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Abstract
Key message Analyses of dendrochronological data from 15 recently established tablished stands of pedunculate oak
(Quercus robur L.) revealed that functions describing potential tree growth in the absence of neighbours varied more between
stands than functions describing competitive effects of conspecific neighbours. This suggests that competition functions can
more easily be transferred among stands than potential growth functions.

Context The variability inherent in the natural establishment of tree stands raises the question whether one can find general
models for potential growth and competition that hold across stands.

Aims We investigated variation in potential growth and competition among recently established stands of Q. robur and
tested whether this variation depends on stand structure. We also tested whether competition is symmetric or asymmetric
and whether it is density-dependent or size-dependent. Lastly, we examined whether between-year growth variation is
synchronous among stands.

Methods Potential growth, competition and between-year growth variation were quantified with statistical neighbourhood
models. Model parameters were estimated separately for each stand using exhaustive mapping and dendrochronology data.

Results Competition was best described with an asymmetric size-dependent model. Functions describing potential growth
varied more among forest stands than competition functions. Parameters determining these functions could not be explained
by stand structure. Moreover, annual growth rates showed only moderate synchrony across stands.

Conclusion The substantial between-stand variability in potential growth needs to be considered when assessing the
functioning, ecosystem services and management of recently established Q. robur stands. In contrast, the relative constancy
of competition functions should facilitate their extrapolation across stands.

Keywords Interpopulation variability · Distance and size dependence · Neighbourhood effect · Interannual variability ·
Bayesian modelling

1 Introduction

In contrast to many regions of the world, Europe has
experienced an increase in forest cover over the last decades
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(Dı́az et al. 2019). Due to agricultural land abandon-
ment (Fuchs et al. 2013; Potapov et al. 2015; Song et al.
2018) and the reduction in farmlands in many European
regions, forest area has increased by 0.8 million hectares
each year since 1990 (Unece 2015). This trend should
continue in coming years (Schrȯter et al. 2005). Newly
establishing forest areas may have effects on community
composition, net primary production, rates of decomposi-
tion and nutrient cycles (Whitham et al. 2006; Allan et al.
2012). They may deliver ecosystem services, such as carbon
storage, increasing potential habitat for associated species,
biodiversity “refuges” or corridors for species migration,
but they may also cause threats such as fire risk increase,
invasive species spread or loss of open landscapes, in cases
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of uncontrolled spread (Rey Benayas and Bullock 2012).
To be able to adequately manage the passive restoration of
agricultural lands, it is necessary to deepen our understand-
ing of the underlying mechanisms of forest establishment.
Several recent studies have been conducted on various
processes occurring in establishing forests. These include
growth patterns and sensitivity to climate (Alfaro-Sȧnchez
et al. 2019), effect of shrub cover or herbivory on recruit-
ment (Ramirez and Diaz 2008; Cruz-Alonso et al. 2019;
Rey Benayas et al. 2015) or carbon storage (Vilà-Cabrera
et al. 2017). Nevertheless, the dynamics of natural for-
est regeneration and the underlying demographic processes,
such as growth and competition, still remain to be further
explored.
In general, the dynamics of tree populations are dif-
ficult to describe and model because the fundamental
demographic processes driving forest dynamics, such as
individual growth, fecundity, dispersal, recruitment and
mortality, strongly depend on the spatial arrangement and
size structure of neighbouring trees. If forest establishment
occurs naturally (rather than as a consequence of refor-
estation), established tree populations can show particularly
strong variation in spatial and size structure. Moreover,
founder effects can cause substantial variation in the genetic
structure of these populations that can have profound
consequences for ecological functioning (Whitham et al.
2006). This raises the question of whether one can find
general models for tree growth and competition that hold
across multiple recently established tree populations. To do
this, one must also consider that an individual’s growth
varies from year to year, according to temporal variation of
environmental conditions, in particular temperatures and
water availability during early summer in temperate
forests (Rozas 2005; Scharnweber et al. 2011; Canham et al.
2018).

Competition between individuals is a main driver of tree
population dynamics (Pacala et al. 1996; Bugmann 2001).
Spatially restricted competition for light, nutrients and/or
water gives rise to negative effects of neighbours on the
growth of a target individual. These competitive effects are
generally expected to increase with the size of neighbours.
They can be described with size-dependent neighbourhood
models. Alternatively, competition can be described by
a density-dependent neighbourhood model in which the
competitive effect of neighbours is independent of their
size. Additionally, competition can be either symmetric (if
a target tree experiences competition from all neighbours)
or asymmetric (if a target tree only experiences competition
from larger neighbours). Asymmetric competition arises
when resources are not homogeneously distributed in space

or when resource supply is directional (Schwinning and
Weiner 1998). Competition for light is often assumed to
be more asymmetric than competition for soil resources
(Schenk 2006) and can be considered as the major
competition process in tree populations (Bourdier et al.
2016).

Various neighbourhood models where individual growth
is modelled as a function of size and distance to
neighbours have been developed and used (Bella 1971;
Hegyi 1974; Lorimer 1983; Wimberly and Bare 1996;
Berger and Hildenbrandt 2000; Canham et al. 2004;
Canham et al. 2006; Uriarte et al. 2004a; Uriarte et al.
2004b; Stadt et al. 2007; Coates et al. 2009; Gȯmez-
Aparicio et al. 2011; Das 2012; Buechling et al. 2017;
Latreille et al. 2017). Many of the aforementioned studies
investigated tree growth and neighbourhood competition
for populations of mixed species and/or single-species
populations, but not how tree growth and competition vary
between populations of the same species, except Latreille
et al. 2017 who focussed on climate effects on silver
fir growth. In other studies (Canham et al. 2006; Stadt
et al. 2007; Buechling et al. 2017), different locations
were compared but they comprised different mixtures of
species and concerned established populations. Several
studies have underlined how growth and/or competition
can vary between stands of different ages (Alfaro-Sȧnchez
et al. 2019), or over spatial extents ranging from a few
hundred meters to a couple of kilometres (Linares et al.
2010; Fraver et al. 2014), or across Europe (Ruiz-Benito
et al. 2014). However, they generally describe competition
through global competition indices, whereas neighbourhood
models have the advantage that they include a free
parameter that describes the spatial scale of competitive
interactions.

This study presents neighbourhood model analyses of
15 recently established stands of pedunculate oak (Quercus
robur L.) in south-western France. For each stand, we
use comprehensive data on the spatial location and annual
growth increments of individuals to quantify potential
tree growth in the absence of neighbours as well as
intraspecific competition with neighbours, while accounting
for between-year variation in growth. These analyses
serve to address four objectives: (1) to determine whether
competition is symmetric or asymmetric and whether it
is size- or density-dependent; (2) to quantify the extent
to which potential growth and competition functions vary
among stands; (3) to test whether this between-stand
variation can be explained by the age, size or spatial
structure of stands; and (4) to test whether between-year
variation in tree growth is synchronous across stands.
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2Materials andmethods

2.1 Data collection

2.1.1 Study area

The study area was located between 15 and 45 km south-
west of Bordeaux, France (44◦ 41′ N, 00◦ 51′ W) (Appendix
Fig. 6). This region is covered by 1 million ha of Pinus
pinaster L. Widespread deciduous tree species include holm
oak (Q. ilex L.), Pyrenean oak (Q. pyrenaica Willd.), silver
birch (Betula pendula L.) and different willows (Salix spp.).
The region’s climate is oceanic (mean annual temperature
of 12.8 ◦C and annual precipitation of 873 mm over the last
20 years), and the soil is sandy (spodosols), very dry during
summer and wet during winter (see Valdės-Correcher et al.
(2019) for more details on soil and climate characteristics).

2.1.2 Sampling and dendrochronology analysis

We randomly selected 15 forest stands from the 18 isolated
newly established oak forest stands selected by Valdés-
Correcher and colleagues (see Section 6 Appendix Table 3
for further information on forest stand characteristics). In
the study forest stands, each Q. robur individual above
3 cm of diameter at breast height (dbh) was mapped (using
GPS) and its dbh was measured in summer 2018 (Bert
and Hampe 2020). All 661 living individuals (above 3 cm
dbh) were cored once (in summer 2018) with a 5-mm
Pressler increment borer. For the majority of these (98%),
the drilling height was 30 cm. After sampling, cores were air
dried. The tree ring measurement was done optically, after
scanning cores at 1200 dpi. The chronologies were visually
cross-dated at the time of the measurement with Windendro
2017a, using the Gleichläufigkeit index (Schweingruber
1988) and some pointer years with usually low or high level
of growth (see Alfaro-Sánchez et al. 2020 for a detailed
description of the field sampling, laboratory procedures and
data collection).

In the case of multistemmed trees, we calculated the basal
area for each stem based on the measured dbh and summed
those basal areas to obtain the total basal area of the tree.
Then, the ratio between the basal area of the cored stem and
the total basal area of the tree was used as a correction factor
to estimate the annual growth increment of the entire tree
from the growth increment of the cored stem.

Tree age at the end of 2017 was calculated as the sum of
the number of measured rings, the number of missing rings
at the pith, the number of missing rings at drilling height
and the number of missing rings under the bark. When the
core passed the tree pith, the number of missing rings at

the pith was set to 0. Otherwise, it was estimated based
on the estimated distance to the pith and the growth of the
five closest rings to the pith. The number of missing rings
at drilling height was set to 3 when the drilling height was
30 cm (for 98% of the individuals). For the remaining 2%
of individuals, which were drilled higher, we added more
years assuming an average height growth of 10 cm per year
(Gerzabek et al. 2017).

2.2 Modelling

2.2.1 Model description

The theoretical approach developed by Canham and
colleagues states that the absolute growth rate, i.e. the
observed diameter growth rate (width per year), is the
product between the hypothetical diameter growth rate of
a “free-growing-tree” and the potential factors that may
reduce this growth, such as neighbour effects (crowding
and shading (Canham et al. 2004; Uriarte et al. 2004a, b;
Stadt et al. 2007; Das 2012)), and environmental factors:
site effect, climate, pests (Canham et al. 2006; Coates et al.
2009; Gȯmez-Aparicio et al. 2011). There is no consensus
on how to link diameter growth and size (Coates et al. 2009).
Nevertheless, the aforementioned studies have modelled
tree growth according to size using a lognormal function
because of its flexibility and empirical support.

For each individual i and year t , we described the
observed ring width Yi,t as a function of the focal
individual’s size Xi,t−1, namely dbh, at time t − 1, and the
neighbourhood effect NEi,t at time t − 1.

For individual i, we modelled the effect of dbh Xi,t−1 at
year t − 1 on the potential growth rate (i.e. the growth rate
without competitors) at year t (in mm/year) gi,t as:

gi,t = gm × S(Xi,t−1) (1)

with gm the maximum growth rate (mm/year) and S(Xi,t−1)

the lognormal growth-size relationship:

S(Xi,t−1) = exp(−0.5(
log Xi,t−1

x0

xb

)2) (2)

where x0 is the dbh at maximum growth rate (cm) and xb

the shape parameter (larger values lead to a more shallow
relationship between dbh and growth rate).
The neighbourhood effect NEi,t on the target individual i at
year t is modelled as an inverse function of the distance Di,j

(m) between the individual and its neighbours j (within a
radius of 50 m) and an effect of the neighbour dbh f (Xj,t ):
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NEi,t =
n∑

j=1

f (Xj,t )

D
β
i,j

(3)

where β describes how sharply the neighbour effect
decreases with distance. We also tested a Gaussian kernel
to describe the decline of competitive effect with distance,
as used in Nottebrock et al. (2017), but this model failed to
converge.

We tested four different models describing the alternative
competition hypotheses and one model without competi-
tion. In the size-dependent models, the competitive effect
of neighbours depends on their size whereas in the density-
dependent models all neighbours have in principle the same
competitive effect. In the asymmetric models, trees only
respond to the competitive effects of larger neighbours
whereas in the symmetric models they respond to com-
petition by all neighbours. For the no competition (NC)
model, we set NEi,t = 0. For symmetric density-dependent
competition (SDC), neighbour effects are independent of
neighbour size so that f (Xj,t ) = 1 for all neighbours j .
For symmetric size-dependent competition (SSC), neigh-
bour effects increase with neighbour size and f (Xj,t ) =
log(Xj,t ) for all neighbours j . For asymmetric density-
dependent competition (ADC), only neighbours that are
larger than the focal plant have a (size-independent) neigh-
bour effect so that f (Xj,t ) = 1 for neighbours j which
verify Xj,t > Xi,t and 0 otherwise. Finally, for asymmet-
ric size-dependent competition (ASC), f (Xj,t ) = log(Xj,t )

for neighbours j which verify Xj,t > Xi,t and 0 otherwise.
We used the logarithm of dbh rather than the dbh because it
was a better explanatory variable for our dataset.

The competition effect Ci,t , which is the reduction in the
potential growth rate of individual i at year t is then:

Ci,t = exp(−a × NEi,t−1) (4)

with a the sensitivity to competition.
We included an annual random effect εt ∼ N (0, φ2) on

the logarithm of growth rate at year t . The logarithm of the
realised growth rate of individual i at year t , yi,t , including
the competition effect and the annual random effect, is thus:

log(yi,t ) = log(gi,t × Ci,t ) + εt (5)

The logarithm of the observed ring width Yi,t for individual
i at year t follows a normal distribution:

log(Yi,t ) ∼ N (log(yi,t ), σ
2) (6)

2.2.2 Statistical analysis

Parameter estimation For each of the five model types
(NC, SDC, SSC, ADC and ASC), parameters were estimated
independently for each of the 15 forest stands. The models were

fitted in a Bayesian framework using Markov Chain Monte
Carlo (MCMC). We defined vague prior distributions for each
parameter (Table 1) and we used the same prior distributions
for each inference process. MCMC computations were
performed using the rjags R package (Plummer 2009; R
Core Team 2018) (JAGS version 4.3.0, R version 3.4.4,
rjags version 4-6). For each model and forest stand,
30,000 iterations were performed for each of three chains
and the 25,000 first iterations were discarded as burn-in,
leading to 15,000 values for the posterior distributions.
To check convergence, we used the Gelman and Rubin
(1992) convergence diagnostic. All models converged (see
Appendix Table 4 for convergence diagnostics of the ASC
model). For plotting and prediction of model functions,
the obtained posterior distributions were subsampled to
1000 parameter combinations. For each forest stand, we
computed Bayesian R2 according to Gelman et al. (2018).

Model comparison In order to find the most appropriate
competition model for each forest stand, we computed the
Deviance Information Criterion (DIC) (Spiegelhalter et al.
2002) for the five different models fitted to the same data,
and identified for each forest stand the DIC-minimal model.

Among-forest stand variation of potential growth and
competition To quantify the variation of potential growth
and competition among forest stands, we computed the
respective functions for each forest stand using posterior
medians of parameters. Specifically, we calculated potential
growth rate g(X) (1), growth-size relationship S(X) (2) and
the competitive effect on growth C(X) ((4), for a focal
tree that has a single larger neighbour of 10 cm dbh).
For each of the 15 forest stands, potential growth rate
and the growth-size relationship were predicted for 12 dbh
values that were equally spaced between 5 and 60 cm. This
covers the dbh range in which most individuals lie. For
each of the 12 dbh values, we computed the coefficient
of variation of the 15 predicted potential growth rates and
growth-size relationships (one prediction per forest stand).
We thus obtained 12 coefficients of variation (one per dbh
value) that quantify to what extent the potential growth rate
and the growth-size relationship vary among forest stands.
Similarly, for each forest stand, the competitive effect of a
neighbour was predicted for 12 distance values that were
equally spaced from 1 to 12 m (above 12 m the competitive
effect is very close to 1 for all stands). We thus obtained
12 coefficients of variation representing the among-stand
variability of competition functions.

Effects of stand structure on growth and competition
functions In order to investigate the effect of stand structure
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in space, size and age on growth and competition functions,
we calculated seven variables. For spatial structure, we
selected the number of trees, the density and the average
nearest neighbour distance (i.e., for each forest stand, we
recorded the distance to the nearest neighbour of each
individual and computed the mean of those distances). For
size structure, we selected the mean and standard deviation
of the size (dbh) distribution. For age structure, we selected
the maximum and the mean age. For each combination of
a model parameter and a forest stand structure variable, we
used the parameter posterior distributions (15,000 values)
for the different forest stands and performed 15,000 linear
regressions of the sampled parameter values against the
forest stand structure variable, using the lme4 R package
(version 1.1-17) (Bates et al. 2015).

3 Results

3.1 Model comparison

Competition among Quercus robur trees was found to be
asymmetric rather than symmetric: the asymmetric models
(ADC and ASC) had a lower DIC than the symmetric
models (SDC and SSC) for all forest stands except three
(Table 2). Between the two models describing asymmetric
competition, the size-dependent version had a lower DIC
than the density-dependent version for all but one of the
15 stands (Table 2), even though competition asymmetry
was more important than size dependence (DIC of ADC
model was overall lower than DIC of SSC model). Across
forest stands, the “predominantly best” model was thus the
asymmetric size-dependent competition model. For better
comparability, all following results on inter-forest stand
variation are therefore only shown for ASC model.

3.2 Model fit and parameter estimation

The data were overall satisfactorily described by the model:
between 94.0 and 96.9% of the observed data are within
the 95% credibility interval of the predicted data. The fit
of median predictions to the observed data (Fig. 1) varied
between forest stands, being satisfactory for some stands (A,
F, K, L) to poor for some others (B, O, P). The proportion of
variance explained by the model ranged from 0.21 to 0.73
(mean of R2 distribution, Fig. 1).

We obtained overall narrow posterior distributions for
almost all parameters compared with the prior distributions,
suggesting that sufficient information was available from
our data to accurately estimate model parameters (Fig. 2).
The narrow posterior distributions of parameters led to

small uncertainty around the potential growth rate and
competition functions (Appendix Fig. 7).

3.3 Variability across forest stands and effect of
forest stand structure

Parameter estimates varied among forest stands (Fig. 2)
which led to different potential growth rate and competition
effect functions for each forest stand (Fig. 3, predictions
with the median values of parameter posterior distributions).
However, potential growth functions were overall more
variable across forest stands than competition effect
functions (Fig. 3). Different shapes of the potential growth
function arise from variation in the value of the dbh at
maximum growth rate x0 (Fig. 2) (potential growth rate can
be monotonically increasing with size for high x0 or show an
intermediate size optimum for lower x0). The between-stand
coefficients of variation of the potential growth rate g(X)

and the growth-size relationship S(X) were higher than
the coefficients of variation for competitive effect E(X)

(Fig. 4). Hence, competition functions varied less between
stands than potential growth functions. The bootstrap linear
regression of parameter values against forest stand structure
variables showed no significant effect of the forest stand
structure on parameter estimates (see Appendix Fig. 8).

3.4 Annual variation in growth

There is no obvious consistency in the annual effects on
growth across forest stands: for a given year, the median
values of εt are overall variable among stands (Fig. 5).
Some forest stands showed a lot of inter-annual variability in
growth rates, while some others showed very little variation
across years (Appendix Fig. 9). Nevertheless, some years
could be identified as overall “positive years for growth”,
when the median value of εt is positive for more than 75%
of the forest stands. Those years are the following: 1993,
1994, 2000, 2003, 2004 and 2007. Similarly, some years
could be identified as overall “negative years for growth”.
Those years are the following: 2001, 2015, 2016 and 2017.

4 Discussion

Mode of competition The model describing size-dependent
asymmetric competition generally described the growth
data best (Table 2). This implies that smaller trees are
more sensitive to competition, as stated in previous studies
(Hegyi 1974; Schenk 2006; Bourdier et al. 2016). It
might indicate that shading is the dominant source of
competitive pressure (Canham et al. 2004). Although in
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Fig. 1 Observed and predicted median absolute growth rates for each
forest stand, with the asymmetric size-dependent competition model.
Dots are full when the corresponding observed data point was within

the 95% credibility interval of predicted data and they are empty when
the corresponding observed data point was outside the 95% credibility
interval of predicted data. Dashed red line is the identity line

heterogeneous soils size-asymmetric root competition may
also occur, root competition is rarely as asymmetric as
shoot competition (Schenk 2006; Rasmussen et al. 2019).
Moreover, in dry conditions, size-asymmetric competition
may become increasingly symmetric at later stages of stand
development, possibly as a result of decreasing soil water
availability (Masaki et al. 2006). Competition for light will
be particularly important in later stages of forest stand
establishment, when the canopy increasingly closes as the
first founder trees grow large and exert strong competition
on later and smaller recruits.

Potential growth and competition functions Overall, the
value ranges of estimated growth parameters seem in
accordance with previous studies using this growth model
(Canham et al. 2004; Uriarte et al. 2004a, b; Stadt et al.
2007; Das 2012). In several studies, the neighbour size is
scaled in the competition equation, with values ranging from
0.7 to 3.5 depending on the species (Canham et al. 2004;
Uriarte et al. 2004a, b; Stadt et al. 2007; Das 2012), while
we used logarithm of dbh, suggesting an overall weaker
effect of neighbour size in our forest stands. Concerning
competition kernel shape, β has often been estimated below
1 (Canham et al. 2006; Stadt et al. 2007; Coates et al. 2009;
Das 2012), while it was above 1 for a majority of our forest
stands, leading to a quite steeper decline of competitive
effects with distance. Growth variability at population level
has previously been observed between two sets of five

silver fir stands along an elevation gradient (Latreille et al.
2017). Our finding that competition functions are more
consistent across populations than functions describing
potential growth is in accordance with results of the global
(and much coarser scale) study of Kunstler et al. (2016).

Goodness of fit and uncertainty sources Although the
residual variance in predicted growth rates remains large for
some forest stands (Fig. 1), we obtained satisfactory fits of
the model to the data, when comparing R2 obtained in similar
studies, which generally ranged from 0.10 to 0.60 (Canham
et al. 2004; Uriarte et al. 2004a, b; Stadt et al. 2007; Das
2012), but reached 0.40 to 0.90 in Coates et al. (2009).
Uncertainty around the potential growth and competition
functions (deriving from parameter estimation uncertainty) was
low and in general inter-annual effects did not explain inter-
individual variation. The exhaustive sample of the forest stands
is likely to lead to this rather low uncertainty. A major part of
the individual variability in observed growth is not explained
by the competition process itself, nor the annual variation
in growth, nor by uncertainty in parameter estimation, but
is probably mainly due to intrinsic biological variation
between individuals, or by individual-year interactions
(Clark 2010). In addition, damage to the global health of the
individual, such as physical damage, herbivory, pathogens
or pests, can affect growth (Hansen and Goheen 2000;
Dobbertin et al. 2001; Wood et al. 2003).
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Fig. 2 Posterior distribution (1000 parameter combination sample) of the parameters for each forest stand, estimated by the asymmetric
size-dependent competition model

Among-stand variability in potential growth functions The
potential sources of variation in potential growth functions
are numerous. Forest stand history may have influenced
growth patterns, through past management of the surround-
ings and the forest stand itself and non-human disturbances
such as storms or fire (Rademacher et al. 2004; Davis et al.
2005; Rigg 2005). Mortality and thinning events might have
occurred in the past, but would not be directly observed in
the available data. Such events have been shown to affect
growth, and their effects can also be delayed in time (if a
large neighbour of a target tree dies, the target tree would not
immediately develop roots and crown structures to exploit
the newly available resources) (Wright et al. 2000). Addi-
tionally, variation in potential growth functions could be due
to herbivory which varies substantially between the stud-
ied oak stands (Valdės-Correcher et al. 2019). Moreover,
local environmental conditions have probably had a large
impact on growth as micro-topographic conditions differ

among forest stands. Since developing forests have been
found to be particularly sensitive to low water availability
and high temperature (Coll et al. 2013; Madrigal-Gonzȧlez
and Zavala 2014; Ruiz-Benito et al. 2014), differences in the
frequency and intensity of drought across stands could lead
to subsequent variability in growth across forest stands.

The observed differences in potential growth functions
were due to both variation in maximum growth rate
gm and in growth-size relationship S(X) and may result
from genetic and environmental influences (as assumed
by Canham et al. 2004): genetic variability might play
a part in determining potential growth and especially
sensitivity to environmental factors influencing growth
(genotype×environment interaction) (Atwood et al. 2002).
For example, trees are likely to respond to temperature on
a genetic basis at a provenance level (Saxe et al. 2001).
A recent study on the tree individuals investigated here
revealed considerable genetic effects on leaf herbivory
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Fig. 3 Potential growth rate a and competition effect on growth b for
each forest stand, predicted with the asymmetric size-dependent com-
petition model. Plain lines are the predicted models (a: (1) and b: (4))

with each parameter equal to the median value of its posterior distribu-
tion. Each curve for potential growth rate was predicted for the range
of observed dbh values in the corresponding forest stand

by insects (Valdés-Correcher et al. 2020), a process that
should to some extent trigger trees’ resource acquisition and
ultimately tree radial growth.

No effect of stand structure on potential growth and
competition functions The variation in growth patterns
could not be explained by forest stand structure in terms
of size, age or spatial arrangement. Concerning the effect
of size structure, it has been surprising to not find any
effect on growth parameters, knowing that different shapes

of growth functions can be statistically selected depending
on the range of tree sizes covered by the data (Das 2012).
Although our forest stands show different size structures,
they are not skewed to very small or very large trees, which
could strongly influence the shape of the growth function
(Das 2012). Forest stand spatial structure showed no effect
on competition parameters, suggesting that both sensitivity
to competition and competition kernels do not depend on
the average spatial structure of stands. Former studies have
preferentially focused on whether competition coefficients

Fig. 4 Coefficients of variation
across forest stands for
predicted potential growth rate
(1), growth-size relationship (2)
and competition effect on
growth (4), with the asymmetric
size-dependent competition
model. For each of the three
processes, the boxplot displays
12 coefficients of variation
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Fig. 5 Annual random effects on growth rate estimated by the asymmetric size-dependent competition model. Boxplots display the 15 means (one
per forest stand) of the posterior distributions of the random effect for the given year

are influenced by spatial segregation of species, rather than
the spatial arrangement of individuals per se (Freckleton and
Watkinson 2001; Turnbull et al. 2004; Canham et al. 2006).
However, the absence of spatial structure effects suggests
that the present model included enough spatial information
to describe competition. Finally, the absence of an effect
of age structure on competition contrasts with the study of
Masaki et al. (2006) who found that competition patterns
change with stand age.

Between-year variation in tree growth In old oak forests,
29% of the variance of oak ring-width was explained by
climate between 1925 and 1980 (Rozas 2011). Moreover,
Alfaro-Sȧnchez et al. (2020) found a positive correlation
between growth and soil water moisture in June–July of
the current year and September–October of the previous
year, as well as a negative correlation between growth and
temperature in August–September of the previous year. In
our study, however, between-year variation in growth rates
was overall not synchronous across stands. This could be
because effects of climate variables on tree growth are
age-dependent (probably because of physiological changes
due to ageing) for oaks (Rozas 2005). Also, population-
level variation in tree responses to several climate factors
(precipitation, temperature, relative humidity) has been

observed in silver fir (Latreille et al. 2017). Local soil,
biotic and topographic conditions interact with general
climatic effects, for instance leading to substantial between-
site variation in water availability between populations,
which is a critical factor in pedunculate oaks, especially
during early summer (Rozas 2011; Scharnweber et al.
2011). Furthermore, competition for resources was found
to influence tree response to climate (Clark et al. 2014).
These complex interactions between large-scale climate,
stand structure and the local biotic and abiotic environment
could explain why we did not find strong between-stand
synchrony in annual growth rates.

5 Conclusion and perspectives

In this study, we modelled growth and intraspecific neigh-
bourhood competition, including between-year variation, of
15 young stands of Quercus robur. We found that com-
petition was overall asymmetric and size-dependent, and
that competition functions were relatively similar between
stands whereas potential growth functions were highly
variable. Between-stand variation in model parameters
could not be explained by the size, age or spatial structure
of stands. Additionally, we only found moderate synchrony
of annual growth rates across the forest stands.
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Our study suggests that measuring and taking into account
the variability in potential growth is essential for predicting
the dynamics of young tree populations. Indeed, growth rate
is strongly linked to tree health and individual mortality
(Hu̇lsmann et al. 2018), which drive the survival of the
population and thus may contribute to shaping spontaneous
forest establishment. Similarly, growth variability between
populations may have an impact on other demographic
processes, such as maturity or fecundity, which are driven
by individual size. Ecosystem services linked to growth,
such as carbon storage, are also likely to vary between
populations. In contrast, competition functions (both the
spatial extent and the effect of competition) were found
to be consistent, so that this process may be transferable
among stands. Since stands with high potential growth rates
do not show qualitatively different competition functions
than stands with low potential growth, growth at low density
should be a good predictor of growth in the same stand
at higher density (and vice versa). Our study thus suggests
that—within stands—growth measurements at a given
density can be used to predict growth at different densities.
This should help to predict the ecosystem functions that
newly established stands of Q. robur will provide.

Given that population structure was not able to explain
variability in growth and competition functions, investigat-
ing genetic variation in growth across populations would
be of major interest. Similarly, local environmental condi-
tions might be a source of variability to explore. In order
to better understand why intraspecific competition functions
were consistent across populations, it would be valuable to
explore the mechanisms of competition. One could also test
if the consistency of links between traits and competition
found (Kunstler et al. 2016) holds for establishing forests
and can help to predict their dynamics.
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Appendix

Table 1 Model parameters

Symbol Definition Unit Prior distribution

gm Maximum growth rate mm/year log10(gm) ∼ U(−1, 2)

x0 dbh at maximum growth rate cm log10(x0) ∼ U(0, 3)

xb Shape of the growth curve − log10(xb) ∼ U(−2, 2)

a Sensitivity to competition log10(a) ∼ U(−4, 1)

β Scale of neighbour effect with distance − log10(β) ∼ U(−1, 2)

φ Standard deviation of growth rate inter-annual random effect − φ ∼ U(0, 5)

σ Standard deviation of log growth rate − log10(σ ) ∼ U(−2, 1)

https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/A2JJFG
https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/A2JJFG
http://creativecommonshorg/licenses/by/4.0/
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Table 2 �DIC of the tested models for each forest stand

Patch Model NC Model SDC Model SSC Model ADC Model ASC

A 534 262 190 62 0

B 90 80 71 0 5

C 264 213 179 48 0

D 734 489 525 38 0

E 233 77 0 34 31

F 207 140 29 45 0

G 76 48 39 17 0

H 96 83 31 3 0

I 629 338 275 69 0

K 249 162 123 14 0

L 256 174 44 44 0

M 266 131 114 22 0

O 80 29 0 12 13

P 39 0 24 36 36

Q 50 39 42 0 0

For each forest stand, the lowest DIC of the five models has been subtracted from all DICs, so that the DIC-minimal model (highlighted in italics)
has a �DIC equal to 0. Model NC, no competition; Model SDC, symmetric density-dependent competition; Model SSC, symmetric size-dependent
competition; Model ADC, asymmetric density-dependent competition; Model ASC, asymmetric size-dependent competition

Table 3 Characteristics of 15 recently established stands of Quercus robur describing the spatial, size and age structure of stands

Forest
stand

Patch
size
(m2)

Density
(tree per ha)

Mean
nearest
neighbour
distance (m)

Mean size
(dbh cm)

Standard
deviation
of size (dbh
cm)

Maximum
age
(years)

Mean
age
(years)

A 3749 260 2.23 17.7 9.45 69 30

B 1225 230 5.62 21.7 22.0 192 32

C 1790 200 2.70 24.1 10.5 86 71

D 3147 150 3.86 31.7 16.6 147 65

E 1107 240 2.79 21.5 17.5 64 39

F 1056 270 3.05 17.7 11.2 51 31

G 5039 62 7.22 34.6 9.67 50 46

H 2293 230 3.94 20.6 11.5 63 36

I 6626 170 3.46 23.5 11.1 70 41

K 2607 180 3.64 26.9 12.3 41 32

L 360 440 1.38 21.2 13.4 71 34

M 1457 400 4.36 19.6 14.7 42 26

O 2832 92 4.38 23.8 10.8 75 43

P 754 200 4.53 21.2 14.6 69 40

Q 2579 110 4.33 27.9 13.7 71 35
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Table 4 Convergence diagnostics (95% quantile of potential scale reduction factor) for parameters of the asymmetric size-dependent competition
model fitted to data for the 15 studied stands of Quercus robur

Forest stand gm x0 xb a β σ φ

A 1.05 1.06 1.03 1.03 1.04 1.00 1.00

B 1.01 1.01 1.00 1.01 1.02 1.00 1.01

C 1.00 1.00 1.00 1.01 1.01 1.00 1.00

D 1.00 1.05 1.06 1.10 1.11 1.00 1.00

E 1.01 1.00 1.00 1.01 1.00 1.00 1.00

F 1.02 1.03 1.02 1.02 1.02 1.00 1.00

G 1.00 1.00 1.00 1.04 1.04 1.00 1.00

H 1.00 1.04 1.03 1.01 1.00 1.00 1.00

I 1.03 1.02 1.02 1.06 1.07 1.00 1.01

K 1.01 1.08 1.04 1.01 1.03 1.00 1.01

L 1.00 1.02 1.05 1.00 1.00 1.00 1.00

M 1.01 1.01 1.01 1.06 1.05 1.00 1.00

O 1.00 1.01 1.00 1.00 1.00 1.00 1.00

P 1.02 1.04 1.03 1.01 1.00 1.00 1.00

Q 1.00 1.01 1.01 1.02 1.02 1.00 1.00

Approximate convergence of the Markov chain Monte Carlo algorithm is diagnosed when the 95% quantile of potential scale reduction factor is
close to 1. See Table 1 for parameter definition

Fig. 6 Localisation of the study region and the 15 studies stands of Quercus robur (Valdės-Correcher et al. 2019)
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Fig. 7 Growth function a and competition effect on growth b for each
forest stand, predicted with the asymmetric size-dependent competi-
tion model. Solid lines are model predictions (a: (1) and b: (4)) with

each parameter equal to the median value of its posterior distribution;
dashed lines delimit the 95% credibility envelope of predictions
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Fig. 8 Relationship between forest stand structure variables (see
Appendix Table 3) and forest stand-level medians of the param-
eters (see Table 1 for parameter definition) of the asymmetric

size-dependent competition model. Lines show average regressions
(using the mean of the intercepts and slopes estimated with the boot-
strap linear regressions). NND denotes the nearest neighbour distance
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Fig. 9 Annual random effects on growth rate for each forest stand estimated by the asymmetric size-dependent competition model. Solid lines are
the median values and dashed lines delimit the 95% credibility intervals
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