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Discrimination of rosé wines using 
shotgun metabolomics with a 
genetic algorithm and MS ion 
intensity ratios
Mélodie Gil1, christelle Reynes2, Guillaume cazals3, christine enjalbal3, Robert Sabatier2 & 
cédric Saucier  1*

A rapid Ultra performance Liquid chromatography coupled with Quadrupole/time of flight Mass 
Spectrometry (UpLc-Qtof-MS) method was designed to quickly acquire high-resolution mass spectra 
metabolomics fingerprints for rosé wines. An original statistical analysis involving ion ratios, discriminant 
analysis, and genetic algorithm (GA) was then applied to study the discrimination of rosé wines according 
to their origins. After noise reduction and ion peak alignments on the mass spectra, about 14 000 different 
signals were detected. The use of an in-house mass spectrometry database allowed us to assign 72 
molecules. Then, a genetic algorithm was applied on two series of samples (learning and validation sets), 
each composed of 30 commercial wines from three different wine producing regions of France. Excellent 
results were obtained with only four diagnostic peaks and two ion ratios. This new approach could be 
applied to other aspects of wine production but also to other metabolomics studies.

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide 
consumption of rosé wine has increased by 20% since 20021. Because of its high commercial value, it can become 
a subject of fraud, and authenticity control is required in order to maintain wine quality and to detect any adul-
teration2. Thousands of molecules can be found in wines, including polyphenols3. Recently, more than one hun-
dred polyphenols have been quantified in various rosé wines4. They are key components involved in color, taste 
and quality of wines. Their amount and composition depend on many different factors such as grape variety, 
geographic origin, winemaking, age. Several methods have already been developed for wine authentication pur-
pose5. They can be divided into two categories: metabolite profiling6–8 or metabolomic fingerprinting9,10. The 
first one is a targeted analysis focusing on a limited number of representative components while the second one 
is a non-targeted approach. Both methods were applied to red or white wines. In a previous work11, a very fast 
UPLC-QTOF-MS method was developed to characterize red wines from different grape varieties. One specific 
ion ratio was used to discriminate commercial red wines from three grape varieties. In this paper, we focused on 
the influence of the geographic origin of some rosé French wines. The chemical composition of grapes depends 
on the sum of different environmental conditions, which can be defined as a “terroir” that should influence the 
grape and wine composition. The goals of this paper were to develop:

•	 A new and very fast UPLC-QTOF-MS wine metabolomics method with a focus on wine pigments.
•	 An original statistical method and workflow that allow the robust discrimination of rosés wines according to 

their origins by using mass spectrometry ion ratio fingerprints.

Results and Discussions
UPLC-QTOF-MS analysis. First, a fast UPLC-QTOF-MS method was developed to rapidly acquire 
high-resolution mass spectra. In accordance with previous work and conclusions, we have used a short gradient 
instead of isocratic elution conditions or direct injections11. It was shown that the last two methods gave limited 
results probably due to ionization suppression effect. In this work, we chose to work on the positive ionization 
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mode in order to better detect anthocyanins and their derivatives, as they are the main rosé wines pigments. These 
molecules are present as cationic flavylium ions in acidic pH and are then naturally present as cations in the elec-
trospray source. Minimal sample preparation was used as wines were only centrifuged before analysis.

For each wine analysis, the MS spectra was extracted from sum spectra of the Total Ion Current (TIC) between 
the 240:295 scan ranges. This corresponded to the time range were the polyphenols were eluted (example in 
Fig. 1).

Ion ratio discrimination by linear discriminant analysis (LDA) and genetic algorithm. The pre-
processing steps described in the Experimental Section led to the identification of 1469 to 3243 (2700 on average) 
signals among the approximately 40000 ion peaks of the raw mass spectra. The alignment step allowed us to 
identify 13699 unique ion peaks.

The final objective was to find a very small subset of ion peaks with good discriminant properties within the 
fingerprints. In order to increase robustness and reproducibility, we made the choice to use ion peak ratios instead 
of just peak intensities, as ion abundances may change from one injection to another, but their ratios remain 
stable as shown previously11.

The drawback of this strong and original choice is an important challenge with the selection of the best sub-
set of ratios among the 13699 distinct ion peaks obtained after alignment. This lead to approximately 1.9 × 108 
possible ratios that could be combined into 2.3 × 1076 possible subsets of size 1 to 10 ratios. On an usual desktop 
workstation, the comprehensive search of the best subset would take 3.4 × 1066 years (let us note that the age of the 
Universe is 14 × 109 years). Hence, a pre-selection of peaks is helpful to ease the fingerprint search.

Furthermore, among the about 14000 identified ion peaks, only a few has been assigned to known compo-
nents. Yet, a fingerprint based on known components was of better use as it allowed to both infer the wine origin 
and to understand the differences in terms of components. We chose to focus on polyphenols in our study as these 
metabolites may be influenced not only by variety but also by abiotic factors. Our research hypothesis is then that 
these compounds may be used to discriminate the origin of rosé wines. An in-house database of compounds pre-
sents in rosé wines –mainly polyphenols- created from previous publications4,12,13 was then used to select known 
ions. Our database comprises 165 components (see Supplementary material) and 72 molecules could be annoted 
from our list. Hence, a final list of 72 candidates was chosen as a short list for fingerprint identification.

Despite this very important selection, a similar reasoning led to the possibility of 5112 ratios of this 72 ion 
peaks, which lead to 3.3 × 1030 possible subsets of size 1 to 10 and to 4.6 × 1020 years of computation for a com-
prehensive search of the best subset. In this context, usual analysis workflows would fail and powerful heuristic 
search algorithms are required14. We chose a genetic algorithm which has often been used in feature selection 
contexts15–17 including metabolomics biomarkers studies18,19. Genetic algorithms are inspired by nature and espe-
cially by natural selection and are very useful in such complex optimization issues. Here, the GA was used to find 
up optimal subsets of peak ratios. The algorithm began with a population constituted of several individuals, which 
correspond to random potential solutions in the optimization problem. Thus, in our context, the individuals were 
potential subsets of peak ratios. Then, this population evolved according to three operators: crossover, mutation 
and selection. Selection was a crucial step allowing to keep the best subsets with regard to their discrimina-
tive power (quantified by 2-fold cross-validation use of Linear Discriminant Analysis). Mutation and crossover 
were run independently from the optimization issue and allowed the solutions to evolve (see Supplementary 
information).

(a)

(b)

Figure 1. TIC (a) and MS spectra (b) corresponding to the polyphenols eluting range.
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In order to favor solution robustness, the genetic algorithm was run five times and all solutions of the final 
generations were evaluated through 30 runs of independent linear discriminant analysis with 2-fold cross val-
idation. Solutions were ranked according to their average correct classification rate during the cross-validation 
process. Then, the solutions with more than 80% of accuracy were tested on an independent validation set (the 
linear model optimized on the whole learning dataset is applied on the observations in the validation set and 
accuracy is evaluated). The final selected solution was chosen as the highest correct classification rate on the val-
idation dataset with the lowest number of molecules involved in the fingerprint. This solution contains only four 
polyphenols, corresponding to two ion ratios. It allows 86.7% accuracy on the learning dataset, 81.7% on average 
for the cross-validation and 86.7% on the validation dataset. The results are shown in Fig. 2. The entire work flow 
leading to this solution is summarized in Fig. 3.

In order to assess the adequacy of our approach, we compared it to a very usual method for biomarkers 
analysis in metabolomics, Random Forests (RF)14,20–22. Obviously, there is no embedded method in RF to allow 
any selection based on ratios. Then, we applied the RF method to the 5112 possible peak ratios. Both number of 
trees and number of candidates at each split were optimized (see Supplementary information). We built a first 
RF including all 5112 ratios and used it to identify top ratios (based on variable importance calculations) and 
ran another RF on the selected ratios. The results obtained with the RF built on the 5112 peaks are provided in 
Table 1. These are not satisfying results compared to the GA coupled with LDA.

Moreover, by studying importance parameters given by the RF algorithm, six ratios were selected (see 
Supplementary information) and in order to obtain a more comparable model the two top ratios are also used (as 
we use two ratios in our approach). The results are displayed in Table 1 and show lowest accuracies as long as a 
trend to overfitting as there is a very big gap between training and validation performances.

Polyphenols assignment. According to our database, the four phenolic compounds involved in the two 
discriminant ratios were assigned to vanillic acid, peonidin 3-O-acetyl-Glc-(epi)cat, peonidin 3-O-Glc and (epi)
cat-ethyl-(epi)cat isomers. These assignments were determined by comparison with the experimental and theo-
retical exact masses. The relative error found never exceeded 6.5 ppm (Table 2).

These molecules have already been identified in rosé wines4,23,24. Vanillic acid is a benzoic acid extracted from 
the solid parts (seeds, skins, stems) of the grape during winemaking that has antioxidant and anti-microbial 
activities25. Peonidin 3-O-Glc and peonidin 3-O-acetyl-Glc-(epi)cat are anthocyanins or anthocyanin derived 
pigments. It is a family of red grape pigments playing an important role in wine color26. Peonidin 3-O-Glc is a 
monoglucoside, that is one of the most abundant anthocyanin forms in rosé wines after Malvidin 3-O-Glc and 
its derivatives. On the contrary, peonidin 3-O-acetyl-Glc-(epi)cat is a carbon-carbon adduct with flavanols that 
forms during wine aging and was detected in very low quantities in rosé wines4. (epi)cat-ethyl-(epi)cat is another 
aging product, formed through oxidation via an acetaldehyde bridging reaction. This results in =CH-CH3 (ethyl) 
bridged flavanols27. These polymers gradually accumulate during wine aging due to the gradual chemical oxida-
tion of ethanol in acetaldehyde28.

Even if all these polyphenols are present in each group of rosés wines, their relative levels were different and 
allowed us to discriminate the geographic origin of our wine samples. The use of an independent validation sam-
ple set was very important and make our innovative ion ratio approach very promising in our field and for many 
other applications when discrimination of samples is the objective.

Figure 2. Origin discrimination results on the learning dataset (a) and validation dataset (b) for rosé wines 
from Bordeaux (B), Languedoc (L), and Provence (P) gathered using indicative circles.
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conclusion
An original, new and very fast UPLC-QTOF-MS method was developed to analyze more than 6000 ion peaks in 
a few minutes with minimal sample preparation. An innovative statistical method and workflow was designed 
and applied to the robust discrimination of rosé wine samples according to their origin. It was compared to 
Random Forest, a very usual method in biomarker discovery for metabolomics that resulted in lowest accuracy. 
Indeed, RF benefits from an embedded way of selecting features based on importance measurements. However, 
this measure is intrinsically univariate (unlike the RF discrimination process which is multivariate) and is not 
likely to highlight the best synergistic subset of features contrary to our use of GA. This new approach used mass 

A. Spectra preprocessing

B. Data selection

C. Statistical treatment

3×60 raw mass spectra 
≈ 40000 ion peaks by spectrum 

Noise reduction:  
Limited extraction of signals with relative minimal intensity of 0.1% of the main one  

≈ 6000 ion peaks by spectrum

Average of the 3 replicates of each wine 
Signal alignment of the 60 averaged spectra 

≈ 14000 different ion peaks on the entire learning set  

Choice of the most discriminant ion ratios: 
Genetic Algorithm with Linear Discriminant Analysis

SOLUTION :  
4 ion peaks = 2 discriminant ratios  

Filters:  selection of molecules identified in our database* 
= 72 known masses 

Figure 3. Complete workflow of the discrimination process (*1 –In-house database of molecules in rosé wines 
created from publications4,17,18, details in Supplementary information).

Method
Number of ratios 
in the model

Correct classification rate 
on the learning dataset

2-fold cross-validation average 
correct classification rate

Corect classification rate 
on the validation dataset

GA + LDA 2 86.7% 81.7% 86.7%

RF 5112 100% 67.3% 70%

RF 6 100% 86.4% 76.7

RF 2 100% 79.4% 50%

Table 1. Summary of classification accuracies both for our approach and Random Forests.
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spectrometry and ion ratio fingerprints will be very useful in the future in other fields of metabolomics and sam-
ple discrimination.

Materials and Methods
Chemicals. All chemicals were of analytical reagent grade. Acetonitrile and formic acid were purchased from 
Biosolve Chemicals.

Deionized water was obtained from a Direct-Q3 purification system (Millipore).

Wines and sample preparation. A total of 60 commercial rosé wines were purchased from large retailers. 
They were selected for their geographic origins (3 different regions of France: Bordeaux, Languedoc, Provence, 
20 samples per region), and color range. Wines were from several grape varieties, with unknown wine making 
processes and from different vintages ranging from 2010 to 2015.

Just after bottle opening, samples of 1.5 mL were prepared and kept in closed plastic Eppendorf at −80 °C. 
Before analyses, samples were brought to room temperature, centrifuged, and injected in triplicates in a rand-
omized order.

UPLC-ESI-Tof parameters. Analyses were performed with a Waters Acquity H-Class UPLC system con-
nected to a HD-MS Synapt G2-S mass spectrometer equipped with a Z-Spray source (electrospray ionization 
ESI). The UPLC system included a vacuum degasser, a quaternary pump (QSM), a cooled autosampler main-
tained at 10 °C (SM-FTN), and a thermostated column compartment. MassLynx software (version V4.1) was used 
for instrument control and data processing.

The column used for chromatographic separation was a PLRP-S reversed phase (4000 Å, 50 × 2.1 mm, 5 µm, 
Agilent Technologies) maintained at 25 °C. The binary mobile phase consisted of Milli-Q water (solvent A) and 
acetonitrile (solvent B) both acidified with 1% formic acid. The separation was performed at a constant flow rate 
of 0.6 mL/min, using the following short gradient: 1% B for 1 min; 1–100% B in 0.5 min; 100% B for 0.5 min; 
100–1% B in 1.5 min; and reequilibration at 1% B for 2.5 min. The injection volume was 10 µL.

Regarding the detection, the mass spectrometer was operated in the positive ESI mode and data were collected 
for m/z from 50 to 1800 under the following conditions: capillary voltage, 3.5 kV; cone gas flow, 0 L/h; nitrogen 
desolvation gas flow, 1000 L/h; desolvation temperature, 350 °C; cone voltage, 60 V.

Statistic data treatment: from signal preprocessing to discrimination model. All the statistical 
and preprocessing described in this section has been performed using the R software29.

The PROcess R package30 has been used to perform spectra preprocessing: baseline substraction and peak 
extraction. Concerning baseline substraction, the bslnoff function has been used with the loess method and a 
bandwidth parameter set to 0.1 (all other parameters were set to default values). That is, the function estimates 
the baseline using the loess (local regression) method with a window of width 0.1, then the function removes this 
estimated baseline. The peaks extraction was performed through the isPeak function with the following param-
eters: span = 5, sm.span = 1, zerothrsh = 20000, area.w = 0.05 and SoN = 1.5. It means that each spectrum is first 
smoothed by using the neareast ‘span’ neighbours. The local variation is estimated using sm.span points. In the 
window of width ‘span’ the local maximum becomes a potential peak. Then, if the height of this potential peak is 
‘SoN’ times higher that the local noise estimated on the other points in the window and if the height of this peak is 
greater than 1.64 × MAD (smoothed signal in the window), then the peak is considered as validated and output.

Alignment of the obtained peaks was performed using hierarchical clustering with complete linkage31. The 
cut-off threshold has been set in order to minimize the clustering of ions within the same spectrum. After align-
ment, the average value of peak intensities between technical replicates has been computed and used for further 
analyses.

Linear Discriminant Analysis31 has been used to perform the discrimination of wine origin for a given subset 
of signals.

The ion peak selection for the final fingerprint was performed with a genetic algorithm15. The parameters used 
for this algorithm are described in the Supplementary information section.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Received: 28 June 2019; Accepted: 13 January 2020;
Published: xx xx xxxx

Molecule assignment Experimental m/z Theoretical m/z
Relative error 
(ppm)

Vanillic acid 169.0490 169.0501 6.507

Peonidin 3-O-acetyl-Glc-(epi)cat 793.1990 793.1980 −1.261

Peonidin 3-O-Glc 463.1236 463.1240 0.936

(epi)cat-ethyl-(epi)cat (isomers) 607.1810 607.1816 1.060

Table 2. Experimental and theoretical masses comparison for assignment of discriminant molecules.
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