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1 Abstract
2 1. Ecological theories suggest that higher plant genetic diversity can increase productivity in natural 

3 ecosystems. So far, varietal mixtures, i.e. the cultivation of different genotypes within a field, have 

4 shown contrasting results, notably for grain yield where both positive and negative mixing effects have 

5 been reported. Such discrepancy between ecological theories and agronomical applications calls for a 

6 better understanding of plant-plant interactions in crops. 

7 2. Using durum wheat (Triticum turgidum ssp. durum) as a model species, we investigated the effect of 

8 functional trait composition on productivity and grain quality of varietal mixtures by growing 179 highly 

9 diverse genotypes in pure stands and 197 two-way mixtures in field conditions. We quantified the 

10 agronomic performance of the mixtures relative to their components grown in pure stands on two 

11 variables related to productivity, vegetative biomass yield and grain yield, and one variable related to 

12 grain quality, grain protein content. We then analysed the relationship between the relative performance 

13 of the mixtures and their functional composition that we characterized with trait means and trait 

14 differences on 19 above- and belowground traits. 

15 3. We found that biomass and grain yield increased by 4% overall in mixtures relative to single varieties, 

16 but that mixing effects were non-significant for grain protein content. The combined effects of trait 

17 means and trait differences explained 12%, 17%, and 22% of the variability of relative grain yield, 

18 biomass yield, and grain protein content, respectively, with different traits affecting productivity and 

19 grain quality. Clustering varieties into functional groups allowed us to identify the most beneficial 

20 associations for multifaceted agronomic performance.

21 4. Synthesis and applications. Functional traits explained a significant part of the relative agronomic 

22 performance of mixtures compared to monocultures (12 to 22%, depending on the yield component). 

23 They can thus serve as a basis to identify groups of varieties whose combinations are expected to 

24 generate positive mixing effects, especially for productivity, and without compromising grain quality. 

25 Selection could then target convergence between groups for some traits and divergence between groups 

26 for other traits using empirically derived relationships between functional traits and agronomic 

27 performance as a guideline. 
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28 Introduction
29 Numerous studies have shown a positive relationship between biodiversity and productivity in natural plant 

30 communities (Hooper et al., 2005; Loreau et al., 2001; Tilman et al., 2001). Although most of these effects were first 

31 attributed to species richness, intraspecific diversity is now being recognized as an important driver of ecological 

32 processes, including productivity (Bolnick et al., 2011; Hughes, Inouye, Johnson, Underwood, & Vellend, 2008). In 

33 crops, the effect of genetic diversity on agronomic performance has been studied for decades in the context of varietal 

34 mixtures (Gustafsson, 1953). Considering grain yield, the most widely studied variable, mixing effects are slightly 

35 positive on average, but are also highly variable and can be negative (Kiær, Skovgaard, & Østergård, 2009; Reiss & 

36 Drinkwater, 2018; Smithson & Lenné, 1996). Such results contrast with expectations based on ecological theories and 

37 call for a better understanding of the mechanisms that drive the biodiversity-productivity relationship in crops (Barot 

38 et al., 2017).   

39 The expected benefits of mixtures lie on a central and seminal theory of ecology: niche complementarity. 

40 This theory assumes that organisms that differ in their ecological niche experience reduced competition because they 

41 use resources differently, which leads to enhanced productivity (MacArthur & Levins, 1967). In crops, niche 

42 complementarity has long been proposed as the basis for productivity gains in intercropping, i.e. the practice of 

43 growing two or more species in the same field (Vandermeer, 1992). For example, diversity in root foraging strategies 

44 between maize, bean, and squash has been shown to promote complementarity effects in this ancient intercrop known 

45 as “the three sisters” (Zhang, Postma, York, & Lynch, 2014). Similarly, complementary nitrogen acquisition strategies 

46 between cereals and legumes, i.e. soil nitrogen acquisition for cereals vs atmospheric nitrogen fixation for legumes, 

47 contribute to yield gains in cereal-legume intercrops (Bedoussac et al., 2015). While the theoretical and applied 

48 knowledge on the potential benefits of multi-species intercropping are well developed, our understanding of how 

49 niche complementarity owing to within-species or within-genotype variability remains less well explored (but see 

50 Montazeaud et al., 2018).

51 In contrast with the predictions from the niche complementarity theory, several experiments in ecology have 

52 shown that average community characteristics may be more important than differences between individuals in 

53 explaining processes such as productivity (Garnier, Navas, & Grigulis, 2015). Such results are in line with the “mass 

54 ratio hypothesis” (MRH, Grime, 1998), extended in the Trait Driver Theory (TDT, Enquist et al., 2015), which 

55 predicts that ecosystem processes are mainly determined by the dominant species in the community. In addition, such 

56 average characteristics are even more informative when they are weighted according to the relative biomass of the 

57 species or genotypes in the mixture (Garnier et al., 2004). Yet, the MRH remains unexplored in the context of varietal 

58 mixtures, where the potential effects of individual trait values on growth and yield are often considered negligible in 

59 comparison to varietal and/or phenotypic trait variation (Barot et al., 2017; Prieto et al., 2015).

60 In this context, which traits are the most important drivers of mixture productivity and which combination of 

61 phenotypes optimize crop performance remain open questions (Barot et al., 2017; Borg et al., 2018). In natural 

62 communities, recent results suggest that processes such as  productivity could be explained by a multivariate 

63 combination of trait means and trait differences for traits ranging from organ-level to whole plant-level (Cadotte, 

64 2017; Kraft, Godoy, & Levine, 2015). Such traits relate to resource-use strategies and size, the two main dimensions A
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65 of phenotypic variation among vascular plants (Díaz et al., 2016; Westoby, Falster, Moles, Vesk, & Wright, 2002). 

66 Importantly, some of these studies and others (Bardgett, Mommer, & De Vries, 2014) have highlighted the major 

67 contribution of root traits in driving such processes. In crops, root traits are rarely considered when studying varietal 

68 mixtures (Kiær et al., 2009), whereas belowground interactions such as resource-use complementarity are often 

69 advanced as potential mechanisms for productivity gains in mixtures (Barot et al., 2017; Litrico & Violle, 2015). 

70 Improving belowground trait characterization might then help better understand the ecological mechanisms driving 

71 plant-plant interactions and agronomic performance in varietal mixtures.

72 In this study, we used a trait-based approach to determine which facets of intra-specific diversity drive 

73 agronomic performance in varietal mixtures of durum wheat, Triticum turgidum ssp. durum. Using a set of 179 highly 

74 genetically diverse inbred lines, we grew 179 single varieties and 197 two-way mixtures under field conditions. We 

75 assessed mixture performance relative to single varieties for two productivity variables, biomass yield and grain yield, 

76 and for one quality variable, grain protein content. We assessed the diversity-performance relationship by quantifying 

77 trait means and trait differences on 19 functional traits including 11 root traits. Then, we used a multivariate approach 

78 to understand the relationship between the different components of agronomic performance and mixture trait 

79 composition. Finally, we clustered genotypes into functional groups to identify assembly rules that allow maximizing 

80 mixing effects on several dimensions of agronomic performance. 

81 Material and Methods 

82 Experimental design

83 Our objective was to assess the quantitative effect of trait combinations on productivity and quality rather than 

84 qualitative effects such as the number of genotypes in the mixture or the genotypes’ identities. Therefore, we used 

85 two-component mixtures and we did not replicate single-variety and mixture plots to maximize the number of 

86 observed trait combinations. We set up a 400-plots experiment at Mauguio, France (INRAE – UE DIASCOPE - 

87 43°37’02’’N, 3°51’18’’E, 12 m above the sea level). We worked with 180 durum wheat inbred lines from an highly 

88 diversified evolutionary pre-breeding population developed at INRAE Montpellier, France (David et al., 2014, 

89 Appendix S1 in Supporting Information). We grew the 180 lines in single-variety plots and we randomly selected 220 

90 pairwise combinations for mixture plots. We excluded pairs having more than three weeks’ difference in heading date, 

91 assuming that larger time lag would not be acceptable in real cultivation conditions. Single-variety and mixture plots 

92 were randomly arranged in a grid of 11 x 41 plots (Figure 1). Each plot consisted of six 1.5 m long rows with 20 cm 

93 between rows and 2-3 cm between plants of the same row. 60 seeds were sown on each row, resulting in a planting 

94 density of 240 plants.m-2. The inter-plot distance was 30 cm in the horizontal direction and 2 m in the vertical 

95 direction. In mixtures, one genotype was grown on rows 1, 3 and 5, and the other on rows 2, 4, and 6 (Figure 1). Such 

96 spatial arrangement allowed us to individualize measurements for each mixture component. Biotic damages and 

97 resource limitations were prevented by applying pesticides and fertilizers. Detailed information on plant growth 

98 conditions can be found in Appendix S1. We discarded 24 plots with incomplete data due to sowing or sampling 

99 problems. We thus analysed data from 179 single-variety plots and 197 mixtures. A
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100 Plant trait and performance measurements

101 Detailed information on plant trait and performance measurements is provided in Appendix S1. We characterized the 

102 179 genotypes in single-variety plots. Except for phenological traits that we assessed at the plot level, all trait 

103 measurements described below were replicated within each plot and then averaged to obtain a single value per 

104 genotype and plot. At the end of the tillering stage, we collected two soil cores (10 cm diameter and 15 cm depth) per 

105 plot from which we separated above and belowground biomass. We then counted the number of plants in each sample 

106 and computed early biomass per capita (Ear. bio.) and tiller number per capita (Till. nb.). In addition, leaf nitrogen 

107 content (LNC) and specific leaf area (SLA) were measured by sampling one foliar disc of 6 mm diameter on four 

108 randomly selected leaves per sample. For each root sample, we separated the seminal and the adventitious root 

109 systems and we quantified morphological traits through image analysis (WinRHIZO pro Version 2009; Regent 

110 Instrument, Quebec, Canada). We computed mean root diameters (Diamsem and Diamadv), specific root length (SRLsem 

111 and SRLadv, root length / root dry mass), root tissue density (RTDsem and RTDadv, root dry mass / root volume), root 

112 length density (RLDsem and RLDadv, root length / soil volume), and root branching intensity (RBIsem and RBIadv, 
113 number of root tips / total root length). At heading, we measured the angle between the two most distant tillers 

114 (Angleaer) on two plants per plot. At maturity, we collected three plants per plot to measure the angle between their 

115 two most distant roots (Angleroot), and we measured plant height (Height) on three plants per plot. 

116 We characterized phenology by recording heading date (Heading) and maturity date (Maturity) at the plot 

117 level. For each genotype, heading date and maturity date were defined as the date at which spikes were visible for 

118 50% of the plants and the date at which 50% of the peduncles were ripe, respectively.

119 We measured agronomic performance in single-variety plots and in mixture plots. At maturity, we collected 

120 aboveground biomass on the four central rows of each plot on 70 cm length, leaving 40 cm on each side to avoid edge 

121 effects. For each single-variety plot, we collected two samples by pooling rows 2 and 3, and rows 4 and 5 (Figure 1). 

122 In mixtures, we collected two samples per genotype by separating rows 2 and 4 for the first component, and rows 3 

123 and 5 for the second component. We then quantified agronomic performance for each sample with three variables: 

124 vegetative biomass yield (BY, g.m-2), i.e. leaf and stem dry weight per unit area; grain yield (GY, g.m-2), i.e. grain dry 

125 weight per unit area; and grain protein content, i.e. mass fraction of protein in the grain (GPC, %). GPC was predicted 

126 using a spectroscopic method (see Appendix S1). GPC has an important contribution to the end-use quality of durum 

127 wheat. Indeed, most of the durum wheat production is used to make semolina and pasta, and GPC is one of the main 

128 variables determining the cooking quality of these food products (Troccoli, Borrelli, De Vita, Fares, & Di Fonzo, 

129 2000). 

130 Computation of trait indices

131 We characterized the functional composition of the mixtures with both trait means and trait differences between 

132 components. We quantified these two facets of functional diversity using the community-weighted mean (CWM) and 

133 the Rao quadratic diversity (D), respectively, two indices that are commonly used in functional ecology (Ricotta & 

134 Moretti, 2011). A
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135 Following Garnier et al. (2004), we computed CWMs by weighing the trait values of each component with their 

136 respective total biomass, including vegetative biomass (stems and leaves) and reproductive biomass (spikes):

137 [1] 𝐶𝑊𝑀𝑖𝑗 =
𝐵𝑖𝑥𝑖 + 𝐵𝑗𝑥𝑗

𝐵𝑖 +  𝐵𝑗

138 Where  is the community-weighted mean of the mixture containing genotypes i and j,  and  are the total 𝐶𝑊𝑀𝑖𝑗 𝐵𝑖 𝐵𝑗

139 biomass of genotypes i and j measured in mixture, and  and  are the trait values of genotypes i and j measured in 𝑥𝑖 𝑥𝑗

140 single-variety plots, respectively. 

141 For each trait, we also computed the Rao quadratic diversity index, which quantifies the expected difference between 

142 two genotypes sampled at random within the mixture (Rao, 1982): 

143 [2] 𝐷𝑖𝑗 =  𝑑𝑖𝑗 ×
𝐵𝑖

𝐵𝑖 + 𝐵𝑗 ×
𝐵𝑗

𝐵𝑖 + 𝐵𝑗  

144 Where  is the functional difference between genotypes i and j, and  is a measure of phenotypic dissimilarity 𝐷𝑖𝑗 𝑑𝑖𝑗

145 between genotypes i and j that we quantified with the Euclidian distance using trait values measured in single-variety 

146 plots..

147 Relative agronomic performance

148 We computed mixture relative performance using Relative Yield Total (RYT) indices (de Wit & van den Bergh, 

149 1965). RYTBY for biomass yield and RYTGY for grain yield were calculated as follows:

150 [3] 𝑅𝑌𝑇𝑖𝑗 =

𝑌𝑖𝑚𝑖𝑥𝑡
𝑌𝑖𝑚𝑜𝑛𝑜𝑐

+
𝑌𝑗𝑚𝑖𝑥𝑡

𝑌𝑗𝑚𝑜𝑛𝑜𝑐

2

151 Where  is the Relative Yield Total of the mixture containing genotypes i and j,  and  are the grain or 𝑅𝑌𝑇𝑖𝑗 𝑌𝑖𝑚𝑖𝑥𝑡 𝑌𝑗𝑚𝑖𝑥𝑡

152 biomass yield of genotypes i and j in mixture, and  and  are the grain or biomass yield of genotypes i and j 𝑌𝑖𝑚𝑜𝑛𝑜𝑐 𝑌𝑗𝑚𝑜𝑛𝑜𝑐

153 in pure stands. For GPC, we adapted this formula to account for the fact that mixture components do not produce the 

154 same quantity of grains, even when sown in equal proportions. We thus weighted the contribution of one component 

155 to the grain protein content of the mixture by its grain yield relative to the total grain yield of the mixture. RYTGPC 

156 was calculated as follows:

157 [4] 𝑅𝑌𝑇𝑖𝑗 =

𝐺𝑌𝑖𝑚𝑖𝑥𝑡
×  𝐺𝑃𝐶𝑖𝑚𝑖𝑥𝑡

+  𝐺𝑌𝑗𝑚𝑖𝑥𝑡
×  𝐺𝑃𝐶𝑗𝑚𝑖𝑥𝑡

𝐺𝑌𝑖𝑚𝑖𝑥𝑡
+ 𝐺𝑌𝑗𝑚𝑖𝑥𝑡

𝐺𝑌𝑖𝑚𝑜𝑛𝑜𝑐
×  𝐺𝑃𝐶𝑖𝑚𝑜𝑛𝑜𝑐

+  𝐺𝑌𝑗𝑚𝑜𝑛𝑜𝑐
×  𝐺𝑃𝐶𝑗𝑚𝑜𝑛𝑜𝑐

𝐺𝑌𝑖𝑚𝑜𝑛𝑜𝑐
+ 𝐺𝑌𝑗𝑚𝑜𝑛𝑜𝑐

158 Where  and  are the grain yield of genotypes i and j in mixture,  and  are the grain yield of 𝐺𝑌𝑖𝑚𝑖𝑥𝑡 𝐺𝑌𝑗𝑚𝑖𝑥𝑡 𝐺𝑌𝑖𝑚𝑜𝑛𝑜𝑐 𝐺𝑌𝑗𝑚𝑜𝑛𝑜𝑐

159 genotypes i and j in pure stands,  and  are the grain protein content of genotypes i and j in mixture, and 𝐺𝑃𝐶𝑖𝑚𝑖𝑥𝑡 𝐺𝑃𝐶𝑗𝑚𝑖𝑥𝑡

160  and  are the grain protein content of genotypes i and j in pure stands. 𝐺𝑃𝐶𝑖𝑚𝑜𝑛𝑜𝑐 𝐺𝑃𝐶𝑗𝑚𝑜𝑛𝑜𝑐

161 Under no mixing effects, RYT equals 1. RYT > 1 means that the mixture performed better than the average of the two 

162 monocultures (positive mixing effect), whereas RYT < 1 means that the mixture performed worse (negative mixing 

163 effect).A
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164 Statistical analysis

165 All statistical analysis were performed with R v. 3.5.3 (R Core Team, 2019). 

166 We first processed the data to obtain a single value of agronomic performance for each genotype in each plot.  To 

167 do so, we fitted a linear mixed model to account for both spatial autocorrelation and identity of genotype combination, 

168 with agronomic performance (BY, GY, and GPC) set as the response variable. To account for spatial autocorrelation, 

169 we used the P-splines method implemented in the SpATS package (Rodríguez-Álvarez et al., 2018). We included row 

170 identity and column identity as random effects, as well as a smooth bivariate surface function to model the deviation 

171 to the linear trends along rows and columns (Rodríguez-Álvarez et al., 2018, Figure S2). Row identity was defined as 

172 the coordinate of the plot along the smallest dimension of the grid and thus ranged from 1 to 11 (Figure 1 & Figure 

173 S2). As agronomic performance measurements were individualized for the four central rows of each plot, each of the 

174 41 columns of the grid was divided into four sub-columns. Column identity was defined as the sub-column where 

175 agronomic performance was measured, and ranged from 1 to 164 (4*41) (Figure 1 & Figure S2). In order to estimate 

176 the effect of each genotype on agronomic performance after accounting for spatial effects, we also included a dummy 

177 variable corresponding to the combination of the identity of the focal genotype, i.e. the one for which agronomic 

178 performance is measured, and the identity of the neighbour genotype, as a random effect. For each performance 

179 variable, we extracted the BLUPs (Best Linear Unbiased Predictions) corresponding to the genotypic effect and thus 

180 ended up with one value per genotype per plot that we used to compute RYTs.

181 To assess how functional traits affect mixing effects, we fitted a full linear model with all trait CWMs and all trait 

182 Ds as independent variables and RYT as the dependent variable (lm() function from the stats package). We 

183 standardized all dependent and independent variables ( , and we then ran a backward model selection 𝜇 = 0,  𝜎 = 1)

184 (glmulti() function from the glmulti package). We used the second-order Akaike Information Criterion (AICC, 

185 Sugiura, 1978) to rank the models and performed model-averaging inference based on the top-ten models using the 

186 coef() function from the glmulti package. We report parameter estimates and their 95% unconditional confidence 

187 interval computed as ±1.96 unconditional sampling standard deviation (Burnham & Anderson, 2002). We also report 

188 variable importance and adjusted R-squared averaged over the top-ten models (Tables S2, S3 and S4). 

189 Finally, we clustered the 179 genotypes into functional groups to test whether the structure of the phenotypic 

190 variability allowed creating beneficial trait associations for multiple components of agronomic performance. We used 

191 a standardized (  genotype-by-trait matrix to compute a pairwise Euclidian distance matrix. We then 𝜇 = 0,  𝜎 = 1)

192 performed Ascending Hierarchical Clustering (ACH) with the agnes() function from the cluster package using the 

193 pairwise Euclidian distance matrix and the Ward aggregation criterion (Ward, 1963). We chose the number of groups 

194 based on the height of the tree branches (Figure S3).

195 Results

196 Functional trait variability
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197 The 19 functional traits showed contrasted patterns of variability among genotypes (Table 1). Ear. bio. and Till. nb. 

198 were the most variable traits aboveground with respective CVs of 0.42 and 0.26, and mean values of 0.88 g.ind-1 and 

199 3.49 tillers.ind-1. Heading and Maturity were the least variable traits, the difference between the earliest and the latest 

200 genotype being 250 GDD for both traits, which showed CVs of 0.03 and 0.02, respectively. Angleaer, SLA, LNC, and 

201 Height displayed intermediate levels of variability. Of belowground traits, RLD was the most variable trait, with a CV 

202 of 0.48 for seminal roots and 0.46 for adventitious roots, and about a ten-fold difference between minimum and 

203 maximum values: 0.07 to 0.65 cm.cm-3 and 0.04 to 0.47 cm.cm-3 for seminal and adventitious roots, respectively. 

204 Diam, RTD, and RBI were the least variable traits with CVs around 0.10 for both root types. Angleroot and SRL had 

205 intermediate levels of variability (Table 1).

206 Relative agronomic performance of mixtures

207 The mean RYTs for biomass yield and grain yield both equaled 1.04 and were significantly larger than 1 (Fig. 2 a and 

208 b), meaning that mixtures produced on average 4% more biomass and grains than expected from single varieties. RYT 

209 variation was high for both variables (sd  ≥ 0.14), with values ranging from 0.61 to 1.53 for RYTBY and from 0.56 to 

210 1.56 for RYTGY. Mixing effects were non-significant for grain protein content (mean RYTGPC = 1.00) (Fig. 2 c). RYT 

211 variation was lower for grain protein content (sd = 0.04), RYTGPC values ranging from 0.90 to 1.13.

212 Relationship between functional trait composition and relative agronomic performance of 

213 mixtures

214 Functional trait composition explained 17%, 12%, and 22% of the variability observed on RYTBY, RYTGY, and 

215 RYTGPC, respectively (Fig. 3). Depending on the performance component, four (RYTBY, RYTGY) to five (RYTGPC) 

216 variables were important to explain mixture performance. A mix of aboveground, belowground, and phenological 

217 traits significantly affected RYTBY and RYTGPC (Fig. 3 a and c), whereas phenological traits had a limited effect on 

218 RYTGY (Fig. 3 b). Both CWMs and Ds contributed to explain the observed variability in relative mixture performance 

219 for all three components. Yet, CWMs were overrepresented in the set of important variables for RYTGPC (Fig. 3 c). 

220 Two variables involving root traits had a large positive effect on RYTBY and RYTGY: RBIsem D and RTDadv CWM 

221 (Fig. 3 a and b). Till. nb. D had a negative effect on both variables. RYTBY increased with increasing Heading CWM, 

222 whereas it decreased with increasing LNC CWM (Fig. 3 a). RYTGY decreased with increasing Ear. bio. CWM, and, to 

223 a lesser extent, increased with increasing Till. nb. CWM (Fig. 3 b). Till. nb. CWM also had a positive effect on 

224 RYTGPC (Fig. 3 c). Maturity CWM, Angleaer CWM, and Angleroot CWM affected positively RYTGPC, but had no effect 

225 on RYTBY and RYTGY. Diamsem D had a negative effect on RYTGPC.

226 Functional clustering and identification of the most favourable functional associations

227 We identified three functional groups that differed on several functional traits (Figure 4 & Table S5). Aboveground, 

228 genotypes from group 1 had few tillers, high SLA and LNC, and produced low biomass compared to groups 2 and 3. 

229 They were early for heading and maturity. Belowground, they had an intermediate root angle, produced low root 

230 length per unit soil volume, and their roots had low-density tissues. Genotypes from group 2 were tall, produced 

231 numerous tillers and high biomass. They had low SLA and low leaf nitrogen content, and were early at heading but A
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232 late at maturity. They had a narrow root angle, but produced more root length per unit soil volume. Their roots were 

233 thin and had a low branching intensity. Finally, genotypes from group 3 were short, had a wide aerial angle, and 

234 produced intermediate amounts of tillers and biomass. They had low SLA and low LNC. They were late for heading 

235 and maturity. Unlike group 2, they had a wide root angle, their roots were thick and dense, and they had high 

236 branching intensity. 

237 Mixtures associating genotypes from groups 2 and 3 had the highest RYTBY and RYTGY, and showed a 

238 significant positive mixing effect on both components (Fig. 5 a and b). Mixtures associating genotypes from group 2 

239 had a significant positive mixing effect on biomass yield. Mixtures associating genotypes from group 1 had a 

240 significant positive mixing effect on grain yield but a significant negative mixing effect on grain protein content (Fig. 

241 5 b and c). Other functional associations did not show significant mixing effects for any of the three components of 

242 agronomic performance 

243 Discussion
244 Mixing effects detected on grain yield and biomass yield are consistent with values previously reported in the 

245 literature (Kiær et al., 2009; Reiss & Drinkwater, 2018; Smithson & Lenné, 1996). The average and the variability of 

246 the mixing effects detected on grain protein content were weak, strengthening sparse data observed on such 

247 components (Gallandt, Dofing, Reisenauer, & Donaldson, 2001; Sammons & Baenziger, 1985). However, most of 

248 these experiments did not explain mixing effect variability. Here, multivariate combinations of trait means and trait 

249 differences explain from 12% to 22% of the variation in mixing effects, this proportion being larger for quality-related 

250 mixing effects than for quantity-related mixing effects. However, in this study, the distance between plants was much 

251 smaller on the row than between rows, leading to stronger intra-genotypic interactions than inter-genotypic 

252 interactions in mixture plots. Diversity effects might thus have been stronger with reduced spacing between rows.

253 Root traits had a strong effect on relative agronomic performance measured on productivity variables: 

254 relative biomass and grain yields were both affected by a joint positive effect of trait difference on seminal root 

255 branching intensity and community-weighted mean on adventitious root tissue density. High root branching intensity 

256 is expected to provide intense soil exploration around the principal roots, while low branching intensity is expected to 

257 lead to more extensive soil foraging (Richardson et al., 2011). Mixing both foraging strategies could result in 

258 belowground spatial complementarity, as observed in the historic “three sisters” (maize/bean/squash) polyculture 

259 (Zhang et al., 2014). The positive effect of community-weighted mean of adventitious root tissue density on biomass 

260 and grain yield RYTs might result from improved soil anchoring at a stage where plants are sensitive to lodging. Root 

261 morphological traits, including root tissue density, determine the biomechanical properties of the roots, which are 

262 known to be involved in sensitivity to lodging (Ennos & Fitter, 1992; Liu, Li, Zhu, & Song, 2018). This interpretation 

263 was partly supported by single-variety data, where we detected a marginal negative correlation between adventitious 

264 root tissue density and lodging score (P = 0.06, Figure S5). The joint effect of these two variables on both biomass 

265 and grain yield RYT suggests that the effect on grain yield arose primarily from an increase in spike density. This was 

266 supported by further analyses showing that these two variables had a positive effect on RYT measured on the number 

267 of spikes per square meter (Figure S6 a), but no effect on RYT measured on thousand kernel weight (Figure S6 b). A
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268 Biomass yield RYT and grain yield RYT were also both negatively affected by differences in tiller number between 

269 genotypes. Tillering is classically associated with competitive ability in cereals (Jennings & Aquino, 1968). Tillering 

270 differences between components of the mixture could thus have resulted in a yield loss for the weaker competitor, 

271 possibly reducing the overall mixture yield. 

272 Quality-related mixing effects were mainly explained by the average properties of the mixtures: RYT on 

273 grain protein content was positively affected by aerial angle, root angle, and tiller number CWMs. Such a positive 

274 effect on grain protein content could have resulted from a negative effect on grain mass, as expected from the classical 

275 trade-off between grain mass and grain protein content in cereals (Simmonds, 1995). Indeed, combining genotypes 

276 with wide aerial and belowground statures could have resulted in strong competitive interactions during grain filling, 

277 thus reducing grain mass. RYT on thousand kernel weight was negatively affected by both aerial and root angle 

278 CWMs (Figure S6 b), giving some support to this hypothesis. Yet, such reduction in grain mass did not alter grain 

279 yield, suggesting that mixture grain mass can be optimized independently from mixture productivity, and vice versa. 

280 In our study, some relationships between trait composition and relative performance of mixtures were 

281 puzzling. For example, early biomass CWM and tiller number CWM show opposite effects on grain yield RYT. Early 

282 biomass and tiller number are strongly positively correlated (Figure S4) and both of them are related to early vigour 

283 and competitiveness. Hence, we might expect similar effects of these two traits on mixture productivity. Such 

284 inconsistency suggests that other factors such as phenotypic plasticity could have affected mixture performance. 

285 Indeed, since we measured traits in single-variety plots, we might expect different trait values and potentially different 

286 trait-performance relationships in mixtures. In cereals, many traits such as tiller number or plant height are known to 

287 show plastic response following changes in the biotic or abiotic environment (Dornbusch et al., 2010; Evers, Vos, 

288 Andrieu, & Struik, 2006). In herbaceous communities, several results suggest that trait plasticity can increase trait 

289 divergence and thus complementarity effect between species (e.g. Meilhac, Deschamps, Maire, Flajoulot, & Litrico, 

290 2020; Niklaus, Baruffol, He, Ma, & Schmid, 2017). In crops, studies at the interspecific level also suggest that plastic 

291 changes in architectural traits can lead to increased light capture and productivity in intercropping systems (Zhu, 

292 Werf, Anten, Vos, & Evers, 2015). At the intra-specific level, plasticity has been shown to have both positive and 

293 negative effects on mixture performance (Dahlin, Kiær, Bergkvist, Weih, & Ninkovic, 2020).

294 Implications for the selection and assembly of varietal mixtures

295 Combining favourable trait values in varietal mixtures represents a major challenge for plant breeding. 

296 Indeed, our results suggest that diversity can have both positive and negative effects depending on the trait, and that 

297 average trait values can be as important as trait differences to determine mixture performance. This raises the question 

298 as to how to select mixtures of genotypes that differ on some traits but remain uniform for others (Litrico & Violle, 

299 2015). Functional clustering could be used as a first step to structure the phenotypic variability present in the founding 

300 population, and to identify the most beneficial associations. Clustering species into functional groups is a common 

301 approach in ecology (e.g. Hooper & Dukes, 2004) and our study shows that this approach is also relevant at the 

302 intraspecific level. Then, selection practices could draw on breeding methods used in hybrid crops, where selection 

303 first takes place in separate groups, i.e. heterotic groups, and aims at selecting genes not only for their own value but 

304 also for their expected value in combination with genes from other groups (Reif, Hallauer, & Melchinger, 2005). A
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305 Similarly, selection for high performant mixtures could first take place within each functional group, by promoting 

306 trait convergence between groups for some traits and divergent selection for others. Further insights on the 

307 contribution of phenotypic plasticity would help to have a better mechanistic understanding and a stronger predictive 

308 ability of mixing effects. 

309 In this context, agronomic performance could be assessed through multiple facets. Varietal mixtures are often 

310 evaluated on their productivity relative to monocultures (Kiær et al., 2009; Reiss & Drinkwater, 2018; Smithson & 

311 Lenné, 1996). Depending on the species and on the valued part of the plant, either grain or vegetative biomass yield 

312 can be targeted. In cereals such as durum wheat, quality can be as important as productivity to determine the final 

313 value of the product (Troccoli et al., 2000). Still, the benefit of mixing varieties on quality is poorly documented (Borg 

314 et al., 2018). Moreover, increasing both quantity and quality can be challenging because some quantity and quality 

315 indicators can be negatively correlated, as in the case of grain yield and grain protein content (Simmonds, 1995). In 

316 line with theoretical expectations (Litrico & Violle, 2015), our results suggest that varietal mixtures could allow 

317 escaping such trade-offs. Significant positive mixing effects might be achieved on grain yield, notably through 

318 increased spike number per square meter, while slight gains might be achieved on grain protein content, mainly 

319 through decreased grain mass. Altogether, our approach confirms the need to extend the dialogue between ecology 

320 and agronomy to develop more sustainable agriculture by designing varietal mixtures optimized for multifaceted 

321 agronomic performance.
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trait unit min max mean (sd) CV

Aboveground Ear. bio. g.ind-1 0.28 2.23 0.88 (0.37) 0.42

Till. nb. nb till.ind-1 1.67 7.50 3.49 (0.90) 0.26

Angleaer ° 11.50 28.50 16.56 (2.83) 0.17

SLA m².kg-1 14.88 36.37 20.56 (3.21) 0.16

LNC % 2.85 4.78 3.76 (0.39) 0.10

Height cm 75.70 129.50 97.94 (9.13) 0.09

Belowground RLDsem cm.cm-3 0.07 0.65 0.22 (0.11) 0.48

RLDadv cm.cm-3 0.04 0.47 0.17 (0.08) 0.46

SRLsem m.g-1 48.50 188.75 103.48 (24.30) 0.23

SRLadv m.g-1 24.02 65.50 43.74 (8.28) 0.19

Angleroot ° 66.33 158.33 112.42 (18.59) 0.17

RTDsem g.cm-3 0.11 0.20 0.15 (0.02) 0.12

RTDadv g.cm-3 0.05 0.09 0.07 (0.01) 0.12

RBIsem tips.cm-1 0.94 1.67 1.27 (0.14) 0.11

Diamadv mm 0.40 0.74 0.52 (0.06) 0.11

RBIadv tips.cm-1 1.00 1.61 1.27 (0.13) 0.10

 Diamsem mm 0.21 0.36 0.27 (0.02) 0.09

Table 1: Phenotypic diversity characterized for 19 functional traits across 179 durum wheat genotypes grown in single-variety plots. Minimum, maximum, mean (standard 

deviation), and coefficient of variation are reported for each trait. Traits are ranked according to decreasing CV values.
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Phenology Heading GDD 1424.00 1696.30 1549.45 (47.10) 0.03

 Maturity GDD 2219.80 2458.00 2281.75 (43.27) 0.02
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Figure 1: Overview of the experimental design containing 400 plots (180 single-varieties & 220 mixtures). The whole design is represented 
on the left, with single-variety plots in black, and mixture plots in grey. As shown in the figure, the design had to be splitted in two parts 
separated by around 10 meters to allow the irrigation system wheel to pass through. Only 376 plots (179 single-varieties & 197 mixtures) 
were used after data cleaning (see Figure S2). Single-variety and mixture plots were arranged randomly in the field. As depicted on the 
right, the inter-plot distance was 2 m in the vertical direction and 30 cm in the horizontal direction. Plots were composed of 6 rows of 1.5 m 
long and distant from 20 cm. In single-variety plots, the same genotype was sown on all 6 rows, whereas two genotypes were sown in 
alternate rows in mixture plots. 
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Figure 2: Mixing effect distributions on biomass yield (a), grain yield (b), and grain protein 
content (c). Mixing effects were quantified with RYT (cf Material and Methods). Means (µ) and 
standard deviations (σ) are reported. A star symbol indicates a mean RYT significantly different 
from 1 at P < 0.05 (t.test).
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Figure 3: Standardized effects of traits on mixture RYTs measured on biomass yield (a), grain yield (b), and grain protein content (c). Backward model selection 
was performed on a full model with RYT as the response variable and all trait CWMs and Ds as explanatory variables. Based on AICC, the top-ten models were 
retained to compute model-averaged estimates reported on the left side of the three panels with their 95% unconditional confidence intervals. Empty symbols 
represent Ds and filled symbols represent CWMs.  The relative importance of the variables are reported on the right side of the three panels and can be interpreted 
as the probability that the variable appears in the best model. Hatched bars represent Ds and filled bars represent CWMs. Colours refer to the type of traits, with 
aboveground traits, belowground traits, and phenological traits represented in green, brown, and blue, respectively. Adjusted R-squared averaged across the top-
ten models ( ) are also reported for the three models.𝑅²
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Figure 4: Characterization of the three functional groups based on their trait means measured in 
single-variety plots. Variables were standardized and clustered so that traits with similar variation on 
their means over the three groups are clustered together. Values increase from green (lower values) 
to black (higher values).
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