thailand’s central plain, which had been previously
identified as a high contact zone between pigs and flying
foxes [19]. To expand the model to cover the whole
country, a field study to identify the current locations of
bat colonies nationwide should be undertaken, together
with increased data collection on other factors needed in
the spatial risk model construction. However, the
present study initially carried out a risk analysis of one
of the hotspots identified in a previous study [35] using
a more sophisticated analytical technique. Our methods
could be applied more widely once more data are avail-
able. Thirdly, local transmission was not considered in
our model. We exclusively focused on how NiV spread
along the trade chain. Indeed, the virus may disperse lo-
cally by other means. A more sophisticated modeling ap-
proach, such as an individual-based system at an animal
or farm level, is recommended. Fourthly, we did not in-
clude other factors that may influence how NiV spreads
in the pig population, such as meteorological effects and
seasonality. However, we intended to produce an initial
model focusing on the spread of the virus through the

pig movement. A future study, including other contrib-
uting factors, is recommended. Fifthly, the β and γ
values of NiV transmission are not known. We used dif-
ferent values of these parameters to explore the likeli-
hood of disease spread. If we have better knowledge of
these parameters in the future, the model will be more
accurate and suitable for an outbreak situation. Sixthly,
the epidemiological model itself always comes with some
general limitations. In the MCDA framework, as it is a
knowledge-based approach, the subjectivity of the
method derived from the involvement of experts’ opin-
ions might be a significant limitation. Nonetheless, this
approach is still practical, especially in the case that ac-
tual field data is unavailable, as in our case. In the SEIR
model, the population is assumed to be homogeneously
mixed while the actual pig population in the subdistrict
is further divided into the farm level. However, the SEIR
model is still one of the best choices when we need to
work with big data as it is less time-consuming com-
pared to other more complex models like an individual-
based framework. The last and the most important limi-
tation found in our study was that Thailand has never
experienced an NiV epidemic. The NiV outbreak in pig
populations in Malaysia has been the only recognized
attack in veterinary history so far. To contain that par-
ticular devastating epidemic, millions of pigs were im-
mediately culled [1, 4]. It was too rapid to observe any
epidemiological characteristics of NiV propagation. Con-
sequently, we need to vary different epidemic parameters
to visualize different outbreak scenarios that are likely to
occur. However, it is not possible to validate our as-
sumptions. The best we can do is to quantify the risk
and promptly prepare for the potential outbreaks. None-
theless, our simulation framework is exploitable as a
baseline model to examine the effectiveness of control
strategies, and to suggest some practical contingency
plans. In addition, our model is able to identify the areas
where pig farming practices should be improved to pre-
vent the occurrence of an NiV outbreak. In this study,
we produced a simulation framework that is usable as a
baseline structure for any interventional modeling. We
acknowledge here that our model did not consider the
nature of the pig movement. A future study may simu-
late animal movement according to the intended pur-
pose, such as to a slaughterhouse and include relevant
parameters for the spread of the virus. This will make
the model more realistic, but it requires a valid set of
field data to do so.

Conclusions
The risk of NiV dissemination through pig movement
networks in Thailand is low but not negligible as we
have a perfect environment for NiV emergence in the
country. The risk areas identified in our study may help
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veterinary authorities to allocate financial and human re-
sources to where preventive strategies, such as pig farm
regionalization are required, and to contain outbreaks in
a timely fashion once they occur.

Methods
Index subdistricts identification for the spread of NiV
The present study focused on the transmission of NiV at
the subdistrict level, the smallest administrative unit in
Thailand with standard geocodes [36]. We focused on
2093 subdistricts located in the central plain of Thailand,
where bat colonies and pig farms are highly concen-
trated. The spatial risk of NiV emergence was assessed
using the multi-criteria decision analysis (MCDA)
method, and the results were published previously [35].
In this study, we sought to expand on those results.
Briefly, we invited 20 experts in epidemiology, virology,
pig farming systems, and bat ecology to attend a work-
shop for the decision-making process. The experts iden-
tified i) spatial risk factors of NiV transmission including
bat preferred areas, distance to the nearest bat colony,
pig population density, distance to the nearest forest,
distance to the nearest orchard, distance to the nearest
water body, and human population density, ii) the ex-
perts identified the association between the values of
each factor and the suitability of NiV distribution by
using fuzzy membership functions, and iii) technique.
The details of all steps are explained in [35]. Subse-
quently, the geometric information system (GIS) method
with a weighted linear combination (WLC) was used to
combine all spatial risk layers to generate a final esti-
mated map. The risk was divided into five levels accord-
ing to the probability of disease occurrence, namely very
high (0.8–1), high (0.6–0.8), medium (0.4–0.6), low (0.2–
0.4), and very low (0.0–0.2). The high-risk subdistricts
(> 0.6) were then overlaid on the subdistricts with pig
movement activities, based on the national animal move-
ment database of the DLD, to identify the subdistricts
that NiV may initiate the transmission through the pig
movement network (Fig. 5).

NiV transmission modeling
Within subdistricts
An official database of pig population at the subdistrict
level in Thailand in 2017 was obtained from the DLD
[22]. The data was then used as a baseline in our NiV in-
fectious modeling within each subdistrict. An index sub-
district was chosen from the list prepared from the
previous step. An NiV infected pig was then introduced
into the selected subdistrict. A Susceptible-Exposed-
Infectious-Removed (SEIR) model was employed, as
shown in eq. 1. We varied the parameters to deal with un-
certainty by calculating the basic reproduction number R0

(β/γ), as shown in Table 2. Note that only the R0 > 1 was

used, as this allows the disease to spread [37]. In this
model, we followed a latent period (σ) of 6 days based on a
previous study [37]. The model was constructed on a
weekly basis. At the end of the week, a specific number of
pigs were designated to a subdistrict that was randomly
chosen from the destinations list recorded in the pig
movement database. The within subdistrict transmission
is conceptualized as demonstrated in Fig. 6.

dS
dt

¼ −
βSI
N

dE
dt

¼ βSI
N

− σE

dI
dt

¼ σE − γI

dR
dt

¼ γI

ð1Þ

, where S = Susceptible, E = Exposed, I = Infectious,
R = Removed, β = transmission rate, γ = removal rate and
σ = latent period. The model is governed by a differential
ordinary equation.
The susceptible (S) is the subpopulation without im-

munity which is capable of being infected, exposed (E) is
the population that is already infected, but not yet infec-
tious (unable to spread the virus), infectious (I) develops

Table 2 The R0 values varied from different β and γ values. The
values higher than 1 were used in the NiV spread simulation

Transmission
rate (β)

Removal rate (γ)

0.01 0.05 0.1 0.5 1

0.05 5 1 0.5 0.1 0.05

0.1 10 2 1 0.2 0.1

0.5 50 10 5 1 0.5

1 100 20 10 2 1

5 500 100 50 10 5

Fig. 5 Identification of index subdistricts for the spread of NiV
through pig movement in Thailand
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from exposed individuals after a certain period (latent
period) They can spread the virus to susceptible individ-
uals and removed (R) is defined here as pigs that die or
recover from the infection.

Between subdistricts
The between subdistrict modeling of the NiV spread is
conceptualized in Fig. 7. To model pig movement from
a source subdistrict i (Si), a list of modeled destination
subdistricts (M) and the number of transported pigs (N)
are generated. The number of weekly pig movements of
Si (ni) is generated with the following Poisson
distribution:

ni � Pois λið Þ ð2Þ

; where λi is the mean number of weekly pig move-
ments of Si derived from the animal movement dataset.
Let total j subdistricts (D) be the members of a set of all
possible destination subdistricts of Si (DP). The probabil-
ity of Dj being selected as a destination subdistrict in the
modeled pig movement (pj) is calculated as:

pj ¼ f j
F

ð3Þ

; where fj is an annual pig movement frequency from
Si to Dj, and F is the total number of annual pig

Fig. 7 Conceptual framework of NiV transmission between subdistricts

Fig. 6 Conceptual framework of NiV transmission within a subdistrict
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movement frequency of Si to all destinations. Then, total
ni destination subdistricts are randomly selected from
DP as members of M with their respective probabilities
p. Finally, the number of pigs transported (Nk) from Si
to a subdistrict of destination k (Mk) is generated follow-
ing a normal distribution:

Nk � Normal X
�

k; sk
� � ð4Þ

; where Xk and sk are the mean and standard deviation of
the number of pigs transported from Si to Mk per move-
ment, according to the actual animal movement dataset.
We repeated the whole process for all subdistricts

listed as potentially high-risk areas for the NiV spread.
In each index subdistrict, we recorded four main out-
puts; (i) number of positive iterations in which the NiV
can spread out from the index subdistricts, (ii) number
of potential destination subdistricts, the aggregation of
all possible subdistricts that NiV reached across itera-
tions, (iii) average epidemic size which is the mean num-
ber of infected subdistricts resulting from an index
subdistrict in each iteration, and (iv) average risk (π)
which is calculated from the following equation:

π ¼ 1
Nπ

XI

i¼1

XJ

j¼1

πij;πij > 0 ð5Þ

; where I and J denotes the number of infected subdis-
tricts resulting from an index subdistrict, and the num-
ber of total iterations, respectively. While πij is the risk
of subdistrict i of the jth iteration, and Nπ is the total
number of πij > 0.
We used programming language R version 3.5.1 in the

spatial risk analysis and the within subdistrict modeling of
NiV spread. The between subdistrict modeling of pig trade
and the NiV dissemination were mechanized by Visual
studio code with python version 3.6.8. The pig movement
and disease transmission were stochastically simulated in
100 iterations each. In total, 21,000 iterations were carried
out to produce the results. The risk maps were visualized
with QGIS application version 2.18.24.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
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