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Abstract – The decline and collapse of populations have been reported for a large range of taxa.
Diadromous fishes migrate between fresh water and the sea and encounter many anthropogenic pressures
during their complex life cycle. In spite of being of ecological, cultural and economic interest, diadromous
fishes have been in decline for decades in many parts across the world. In this study, we investigated the
change in five diadromous fish counts in France over a 30-year period using 43 monitoring stations located
in 29 rivers across 18 catchments. Our hypothesis was that the counts of these species evolved in a
contrasting way between catchments. We also tested the effect of five drivers potentially contributing to the
observed trends: catchment, latitude, presence of commercial fisheries, improvement of ecological
continuity and salmon stocking. We found contrasting trends in fish counts between species at the national
scale, with some taxa increasing (Anguilla anguilla and Salmo trutta), some showing a slight increase
(Salmo salar) and some decreasing (Alosa spp. and Petromyzon marinus). For each taxon, except Anguilla
anguilla, we highlighted a significant catchment effect indicating contrasting trends between catchments
and stations. However, we found no significant effect of catchment characteristics for any of the studied
taxa.
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Résumé – Tendances contrastées entre les espèces et les bassins versants dans les comptages de
poissons amphihalins au cours des 30 dernières années en France. Le déclin et l’effondrement des
populations ont été signalés pour un large éventail de taxons. Les poissons amphihalins migrent entre les
eaux douces et la mer, et subissent de nombreuses pressions anthropiques au cours de leur cycle de vie
complexe. En dépit de leur intérêt écologique, culturel et économique, les poissons amphihalins sont en
déclin depuis des décennies dans de nombreuses régions du monde. Dans cette étude, nous avons étudié
l’évolution des comptages de cinq taxons amphihalins en France sur une période de 30 ans en utilisant les
données de 43 stations de comptage situées dans 29 rivières et 18 bassins versants. Notre hypothèse est que
les comptages de ces espèces ont évolué de manière contrastée entre les bassins versants. Nous avons
également testé l’effet de cinq facteurs susceptibles de contribuer aux tendances observées : le bassin
versant, la latitude, la présence de pêcheries commerciales, l’amélioration de la continuité écologique et la
présence d’un programme de déversement pour le saumon. Nous avons trouvé des tendances contrastées
dans les comptages de poissons entre les espèces à l’échelle nationale, certains taxons étant en augmentation
(Anguilla anguilla et Salmo trutta), certains ne montrant qu’une légère augmentation (Salmo salar) et
d’autres étant en déclin (Alosa spp. et Petromyzon marinus). Pour chaque taxon, à l’exception d’Anguilla
anguilla, nous avons mis en évidence un effet bassin versant important indiquant des tendances contrastées
entre les bassins ou les stations de comptage. Cependant, nous n’avons trouvé aucun effet significatif des
caractéristiques du bassin versant pour aucun des taxons étudiés.

Mots clés : Poissons diadromes / migration anadrome / surveillance / étude à long terme
1 Introduction

Whatever the spatial and temporal scale, recent observations
and estimates on the rate of extinction of biodiversity are
alarming (Barnosky et al., 2011; Dirzo et al., 2014; Young et al.,
2016; Ceballos et al., 2017; IPBES, 2019). The decline and
collapse of populations have been reported for a large range of
taxa: mammals (Caro, 2008; Harris et al., 2009), insects
(Winfree et al., 2009; Potts et al., 2010; Hallmann et al.,
2017), amphibians (Wake, 1991; Kelhart, 2007), birds (Clavero
et al., 2009), fishes (Clausen and York, 2008), plants (Grime,
2002; Blomqvist et al., 2003) and corals (Hughes, 1994; Jones
et al., 2004). The drivers of these declines are numerous but are
mainly due to multiple stressors such as habitat loss and
fragmentation (Pimm and Raven, 2000; Murphy and Romanuk,
2014), deterioration of habitat quality (Hallmann et al., 2017),
legal and illegal harvesting and overexploitation (Young et al.,
2016), change in land-use (Nilsson et al., 2008), climate change
(Parmesan and Yohe, 2003; Root et al., 2003; Dawson et al.,
2011) or species invasion (Clavero et al., 2009; Stout and
Morales, 2009;Butchartetal., 2010).Thedeclineandcollapseof
fish populations have been reported by numerous studies in
recent decades and in different aquatic ecosystems (Lobón-
Cerviá, 2009) including oceans (e.g., Reynolds et al., 2005;
Vasilakopoulos et al., 2014; Nieto et al., 2015), estuaries (e.g.,
Sommer et al., 2007; Rochette et al., 2010; Cloern et al., 2016),
and freshwaters (e.g., Frissell, 1993; Freyhof andBrooks, 2011;
Collen et al., 2014). In Europe, freshwater fishes are among the
taxonomic groups having the largest number of endangered
species (Nieto et al., 2015; Gozlan et al., 2019). Compared to
other groups, it is the second most impacted group (i.e., about
40%ofEuropean freshwaterfishes are reported threatened) after
freshwater molluscs (59%) and far ahead of amphibians (23%)
(Nieto et al., 2015).

Diadromous fishes migrate between fresh water and the sea
(Myers, 1949; McDowall, 1997). Like other migratory species,
their high mobility through a large diversity of habitats
provides them with ecological benefits compared to non-
migratory species, including (i) growth in more productive
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areas, (ii) reduced predation on young stages, (iii) a better
match between the environmental conditions encountered and
ecological preferences, and (iv) better resilience to environ-
mental changes (e.g., climate warming) provided that they are
able to track changes at a sufficient pace (McDowall, 2001;
Limburg and Waldman, 2009; Culp et al., 2017). On the other
hand, diadromous fishes also face difficulties related to the
large number of anthropogenic pressures they encounter
during the different stages of their complex life cycle (e.g.,
dams, silt plugs, pollution, overfishing, flow management). In
spite of being of ecological, cultural and economic interest,
diadromous fishes have been in decline in many parts of the
world for decades (e.g., Wolter, 2015; Waldman et al., 2016;
Lambert et al., 2018). Among them, salmonids and the
European eel (Anguilla anguilla) have been the focus of many
studies (e.g., Dekker, 2003a; Milner et al., 2003; Bonhommeau
et al., 2008; Bal, 2011; Kettle et al., 2011; Chaput, 2012; Aalto
et al., 2016; Nicola et al., 2018). A diversity of management
plans has been implemented to protect these species (e.g.,
Haapasaari and Karjalainen, 2010; Maas-Hebner et al., 2016;
Almeida et al., 2018). For instance, management measures can
aim at improving the quality of the environment or at reducing
anthropogenic pressures (e.g., fisheries and dams) but they also
include fish stocking programmes. To monitor the progress and
efficiency of these management plans, count data collected
continuously at video counting stations and fish traps can be
used. In France, this type of data is available for a large number
of counting stations located on many rivers used by migratory
fishes. These data have however been underexploited to date
with studies limited to a small number of stations or rivers (e.g.,
Kuczynski et al., 2017),while theyprovidevaluable information
for the management of these species at the national scale.

The objective of this study was to aggregate the
information available about the upstream migration of
diadromous fishes in France over the last 30 years in order
to assess temporal trends. We investigated whether the trends
are homogeneous between the different catchments or whether
they are different. The catchments studied have quite different
geographical (e.g., area of the catchment, latitude, slope) and
f 23



Fig. 1. Location of the 43 long-term monitoring stations. Numbers identify each station and refer to the full name in the table. Stations are
ordered by mean latitude of the catchment they belong to and from north to south.
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hydrological (especially water management) features. We thus
hypothesise that the trend in the change in fish counts is likely
to be different between the French catchments.

2 Material and methods

2.1 Fish dataset

A common toolbox for monitoring of fish migration in
France has recently been developed as part of the STACOMI
open source project (MIgratory fish COntrol STAtions). This
toolbox comprises a database, java tools (to insert and manage
data), and R packages to analyse data (Legrand et al., 2019).
The data collected in the STACOMI project are numerous and
consist mainly of (i) counts and dates of passage, (ii) fish
characteristics, such as size, weight and age (with more or
fewer details depending on the type of monitoring device, in
particular trapping versus video station), (iii) observed
pathologies (when the individuals are trapped and this
information is recorded) and (iv) observation of the marks
(e.g., PIT tags, radio transmitters, fin ablation). In this study,
the counts have been compiled from 20 operators. We
considered only the upstream migration because monitoring of
downstream migration is mostly anecdotal. Monitoring
stations can be either video counters or fish traps combined
with counting of all or a substantial proportion of fishes that
migrate upstream through fishways. The duration and
homogeneity of sampling vary widely between stations,
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ranging from 1 to 35 years during the period 1983–2017.
Stations with less than 10 years of monitoring have been
excluded from the current analyses. Trapping and counting
stations where expert judgement indicated that the efficiency
had changed over time were also discarded.

Diadromous fishes are the most frequently recorded at
monitoring stations. The freshwater species were removed
from the dataset as they are not always included in fish counts.
The same applied to migratory species that are rarely observed,
either because their freshwater habitats are located mainly in
the most downstream part of the rivers (Platichthys flesus)
where few counting stations are present, because their
abundance is low (Lampetra fluviatilis) or they are not
counted at all (Liza ramada). For Anguilla anguilla, only the
yellow eels were kept for analyses as the glass eel stage is
counted at very few trapping stations but in very large numbers
compared to the yellow eel stage.

Since the counting stations are not homogeneously located
in all the catchments studied (some stations are located in the
upstream parts while others are located in the downstream
parts), these data do not reflect the size of the fish populations.
Nevertheless, since most stations are located downstream
(between 1 and 880 km from the sea in our dataset;
median = 37 km) and the analysis is global, we assume that
a change in fish counts at counting stations is a good proxy of a
change in population size.

After data filtering, our study included 43 monitoring
stations located in 29 rivers and 18 catchments (Fig. 1;
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Appendix 1) and five diadromous taxa: Alosa spp. (because
Alosa alosa and Alosa fallax cannot be distinguished through
video counting), Anguilla anguilla, Petromyzon marinus,
Salmo salar and Salmo trutta.

2.2 Data analysis

The annual fish counts in monitoring stations were
assessed from 1983 to 2017 using generalised additive mixed
models (GAMMs). Mixed models are ideally suited to analyse
behavioural, ecological and evolutionary data when datasets
have one or more levels of aggregation (Van de Pol andWright,
2009). In addition, the use of a generalised additive model
(GAM) allows description of non-linear trends in fish
abundance.

First, we conducted an analysis at the national scale to
assess the global trend for each of the five taxa, and then
examined sub-catchment trends for each of these taxa. As the
time span of monitoring data was different for each taxon, we
used a separate model to predict the annual trend for each
taxon. To build the five GAMMs, we transformed the annual
fish counts per station into log(countsþ1) as some counts were
zero. The potential explanatory variables were ‘Year’ and
‘Catchment’. For all five models, the ‘Station’ factor was used
as a random intercept, and a smooth effect was used for ‘Year’.
To assess whether this annual trend was national (i.e., the
whole of France) or regional (i.e., different between catch-
ments), two different assumptions were tested: (i) a different
trend for each catchment (model 1), and (ii) a single trend for
all catchments (model 2). To choose the better of the two
models, we used the Akaike Information Criterion (AIC)
(Akaike, 1974) and a Chi-square (x2) test provided by the R
package ‘itsadug’ (Van Rij et al., 2017). This allows
comparison of two models on the basis of the minimised
smoothing parameter selection score specified in the model,
and to perform a x2 test on the difference in scores and the
difference in degrees of freedom (Van Rij, 2016). As the series
recorded at the stations were of unequal length, a time trend
was rebuilt for the whole of France by keeping the trend
constant outside the period of observation. Given the data
available, the national trend was built up by summing the
predictions only at the most downstream station of a given
river (37% of the rivers had more than one monitoring station).
Indeed, the counts at a station located upstream from another
station were considered as duplicates and underestimated the
total number of migrating fishes present in the river (i.e., fish
can be counted at the downstream station but not at the
upstream one). However, they were not removed from the
other analyses as those upstream stations could cover a longer
time period than the downstream stations.

To test for monotonous temporal trends in the change in
annual fish counts, we performed a meta-analysis of Mann–
Kendall trend statistics (S) with fixed-effect model computed
at each station (Daufresne and Boët, 2007; Maire et al., 2019).
We first corrected the variances of S for temporal autocorrela-
tion (Hamed and Rao, 1998). We used Mann–Kendall
statistics, as they allow to test whether there is a general
monotonous trend (without the link necessarily being linear)
over the period considered. This method, while less precise
than trends highlighted by GAMMs, allows summarising of
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the results at the level of the stations as well as of the
catchments. The meta-analyses were conducted using the
‘metafor’ package in R (Viechtbauer, 2010). We specified a
weight that corresponds to the sum of the fish counted for each
taxon at each station in order to account for the importance of a
station in terms of annual counts or duration (both would result
in larger counts).To test whether detected trends in the number
of fish counted could be related to catchment management
(e.g., Romakkaniemi et al., 2003; de Eyto et al., 2016), we
collected information on (i) the presence or absence of a
commercial fishery downstream of each station, (ii) improve-
ments in ecological continuity (i.e., river connectivity)
downstream from each station for the upstream migration,
and (iii) the presence of a stocking programme influencing fish
counts at monitoring stations (which applies to salmon only)
(Appendix 1). The information was collected for each
monitoring station and was not species-dependent except in
the presence of a stocking programme (i.e., salmon only). For
each station, we also recorded the latitude (Appendix 1), as
numerous studies have documented a northward shift in the
distribution of many taxa due to recent climate change
(Parmesan and Yohe, 2003; Comte and Grenouillet, 2015;
Horreo et al., 2018). We therefore tested the hypothesis that
southern stations have suffered a more severe decline in fish
counts over the last decades than have northern stations. We
included the three management variables, the latitude and the
catchment as a matrix of moderators in the meta-analysis.
3 Results

3.1 Change in fish counts in France

For the five GAMMs built (i.e., one for each taxon), the
best model always included multiple smooth effect on year
with a different trend per catchment (Tab. 1). GAMMs
including a catchment effect performed better than those
without (x2 (142) = 732.126, p < 0.001). Depending on taxon,
the best model explained between 73.7% (Petromyzon
marinus) and 87.9% (Salmo trutta) of the variation in the
data (Appendices 2–6).

Given this result, annual fish counts of each taxon were
assessed at the national scale using reconstructed predictions
of the five GAMMs. The trends in annual fish counts were
different between taxa (Fig. 2). Alosa spp. was the taxon
whose counts changed the most during the period. This taxon
showed a clear trend towards decline in France (i.e., a
percentage change over time between the first and last five
monitoring years of �96.4%). The annual counts of
Petromyzon marinus have also declined over time, but in a
lesser extent than for Alosa spp. (i.e., a percentage change
over time of �80.3%). Salmo salar showed fluctuations in
counts between years but no clear trend over the studied
period in France (i.e., a percentage change over time of
9.2%). Finally, the counts of Anguilla anguilla and Salmo
trutta increased (i.e., a percentage change over time of 55.4%
and 72%, respectively), especially after 2005. The results for
all five taxa showed very large confidence intervals (Fig. 2)
indicating a great variability between catchments and
stations, except during the last 10 years for Alosa spp.
where the confidence interval is thin.
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Table 1. Comparison between GAMMwith single smooth effect (SSE) vs. GAMMwith multiple smooth effect (MSE) on year using catchment
for each taxon. * indicates the best model. Scores are fREML scores. EDF: estimated degree of freedom. Diff.: difference between scores of
the models. DF: difference between EDF of the models. AIC diff.: difference in the Akaike Information Criterion (AIC) between models.
** indicates the model with the lowest AIC. P= probability of x2 test.

Taxon Model Scores EDF Diff. DF AIC diff. P

Alosa sp.
MSE* 535.2175 37 88.141 22 174.62** <0.001

SSE 623.3582 15

Anguilla anguilla MSE* 967.3409 43 39.396 26 71.05** <0.001
SSE 1006.7365 17

Petromyzon marinus MSE* 601.3856 31 53.061 18 92.43** <0.001
SSE 654.4463 13

Salmo salar MSE* 675.3592 46 35.140 28 85.47** <0.001
SSE 710.4989 18

Salmo trutta MSE* 593.0208 46 80.553 28 171.83** <0.001
SSE 673.5735 18
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3.2 Change in fish counts per catchment
and monitoring station

In the meta-analysis, the only significant moderator was the
catchment for Alosa spp., Salmo trutta, Salmo salar and
Petromyzon marinus. The other moderators (i.e., latitude,
presence of fishing, improvements in ecological continuity and
salmon stocking) were not significant. For Anguilla anguilla,
none of the moderators was significant.

Alosa spp. showed the largest number of stations (10/19,
53%) with a significant trend and also the largest number of
significant decreasing trends (8/19, 42%) (Fig. 3). At the
national scale, we observed a significant decreasing trend. At
the catchment level, a significant decreasing trend was found
only for the Loire and Garonne-Dordogne catchments.

About 35% (11/31) of stations where Anguilla anguilla
was monitored experienced a significant trend (Fig. 4). Among
them, there was a greater number of decreasing (7/31, 22%)
than increasing (4/31, 13%) trends. Nevertheless, the station
with the largest counts (Arzal) showed a significant upward
trend. This station contributes strongly to the trend at the
national scale, which is an increasing but non-significant trend.

For Petromyzon marinus, 33% (6/18) of stations showed
a significant trend (Fig. 5). Half of the six stations (17%)
showed an increasing trend, while the other half experienced
a decreasing trend. Several catchments located in northern
France (Oir, Vilaine, Vire, Aulne) showed a significant increase,
while the Loire catchment showed a significant decrease.
At the national scale, we observed a significant decreasing
trend.

For Salmo salar, 34% (10/29) of stations showed a
significant trend (Fig. 6). The number of stations showing a
significant upward trend was slightly higher (6/29, 20%)
than the number of stations with a significant downward trend
(4/29, 14%). The Nivelle catchment showed a significant
decrease, while the Loire and Adour catchments showed a
significant increase. At the national scale, we observed a slight
but significant increase.

Lastly, for Salmo trutta, 41% (11/27) of stations showed a
significant trend (Fig. 7), about half with an increase (6/27,
22%) and the other half with a decrease (5/27, 19%). The
Garonne-Dordogne and Oir catchments showed a significant
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decrease, while the Adour and Bresle catchments showed a
significant increase. At the national scale, we observed a
significant increase.

4 Discussion

The implementation and compilation of a national database
has allowed us to compile an original dataset of millions of fish
passages at counting stations in metropolitan France. This
dataset was used to test whether, during the last 30 years,
diadromous fishes have experienced an overall decline in
France, as reported elsewhere in the world (Dirzo et al., 2014;
Young et al., 2016). In order to analyse these data, we had to
make the assumption that the efficiency of the counting
stations had not changed over time. We know that this is not
necessarily true, due to successive equipment and technologi-
cal improvements in monitoring. To account for this potential
bias, we have carefully selected the stations by systematically
excluding those that have undergone major changes according
to expert judgements.

Our results show that changes in fish counts over the last
30 years in France depend on fish taxa and that an overall
decline in all populations and species has not occurred, as we
expected. Fish counts for Alosa spp. and Petromyzon marinus
have decreased at the national scale, while those for Anguilla
anguilla and Salmo trutta have increased. Fish counts for
Salmo salar have remained stable with only a slight increase.
Likewise, we highlighted a significant variability between
the catchments and the stations, indicating that there is not a
massive decline of diadromous fishes in France, but there are
contrasting situations. Even for Alosa spp. (which is the
taxon with the greatest decline over the study period), we
noted that fish counts in two stations (10.5%) had increased
significantly.

Shad populations, especially those of Alosa alosa, have
declined severely across Europe over the past century
(Aprahamian et al., 2003; Baglinière et al., 2003; Nachón
et al., 2015). Alosa alosa was originally distributed from
Norway (north) to Morocco (south) and from the coasts of
Germany (east) to the British Isles (west), while the
distribution of Alosa fallax, although morphologicaly very
similar, extended further north (to Iceland) and further east
f 23



Fig. 2. Change in annual fish counts of the five diadromous taxa summed at the national scale. Black curves are the mean change in annual counts
and grey ribbons the 95% confidence intervals. Note that the annual fish counts on the y-axis are different between taxa.
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(to Scandinavia and the Baltic Sea) (Baglinière and Ellie,
2000; ICES, 2015; Lambert et al., 2018). Currently, the
northern limit for Alosa alosa is the Vire catchment in
Normandy (France) and the southern limit is the Minho
catchment, located at the boundary between Portugal and
Spain (Mota et al., 2016), while the northern limit for Alosa
fallax is the Nemunas river (Lithuania) and the southern limit
is the Guadalquivir river (Spain) (ICES, 2015). Baglinière
et al. (2003) reported that for the period 1978–1998, about
94% of the total landings of nominal catches of shad were in
France, with 89% from the Garonne-Dordogne catchment
alone. At the end of the 20th century the Alosa alosa
population in the Garonne-Dordogne was the largest in
Page 6 o
Europe, but during the first decade of the 21st century, catches
declined dramatically (Rougier et al., 2012). Our results are
consistent with this finding, emphasising the importance of the
Garonne-Dordogne population compared to the other French
populations in terms of fish counted at monitoring stations, and
by highlighting the severe decline of this population. At the
national scale, the population of Garonne-Dordogne was
therefore by far the most important, and the collapse of this
population contributes to the observed decline of shad at the
national level. Reasons for this collapse are numerous and
remain uncertain, but Rougier et al. (2012) hypothesise a
past high mortality in the estuary (due to fisheries) combined
with a demographic Allee effect (depensation in fish stock
f 23



Fig. 3. Trend in annual fish counts of Alosa spp. (black squares) for each monitoring station and 95% confidence intervals (whiskers). The size of
the black squares is proportional to the weight of each station (i.e., the sum of counts over the study period) in the analysis.When the black square
is located on the left side of the zero vertical line, the trend is declining. When it is located on the right side, the trend is increasing. Grey
diamonds display the effect of the moderator ‘Catchment’. The black diamond at the bottom indicates the overall mean effect size for all the
stations; * highlights a significant trend for the station (when the whiskers do not intersect the zero vertical line); ** highlights a significant trend
for the catchment (when the grey diamond does not intersect the zero vertical line), but not for the station; *** highlights a significant trend for
both the station and the catchment.
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productivity � Myers et al., 1995; Liermann and Hilborn,
2001; Sun, 2016), possibly in synergy with environmental
changes. In addition, the trend reported at the national scale
also highlights the collapse of shad counts in France with a
very thin confidence interval over the last few years, indicating
little contrast between the different counting stations. Overall,
we found that only two stations showed a significant positive
trend for shad: (i) Claies-de-Vire on the Vire river, and (ii)
Marais Pin on the Sèvre Niortaise river. On the Vire river, this
trend can be explained by an ambitious programme of river
connectivity restoration and by an improvement in water
Page 7 o
quality due to an improvement of the water treatment plants in
the catchment (Goulmy, 2016). These efforts seem to benefit
all diadromous fish species, with increasing trends found
(significant or not) for all species counted (Figs. 3, 5–7). At the
Marais Pin station, again the increasing trend can be explained
by a recent improvement in river connectivity. Our national-
level shad analysis points to the onset of declining counts
around 1995, several years before the decline was reported in
fisheries data (Rougier et al., 2012). This may be due to the
position of the counting stations being upstream of the most
important fisheries, which are mainly located in estuaries or in
f 23



Fig. 4. Trend in annual fish counts of Anguilla anguilla (black squares) for each monitoring station and 95% confidence intervals (whiskers). The
size of the black squares is proportional to the weight of each station (i.e., the sum of counts over the study period). When the black square is
located on the left side of the zero vertical line, the trend is declining. When it is located on the right side, the trend is increasing. None of the
five moderators tested in the model was significant. The black diamond at the bottom indicates the overall trend mean effect size for all the
stations; * highlights a significant trend for the station (when the whiskers do not intersect the zero vertical line).
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the most downstream parts of the rivers. The counting stations
would thus report an earlier decline due to a gradual erosion of
the population with fewer individuals migrating upstream.
This finding thus stresses the importance of counting stations
that can provide early signals of a developing trend (either a
decline or an increase).

In this study we analysed the trend in counts only for the
yellow eel stage of Anguilla anguilla, and not glass eels. Using
GAMM analyses, we highlighted a trend towards increasing
counts for this life stage. However, we found no significant
trend in the meta-analyses for this species at the national level.
Moreover, the observed increase in eel counts (found in the
GAMM analyses) has to be mitigated by the short length of the
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time series (after 1995). Indeed, in Europe, it is well
documented that the recruitment of eels has greatly decreased
since the 1980s (e.g., Dekker, 2003b, Bonhommeau et al.,
2008; Kettle et al., 2011). Consequently, the 1.5-fold increase
in yellow eel counts found after 1995 has to be considered in
the context of a 90% decline in European eel recruitment in
Europe (Dekker, 2003b). In addition, our observed trend is not
consistent with that of the Eel Density Analysis (EDA) model
(Briand et al., 2018), derived from the analysis of yellow eel
abundance at electrofishing stations. In contrast, this model
reported a decreasing trend for all size classes except for the
lowest size class (<150mm) for which an increase has been
observed, but only since 2011. Stations located in the Biscay
f 23



Fig. 5. Trend in annual counts of Petromyzon marinus (black squares) for each monitoring station and 95% confidence intervals (whiskers). The
size of the black squares is proportional to the weight of each station (i.e., the sum of counts over the study period). When the black square is
located on the left side of the zero vertical line, the trend is declining. When it is located on the right side, the trend is increasing. Grey diamonds
display the effect of the moderator ‘Catchment’. The black diamond at the bottom indicates the overall mean effect size for all the stations;
* highlights a significant trend for the station (when the whiskers do not intersect the zero vertical line); ** highlights a significant trend for the
catchment (when the grey diamonds do not intersect the zero vertical line), but not for the station; *** highlights a significant trend for both the
station and the catchment.
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area are highly influenced by the fishing pressure on glass eel
(Briand et al., 2003, Briand, 2009). The recent decrease in the
fish mortality observed in France (Plan National de Gestion de
l’Anguille � Anonyme, 2018) combined with the recent
increase in recruitment is a possible explanation for the
observed trend. Moreover, further upstream in the catchments,
the eel counts also integrate the effect of management
measures (i.e., restoring the ecological continuity or stocking
programmes). However, few eels have been counted in these
upstream stations compared to the most downstream stations
(e.g., Ibbotson et al., 2002, Lasne and Laffaille, 2008a). Thus,
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when log-transformed in the model prediction, they have a
negligible influence on the rebuilding of national count trends.
This explains why the majority of stations display a negative
trend in the meta-analysis while the general trend recon-
structed at the national level shows an increase. The eel
population of Vilaine dominates the trend in numbers, and part
of the increase observed before 2000 is due to large escapes
from the fishery in 1996 and 1998 (Briand et al., 2003). Later
increases in yellow eel counts correspond to the large number
of glass eel escaping the fishery and ascending the trap.
Numbers collected at monitoring stations in fact reflect the
f 23



Fig. 6. Trend in annual fish counts of Salmo salar (black squares) for each monitoring station and 95% confidence intervals (whiskers). The size
of the black squares is proportional to the weight of each station (i.e., the sum of counts over the study period). When the black square is located
on the left side of the zero vertical line, the trend is declining. When it is located on the right side, the trend is increasing. Grey diamonds display
the effect of the moderator ‘Catchment’. The black diamond at the bottom indicates the overall trend mean effect size for all the stations;
* highlights a significant trend for the station (when the whiskers do not intersect the zero vertical line); ** highlights a significant trend for the
catchment (when the grey diamond does not intersect the zero vertical line), but not for the station; *** highlights a significant trend for both the
station and the catchment.
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fractal nature of the stock (Dekker, 2000) where the
recruitment trend, mostly common to all basins, is further
influenced by local catchment factors. As such, trends derived
from counting stations are probably difficult to interpret at a
higher level (e.g., national scale). However, the fact that some
stations located upstream of the largest glass eel fisheries
(Bazacle in the Garonne-Dordogne catchment, Arzal in the
Vilaine catchment and Cinq Abbés in the Sèvre Niortaise
catchment) are actually showing a clear increasing trend could
reflect positively on the management actions according to the
European eel plan and its local adaptations. Nevertheless, the
Page 10
trend is not significant for all the stations of these three
catchments, probably because we did not use glass eel counts.
In contrast, stations such as the Frémur, located in a small
stream in the north of Brittany, do show a clear decreasing
trend and are probably muchmore representative of the general
decline in glass eel recruitment observed before 2011 (Acou
et al., 2009). Moreover, catchment colonisation is mostly by
glass eels and young yellow eels. Glass eels are only present
close to the tidal limit (Gascuel, 1986; Laffaille et al., 2007). In
those places, they dominate the station counts. Further
upstream, the average size will increase with the distance
of 23



Fig. 7. Trend in annual fish counts of Salmo trutta (black squares) for each monitoring station and 95% confidence intervals (whiskers). The size
of the black squares is proportional to the weight of each station (i.e., the sum of counts over the study period). When the black square is located
on the left side of the zero vertical line, the trend is declining. When it is located on the right side, the trend is increasing. Grey diamonds display
the effect of the moderator ‘Catchment’. The black diamond at the bottom indicates the overall trend mean effect size for all the stations;
* highlights a significant trend for the station (when the whiskers do not intersect the zero vertical line); ** highlights a significant trend for the
catchment (when the grey diamonds do not intersect the zero vertical line), but not for the station; *** highlights a significant trend for both the
station and the catchment. When black squares are located on the left side of the zero vertical line, the trend is declining. When they are located
on the right side, the trend is increasing.
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from the sea (Barak and Mason, 1992), as historically glass eel
transport has been limited in France. Thus, our analysis of
yellow eel migration at monitoring stations provides an
assessment of the early changes in the colonisation phase of the
eel, while electrofishing results are more related to the standing
stock in the basins (e.g., Lasne and Laffaille, 2008a, 2008b).

Counts of Petromyzon marinus have decreased throughout
France over the last 30 years, although we observed as many
stations with a significant upward trend as with a downward
trend. However, the four stations with the largest sea lamprey
Page 11
counts are in decline (Châtellerault and Descartes in the Loire
catchment and Tuillères and Golfech in the Garonne-Dordogne
catchment). The decreasing trend in sea lamprey numbers in
France found in this study is consistent with other studies
highlighting a decline of some populations, such as the Iberian
(Mota et al., 2016). Like shad, the decrease in counts is
detected earlier at counting stations (around 2005) than in
fisheries, where it has not yet been detected. In contrast, in the
Garonne-Dordogne catchment, which is the top-ranked
catchment for the sea lamprey population, captures by
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fisheries have increased over the period 1990–2005 (Beaulaton
et al., 2008).

Several studies have documented that Salmo salar stocks
have declined over recent decades, especially in the southern
parts of the salmon range (Parrish et al., 1998; Brun, 2011;
ICES, 2018). In the North Atlantic, the decline in commercial
salmon catches occurred around the mid-1970s (Parrish et al.,
1998). In France, the range of salmon has been severely
reduced with the loss of populations in large catchments such
as the Rhine, Seine and Garonne-Dordogne (Bal, 2011).
Currently, it is estimated that only about 30 populations are
viable, located mainly in Brittany, Lower Normandy and
southwestern France (Thibault, 1994; Bal, 2011). The data
analysed in this study started in the 1980s, after the onset of the
decline of Salmo salar stocks. Overall, we found a slight
increasing trend over the last 30 years. However, the Nivelle
catchment (located in southwestern France) seems to have
suffered a significant decreasing trend, consistent with the
decline reported in this catchment by Brun (2011) for the last
5 years of the 1984–2007 period. Among the 29 stations
considered for Salmo salar in this study, 19 have stocking
programmes that may have influenced the counts. We found
that 12 (63%) of the stations with a stocking programme
showed a tendency towards an increase, but the trend is
significant for only four stations. Nevertheless, the fact that
65% of the studied stations are located in rivers where a
stocking programme is implemented probably explains the
slight general upward trend in salmon populations, concomi-
tantly with the reported contraction of its range in France.

Although the decline in Salmo trutta stocks and fisheries
has been documented in many places, the situation is more
variable for this species, with populations that seem to increase
in some regions and collapse in others (Mota et al., 2016;
Almeida et al., 2018). Using electrofishing data, Poulet et al.,
(2011) found a general decrease in the occurrence and
abundance of the juveniles of Salmo trutta in France from 1990
to 2009. These results seem consistent with other studies
(using observed or predictive models) in France and
Switzerland (e.g., Borsuk et al., 2006; Zimmerli et al.,
2007; Buisson et al., 2008). In contrast, our results show stable
annual fish counts between 1985 and 2005 and an increase after
2005. The Garonne-Dordogne and Oir were the only catch-
ments with a significant decreasing trend. Using electrofishing
data, Bergerot and Cattanéo (2016) found a positive
relationship between the density of Salmo trutta juveniles
and river size in France. This could explain the opposing trends
highlighted by studies using electrofishing in small to medium
streams and those using counting stations in rather large rivers.
In addition, juveniles were considered by Poulet et al. (2011),
while only adults were counted in this study.

Interestingly, in our study we found trends in fish counts
that do not always match the reported trends using fisheries
data. For instance, we found a decreasing trend in the main
populations of Alosa spp. and Petromyzon marinus several
years before the reported decreases in fisheries data (Beaulaton
et al., 2008; Rougier et al., 2012). Fisheries data are used
extensively by fisheries managers for population assessment,
as long-term fisheries exist in many places (Lucas and Baras,
2000). Nevertheless, these data are known to have some biases.
In particular, catchability may vary between times of the day,
seasons, gear used, efficiency of the fisheries (linked to
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fishermens’ experience and technology used) and dynamics of
the population, but also environmental factors (Lucas and
Baras, 2000; Maunder et al., 2006). Moreover, fisheries data
can be affected by underreporting that can vary over place and
time (Maunder et al., 2006; Zeller et al., 2011; Coll et al.,
2014). Data collected at counting stations also have some
biases, the most important being changes in the attractivity of
the fish facility due to environmental conditions and/or lack of
maintenance. Because the largest fisheries are often located in
marine or estuarine areas and counting stations are located in
the rivers (between 1 and 880 km from the sea in our dataset;
median = 37 km), data from counting stations are affected by
additional factors as compared to fisheries data from estuaries
or marine environments (e.g., predation in the river, barriers to
fish migration, local environmental conditions). Considering
the potential biases of the two types of data and the fact that
they potentially do not relate to the same fraction of a
population (especially when the counting stations are located
far from the fisheries), we emphasise the importance of using
various sources of data to provide a more robust assessment of
the trends in diadromous fishes population.

In this study, we highlighted a strong catchment effect for
each taxon, except for Anguilla anguilla. This effect could
indicate that anadromous taxa are structured in populations
that are different between catchments. The European eel
is widely recognised as a single panmictic population
(Dannewitz et al., 2005; Palm et al., 2009; ICES, 2015), with
the exception of a few studies reporting evidence for a weak
but significant population structure (Wirth and Bernatchez,
2003; Maes and Volckaert, 2002). The well-known panmixia
in this species seems the best explanation for this lack of
catchment effect. Homing (i.e., the return of fish to their natal
river) and straying (i.e., the migration of individuals to non-
natal sites to reproduce) behaviours are two fundamental life-
history traits of most anadromous fishes (Martin et al., 2015).
While straying allows for colonisation of new habitats,
maintenance of genetic diversity, mitigation of spatial and
temporal variation in habitat quality (Keefer and Caudill,
2014) and result in metapopulation dynamics (Randon et al.,
2018), homing leads to local adaptation of populations
(McDowall, 2008), providing fitness benefits (Martin et al.,
2015). The degree of fidelity for homing varies between
species (Melvin et al., 1986). It is rather high for salmonids
(e.g., King et al., 2001; McDowall, 2001; Petersson, 2015),
ranging from very precise (i.e., within metres) to quite large
(i.e., catchment) (Keefer and Caudill, 2014). In American shad
(Alosa sapidissima), a high degree of homing has also been
documented (e.g., Melvin et al., 1986; Walther and Thorrold,
2008; Hasselman et al., 2010), while the pattern is less clear for
Alosa fallax and Alosa alosa over substantial parts of their
geographic range (Jolly et al., 2012; Martin et al., 2015). Yet,
Randon et al. (2018) found that Alosa alosa populations in
France are relatively connected, at least within catchments.
The catchment effect highlighted in this study for Salmo salar,
Salmo trutta and Alosa spp. seems therefore consistent with the
homing behaviour and population structure. Regarding sea
lamprey, evidence for lack of homing has been highlighted in
several studies (e.g., Bergstedt and Seelye, 1995; Bryan et al.,
2005; Waldman et al., 2008; Spice et al., 2012). However, the
significant catchment effect highlighted in our study seems
consistent with the homing behaviour of the species. However,
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the catchment effect could also reflect significant differences in
management (e.g., ecological continuity, fisheries) regardless
of the homing behaviour of species.

We tested three factors expected to have influences on
annual fish counts at monitoring stations (i.e., commercial
fisheries, improvements in ecological continuity and salmon
stocking programmes). None of these factors were significant
in our analysis. This unexpected finding does not necessarily
reflect a lack of effect of these factors but rather a lack of
accurate data. We were indeed unable to provide quantitative
information to describe these factors. For example, catches can
vary greatly between fisheries. For instance, catches of
Petromyzon marinus in France vary from 8.5 tonnes in the
Adour catchment to 58 and 72 tonnes in the Loire and
Garonne-Dordogne catchments, respectively (Beaulaton et al.,
2008). Similarly, the numbers of salmon stocked into rivers
vary between catchments and between years within a
catchment (Dumas and Prouzet, 1994; Perrier et al., 2013).
Moreover, other factors can play a role in the trend of annual
fish counts, such as chemical water quality, flow or water
temperature, which can change the attractivity of a fish passage
facility (Brodeur et al., 2007; Piper et al., 2012), the swimming
capacity of the fish (Brett, 1967; Haro et al., 2004) and survival
(Baisez et al., 2011; Fenkes et al., 2016). Thus, the fact that we
were not able to explain the trends observed using the studied
factors can be related to (i) a lack of precision of these factors
(presence/absence instead of finer quantification), (ii) untested
factors that may have influenced the counts (e.g., river flow,
temperature), and (iii) the fact that the influence on the counts
by the factors is probably multifactorial with synergistic,
additive or even antagonistic species responses between the
different factors.

We also tested whether the latitude of the stations
influenced the fish counts observed. Several studies have
highlighted a northward shift in the range of many taxa (e.g.,
Parmesan and Yohe, 2003; Lassalle and Rochard, 2009). We
thus hypothesised that the fish counts in the southern stations
would have decreased more than in the northern ones,
especially for cold-water species (e.g., salmonids). However,
this factor was not significant for any taxa, indicating either
that we have not yet observed in France a shift in the
distribution of these taxa, or that this change occurs at a larger
temporal and/or geographical scale (e.g., the European scale;
Lassalle and Rochard, 2009).

Our results provide a multi-scale analysis of the change in
annual diadromous fish counts in France from data usually
used at a local geographical scale. In France, as many rivers
have counting stations, this monitoring tool allows assessment
of trends in diadromous fish at large geographical scale (e.g.,
France). This is particularly useful, as management of
biodiversity is needed at multiple scales, from local to
international levels (Watson, 2005; Heller and Zavaleta, 2009),
involving different public policies, such as in restoring
connectivity (e.g., Annex Vof the European Water Framework
Directive (DCE) (directive 2000/60); French law
n°2006-1772, in particular with article L214-17); in water
quality (e.g., European Water Framework Directive (directive
2000/60)); or in the management of species (e.g., European
regulation on eel (EC 1100/2007)). In France, all these policies
are defined and implemented at a catchment scale, but we still
need a national assessment, as diadromous species are used as
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indicators of the success of some of these policies (when they
are not the target). At the catchment scale, data at counting
stations are also interesting, as they allow comparisons of
trends in a catchment with the national trend. This can be a
powerful tool to encourage management actions if a decline is
more pronounced in a particular catchment than at the national
level. Furthermore, information on the spatial extent of a trend
can be useful for managers. For instance, if few catchments
encounter a decline of migratory fishes, it is likely that some
causes of the decline are more related to local factors (e.g.,
management of the catchment). Conversely, if an overall
decline is observed, the causes are probably related to more
global factors (e.g., sea surface or river temperature warming,
North Atlantic Oscillation).

The data used in this study (i.e., count data at monitoring
stations) show a decrease in Alosa spp. and Petromyzon
marinus counts at dates earlier than those found in other
studies of populations in the same catchments but derived from
fisheries catch data. These fisheries-independent monitoring
networks therefore constitute an important complement to
fisheries monitoring data, and can be used to provide early
warnings of changes in populations.

In this study, we failed to highlight the effect of latitude on
the change in fish counts (the most southern stations were not
necessarily the ones with the populations most in decline and
vice versa). Nevertheless, it would be interesting to analyse
more precisely the link that could exist between the change in
fish counts and the change in the major environmental
parameters, in particular the temperature, which is often
identified as the parameter responsible for the shifts in species
distribution (e.g., Walther et al., 2002; Root et al., 2003; Chen
et al., 2011; Williams and Blois, 2018). Moreover, the
quantity of data collected in the STACOMI project is huge
and should allow for other analyses that could be useful to
understand better the population dynamics of these species.
For instance, we analysed the change in Atlantic salmon
counts without distinction of the sea age of the fish. Salmon
sea age is an important driver in population dynamics, as it is
related to the number and size of eggs produced by females (e.
g., de Eyto et al., 2015; Glover et al., 2018). The data
collected in STACOMI also include the date of passage of
each fish. This information could be used to analyse the
change in the phenology of migration over time. Indeed,
numerous studies have documented a change in the
phenology of migration of many taxa in response to recent
warming (see Parmesan and Yohe, 2003). As diadromous fish
have very constrained timing to achieve their life cycle, it
would be very interesting to study the change in the timing of
migration of these species over time.
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Appendix 1

See Table 2.
Table 2. Characteristics of the 43 monitoring stations. Num: the station identification number (see Fig. 1). Latitude is in °N. Year: the counting
period for each station. The last three columns describe: (F.) the presence of a commercial or recreational gear fishery in the river downstream of
the monitoring station; (S.) the presence of a salmon stocking programme influencing the counting; and (EC.) an observed improvement in
ecological continuity of the river over the study period. Based on expert opinion, ‘X’ indicates that the factor may have influenced fish counts,
while ‘–‘ indicates the factor was not present or was likely to have no influence.

Num Station name River Catchment Latitude Year F. S. EC.

1 Eu Bresle Bresle 50.05048 1984-2016 X – –

2 Breuil-en-Auge Touques Touques 49.22833 2005-2015 – – X
3 Claies-de-Vire Vire Vire 49.17829 2002-2015 – – X
4 May-sur-Orne Orne Orne 49.10641 2004-2016 – – X
5 Iffezheim Rhin Rhin 48.83252 2003-2015 X X –
6 Gambsheim Rhin Rhin 48.68441 2006-2015 – X –
7 Cérisel Oir Oir 48.62772 1983-2016 – – –
8 Pont es Omnes Frémur Frémur 48.57771 1996-2016 – – –
9 Bois Joli Frémur Frémur 48.57273 1996-2016 – – –
10 Kerhamon Elorn Elorn 48.46253 2007-2016 – X –
11 Moulin du Vivier Loysance Loysance 48.44941 1996-2010 – X –
12 Châteaulin Aulne Aulne 48.19670 1999-2015 – – –
13 Moulin Neuf Pont l’Abbé Pont l’Abbé 47.88601 2002-2016 – – –
14 Moulin des Princes Scorff Scorff 47.83691 1993-2016 – – –
15 Malon Vilaine Vilaine 47.79868 1998-2008 – – –
16 Arzal Vilaine Vilaine 47.49942 1995-2016 X – –
17 Boisse Vendée Sèvre niortaise 46.44812 1994-2013 – – –
18 Massigny Vendée Sèvre niortaise 46.42023 1994-2007 – – –
19 Boule d’Or Cinq Abbés 5 abbés Sèvre niortaise 46.38675 1994-2013 – – –
20 Boule d’Or Vendée Vendée Sèvre niortaise 46.38666 1994-2013 – – –
21 Cinq Abbés 5 abbés Sèvre niortaise 46.33184 1996-2017 X – –
22 Contreboth de Vix tidal barrier Sèvre niortaise 46.32360 1996-2011 X – –
23 Marais Pin Sèvre niortaise Sèvre niortaise 46.32353 2008-2017 – – –
24 Enfreneaux Sèvre niortaise Sèvre niortaise 46.31705 1994-2017 X – –
25 Descartes Creuse Loire 46.97526 2007-2017 X X X
26 Decize Loire Loire 46.83825 1998-2017 X X X
27 Châtellerault Vienne Loire 46.81105 2004-2017 X X X
28 Gueugnon Arroux Loire 46.60957 2006-2017 – X –
29 Vichy Allier Loire 46.14205 1997-2017 X X X
30 Poutès Allier Loire 44.94727 1986-2016 – X X
31 Mauzac Dordogne Garonne-Dordogne 44.85417 2004-2015 – X X
32 Tuilières Dordogne Garonne-Dordogne 44.84494 1993-2015 X X X
33 Golfech Garonne Garonne-Dordogne 44.10992 1993-2015 X X X
34 Bazacle Garonne Garonne-Dordogne 43.60405 1993-2015 – X X
35 Carbonne Garonne Garonne-Dordogne 43.28901 2000-2015 – X –
36 Uxondoa Nivelle Nivelle 43.36123 1996-2017 X – –
37 Olha Nivelle Nivelle 43.34460 1996-2017 X – –
38 Sorde-l’Abbaye Gave d’Oloron Adour 43.52852 1996-2012 X X –
39 Artix Gave de Pau Adour 43.38589 2005-2016 X X X
40 Guerlain Gave d’Oloron Adour 43.25641 1996-2012 X X X
41 Chéraute Saison Adour 43.23729 1996-2014 X X –
42 Soeix Gave d’Aspe Adour 43.15991 1996-2017 X X X
43 Saint-Cricq Gave d’Ossau Adour 43.10887 2002-2011 X X X
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Appendix 2 GAMM for Alosa spp.
Change in fish counts (log(countsþ1)) of Alosa spp. over the study period and for the 12 catchments with counts for this taxon.
Catchments are ordered by latitude from north to south. Grey points represent predictions þ/� residuals. White curves are the
predicted values of the model and grey ribbons the 95% confidence intervals. The model explains 85% of the observed deviance.
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Appendix 3 GAMM for Anguilla anguilla
Change in fish counts (log(countsþ1)) of Anguilla anguilla over the study period and for the 14 catchments with counts for this
species. Catchments are ordered by latitude from north to south. Grey points represent predictionsþ/� residuals. White curves are
the predicted values of the model and grey ribbons the 95% confidence intervals. The model explains 87% of the observed
deviance.
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Appendix 4 GAMM for Petromyzon marinus
Change in fish counts (log(countsþ1)) of Petromyzon marinus over the study period and for the 10 catchments with counts for
this species. Catchments are ordered by latitude from north to south. Grey points represent predictions þ/� residuals. White
curves are the predicted values of the model and grey ribbons the 95% confidence intervals. The model explains 73.7% of the
observed deviance.
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Appendix 5 GAMM for Slamo salar
Change in fish counts (log(countsþ1)) of Salmo salar over the study period and for the 15 catchments with counts for this
species. Catchments are ordered by latitude from north to south. Grey points represent predictionsþ/� residuals. White curves are
the predicted values of the model and grey ribbons the 95% confidence intervals. The model explains 79.1% of the observed
deviance.
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Appendix 6 GAMM for Salmo trutta
Change in fish counts (log(countsþ1)) of Salmo trutta over the study period and for the 15 catchments with counts for this
species. Catchments are ordered by latitude from north to south. Grey points represent predictionsþ/� residuals. White curves are
the predicted values of the model and grey ribbons the 95% confidence intervals. The model explains 87.9% of the observed
deviance.
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