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In the present paper, we propose a strategy to control the crop-production of a network of agricultural plots. The network is composed of rangeland and cropland subsystems that are connected to each other through the livestock that is a vector of nutrient from rangeland to cropland. The objective is to reach a given crop production (at the scale of the whole network) while ensuring a minimal production in each of the cropland plot. To take into account the saturation constraints on the control inputs (that are the rangeland removal rates and the manure distribution coefficients), we use a method based on a time-scale transformation. After designing the control law, we apply it on a simple numerical example to highlight the results.

I. INTRODUCTION

In traditional mixed crop-livestock farming systems, that are still present in some parts of the world such as in West-Africa, it is well-known that livestock plays a key role [START_REF] Powell | Nitrogen and phosphorus transfers in a crop-livestock system in West Africa[END_REF]; it is a vector of nutrient from rangeland to cropland that benefits to the production of the whole agro-ecosystem [START_REF] Bisson | West African mixed farming systems as meta-ecosystems: A source-sink modelling approach[END_REF]. In occidental countries, the livestock farms are often separated from the crop fields and the livestock has thus lost its role as nutrient carrier. At the same time, the management of livestock dejections that contributes to the pollution of water bodies and soils is a serious ecological issue [START_REF] Infascelli | The environmental impact of buffalo manure in areas specialized in mozzarella production, southern Italy[END_REF]. Yet, livestock dejections are good fertilizers for the crops. It is therefore important to reconnect the livestock farms to the crop fields by using the manure produced by the livestock as fertilizer for the crop. It necessitates the implementation of a smart management at the scale of the whole network of agricultural plots, which is the objective of the present paper.

In [START_REF] Bisson | Maximization of fertility transfers from rangeland to cropland: the contribution of control theory[END_REF], we studied a mixed farming system that we represented as a meta-ecosystem composed of a cropland subsystem connected to a rangeland subsystem through the livestockmediated nutrient transfer T . In this farming system, the livestock grazes on the rangeland during the day and is parked on the cropland during the night (night coralling): it is a vector of nutrient from rangeland to cropland through the feces and urine. The model introduced in [START_REF] Bisson | Maximization of fertility transfers from rangeland to cropland: the contribution of control theory[END_REF] can also represent a farming This research was supported by Agropolis Fondation under the reference ID 1605-039 (project ECOW) through the "Investissements d'avenir" program (Labex Agro:ANR-10-LABX-0 0 01-01), under the frame of I-SITE MUSE (ANR-16-IDEX-0 0 06). system where the livestock farm is separated from the fields. In that case, one part of the rangeland biomass is used to feed the livestock. And the manure produced by the livestock is then reused as fertilizer and spread on both the rangeland and crop fields.

In the present paper, on the basis of the meta-ecosystem structure and equations introduced in [START_REF] Bisson | Maximization of fertility transfers from rangeland to cropland: the contribution of control theory[END_REF], we consider a meta-ecosystem composed of M r rangeland subsystems and M c cropland subsystems that are connected to each other through a livestock mediated nutrient transfer as in [START_REF] Bisson | Maximization of fertility transfers from rangeland to cropland: the contribution of control theory[END_REF] (see figure 1). Here again, one part of the plant biomass of the rangeland subystems is used to feed the livestock, and the manure produced by the livestock is spread on the cropland subsystems. We thus consider here a network of interconnected rangeland and cropland subsystems and the livestock farms are assumed to be separated from the fields as it is the case in occidental countries. The objective of the control problem considered in this paper is to reach a given crop production (at the scale of the network of agricultural plots) while ensuring a minimal production in each of the cropland subsystems. The control inputs we consider are the rangeland removal rates (to feed the livestock), and the coefficients of manure distribution between the different cropland subsystems. These control inputs are subject to saturation constraints. To take into account these constraints, we propose to use the method presented in [START_REF] Casenave | Simplification of dynamic problems by time-scale transformation: application to the nonlinear control with input positive constraints[END_REF] that is based on a time-scale transformation, that is on a nonlocal change of time-variable. This method enables to transform a constraint control problem into and unconstrained problem that can be solved by classical control methods.

The paper is organized as follows. In section II, we introduce the model of the agricultural plots network and then the associated control problem. In section III, we give the main result of the method proposed in [START_REF] Casenave | Simplification of dynamic problems by time-scale transformation: application to the nonlinear control with input positive constraints[END_REF] for the control of nonlinear systems with input positive constraints. Then, the design of the control law is presented in section IV. Finally, a numerical example is presented in section V.

II. PROBLEM UNDER CONSIDERATION

A. Model of the agricultural plots network

As explained previously, we consider here a network of cropland and rangeland subsystem that are connected to each other through livestock-mediated nutrient transfer (see figure 1). For each subsystem (rangeland or cropland), the plant and the nutrient compartments are represented in the model by the variables P i z and N i z (in kgN.ha -1 ) with z = c for the cropland, and z = r for the rangeland, i being the subsystem number. The plants P i z grow on the nutrient at a rate denoted G i z (P i z , N i z ) and have a mortality rate m i z : the dead plants are then recycled in the nutrient compartment. Nutrient enters the subsystems through dry depositions (flux e i z ). Losses of nutrient are mainly due to erosion, leaching, volatilization and denitrification (loss rate o i z ). In the j th rangeland subsystem, one part of the plant compartment is taken at a rate d j r to feed the livestock. The flux of nutrient that is taken is divided into two parts. One part (percentage α j ∈ [0, 1]) is directly recycled on the rangeland subsystem on which it has been taken. The other part (percentage 1α j ∈ [0, 1]) is ingested by the livestock and then recovered as manure to be spread as fertilizer on the cropland subsystems.

The equations of the rangeland subsystems are therefore given by: ∀j = 1 : M r ,

(R j )      dP j r dt = G j r (P j r , N j r ) -m j r P j r -d j r P j r dN j r dt = -G j r (P j r , N j r ) + m j r P j r -o j r N j r +e j r + α j d j r P j r (1) 
where G j r (P, N ) = u j r P N (1

-P K j r
) is the growth rate of the plants cultivated in the j th rangeland subsystem. The flux of nutrients that is transferred from the rangeland subsystems to the cropland subsystems through the livestock is given by:

T = Mr j=1 (1 -α j )s j r d j r P j r (2) 
where s j r is the surface of the j th rangeland subsystem. The nutrient flux T is divided into M c parts to be spread on the M c cropland subsystems. By denoting β k ∈ [0, 1] the fraction of T that is spread on the k th cropland subsystem, we get the following system of equations for the cropland subsystems:

∀k = 1 : M c , (C k )        dP k c dt = G k c (P k c , N k c ) -m k c P k c dN k c dt = -G k c (P k c , N k c ) -o k c N k c + m k c P k c +e k c + β k T s k c (3) 
where

G k c (P, N ) = u k c P N (1 -P K k c
) is the growth rate of the plants cultivated in the k th cropland subsystem and s k c is the surface of the k th cropland subsystem. Note that we necessary have:

Mc k=1 β k = 1. (4) 

B. Control problem under consideration

Let denote by C the crop production at the scale of the agricultural plots network which is given by:

C = Mc k=1 s k c h k c P k c ( 5 
)
where h k c is the percentage of plants that are harvested in the k th cropland subsystem at harvest time t h . The objective is to make the crop production C reach a given value C * at the harvest time t h . We consider as control inputs the rangeland removal rates d j r , j = 1 : M r and the manure distribution coefficients

β k ∈ [0, 1], k = 1 : M c .
According to the analysis presented in [START_REF] Bisson | Maximization of fertility transfers from rangeland to cropland: the contribution of control theory[END_REF], d j r (that is necessarily positive) has to be smaller than

u j r e j r o j r
m j r in order to maintain a plant biomass in the rangeland subsystem; we thus have the following input constraint:

∀t > 0, d j min := 0 d j r (t) u j r e j r o j r -m j r =: d j max (6) 
We also want to garantuee a minimal production C k min for each cropland subsystem (C k ), which can be expressed as follows:

∀k = 1 : M c , C k min s k c h k c P k c (t h ). (7) 

III. PRELIMINARY RESULT

In the control problem considered in this paper, we have to take into account some contraints on the control input values (condition ( 6)). The control strategy we have chosen to apply relies on a method that is presented in [START_REF] Casenave | Simplification of dynamic problems by time-scale transformation: application to the nonlinear control with input positive constraints[END_REF] and that is dedicated to control problem with input positive constraints. The main result (proposition 8 in [START_REF] Casenave | Simplification of dynamic problems by time-scale transformation: application to the nonlinear control with input positive constraints[END_REF]) is given here after.

Proposition 3.1: Consider the system:

dx dt = f (x, u) y = h(x) (8) 
where ∀t 0,

x(t) ∈ R n , u(t) ∈ R m , y(t) ∈ R p , with n, m, p ∈ N and f : R n × R m → R n and h : R n → R p are two continuously differentiable functions.
Assume that the control input u is subject to L input positive constraints:

k l (u(t)) 0, l = 1 : L, ∀t > 0, (9) 
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where k l : R m → R, l = 1 : L are continuously differentiable functions, and denote Ω c the subspace of R m defined by:

Ω c := {u ∈ R m , such that k l (u) 0, ∀l = 1 : L} . (10)
Consider y * ∈ R p and assume there exists a unique x * ∈ R n such that h(x * ) = y * . Given L positive functions K l : Ω c → R + , l = 1 : L such that, ∀l, k l (u) = 0 ⇔ K l (u) = 0, let's denote τ the time variable defined by:

∂ t τ = L l=1 K l (u) and ∂ τ t = 1 L l=1 K l (u) . ( 11 
)
For any variable z, z represents the same variable but expressed in the time τ ; we thus have z(τ ) = z(t(τ )).

Suppose that there exists a dynamic control law ũ = (ũ 1 , . . . ũm ) defined by:

dũ i dτ = γ i (x, ũ), i = 1 : m, (12) 
with

γ i : (x, ũ) ∈ R n × Ω c → γ i (x, ũ), i = 1 : m some bounded functions, such that: (i)
x * is a globally asymptotically stable equilibrium point of:

dx dτ = f (x, ũ) L l=1 K l (ũ) =: f (x, ũ) (13) 
with x(0) = x 0 ∈ R n , (ii) the trajectories (x, ũ) solution of system (13,12) are bounded. Then the control law defined by:

du i dt = L l=1 K l (u) γ i (x, u), i = 1 : m, (14) 
stabilizes the system (8) at x * , while ensuring that the constraints (9) are fulfilled for all t > 0 (provided that u(0) fulfills the constraints (9)).

IV. CONTROL STRATEGY To solve the considered problem, we will use a two-loops control strategy: (i) one loop that will control the cropproduction C with livestock-mediated nutrient transfer T and the manure distribution coefficients β k , k = 1 : M c , (ii) and a second loop that will control T with the rangeland removal rates d j r , j = 1 : M r . For both control loops, we will apply the result of proposition 3.1. But first we will see how to handle the constraint (7).

A. Constraint on the minimal production

For each cropland subsystem (C k ), consider a value P k * that is not necessarily constant over time. P k * is the setpoint value for the variable P k c . We want the value of P k * to fulfill the constraint (7) for all time t 0, that is:

C k min s k c h k c P k * (t). (15) 
To garantee that, we will look at a dynamic equation for P k * of the form:

dP k * dt = H k (P k * )η k (P k c , N k c , P k * ) (16) 
with:

H k (P ) = P - C k min s k c h k c ( 17 
)
Provided that H k (P k * (t = 0)) > 0, this equation will ensure that, for all t > 0,

H k (P k * (t)) > 0 ⇔ C k min s k c h k c P k * (t)
. The function η k (P 1 * , . . . , P Mc * ) will be chosen to ensure the convergence of P k c towards P k * . Let's denote τ k the time variable defined by:

∂ t τ k = H k (P k * ) and ∂ τ k t = 1 H k (P k * ) . ( 18 
)
In the new time τ k , the equation ( 16) rewrites as follows:

d P k * dτ k = η k ( P k c , Ñ k c , P k * ). (19) 
After simple computations, we can show that with:

η k ( P k c , Ñ k c , P k * ) = ϕ k ( P k c , Ñ k c ) H k ( P k * ) -k k P k * -P k c ( 20 
)
where ϕ k (P, N ) := G k c (P, N )m k c P and k k > 0, the closed loop dynamic of P k c (in time τ k ) is a first order one:

d P k c -P k * dτ k = k k P k * -P k c , (21) 
that will ensure the convergence of P k c towards P k * .

B. Control of C with β k and T

A direct consequence of ( 21) is that the crop production C (defined by (5)) will converge towards To be physically acceptable, note that each control input T k has to remain positive and below a maximum value T max k that depends on the production capacity of the rangeland subsystems:

∀t > 0, T min k := 0 T k (t) T max k . (22) 
In order to guarantee that the condition (22) will be fulfilled, we will look at a dynamic control law of the form:

dT k dt = K k (T k )γ k (P k c , N k c , T k , P k * ) (23) 
with:

K k (T k ) = T k -T min k K m,k + T k -T min k × T max k -T k K M,k + T max k -T k . (24) 
The function γ k will be chosen to ensure the convergence of then:

d dt Mc k=1 s k c h k c P k * = b C * - Mc k=1 s k c h k c P k * . ( 26 
)
The objective is now to find a function γ k that will make the variable N k c follow the time-varying setpoint N k * . Let's denote σ k the time variable defined by:

∂ t σ k = K k (T k ) and ∂ σ k t = 1 K k (T k ) . ( 27 
)
The system composed of equations (3,23) can be rewritten in the new time σ k as follows:

         d P k c dσ k = ϕ k ( P k c , Ñ k c ) K k ( Tk ) d Ñ k c dσ k = ρ k ( P k c , Ñ k c ) K k ( Tk ) + Tk K k ( Tk )s k c d Tk dσ k = γ k ( P k c , Ñ k c , Tk , P k * ) (28) 
with ϕ k (P, N ) := G k c (P, N )m k c P , and ρ k (P,

N ) := -G k c (P, N ) -o k c N + m k c P + e k c .
After simple computation, we can then show that, if 1 :

d Tk dσ k = γ k ( P k c , Ñ k c , Tk , P k * ) (29) with γ k ( P k c , Ñ k c , Tk , P k * ) = 1 K k s k c -K k ρ k + Tk s k c -K 2 k B k × K 2 k A k + 2ξ k ω k d Ñ k * dσ k - d Ñ k c dσ k + ω 2 k Ñ k * -Ñ k c -ϕ k ∂ P ρ k -ρ k + Tk s k c ∂ N ρ k ( 30 
)
where A k and B k are defined as the quantities such that:

d 2 N k * dσ 2 k = A k + γ k B k (31)
then, the dynamic of Ñ k c will be a second-order dynamic (in time σ k ), that is:

d 2 Ñ k * -Ñ k c dσ 2 k +2ξ k ω k d Ñ k * -Ñ k c dσ k +ω 2 k Ñ k * -Ñ k c = 0.
(32) From proposition 3.1, we can then conclude that the control law (23) with γ k defined by (30) will ensure the convergence of N k c -N k * towards 0 in time t and the fulfillment of constraint (22).

From the values of T k computed from (23), we can easily deduce the values of β k and the one of the setpoint value T * of T as follows:

T * = Mc k=1 T k and β k = T k T * , ( 33 
)
1 For simplicity, the variables of the functions are not written in the formula.

We will for example denote ϕ k instead of

ϕ k P k c , Ñ k c .
since we have

Mc k=1 β k = 1. β k can be applied directly. The second loop of the control strategy will be used to make the variable T follow the timevarying setpoint T * defined above.

C. Control of T with d j r

The objective of the second loop of the control strategy is to control the variable T with the control inputs d j r , j = 1 : M r . As already said in section II-B, the control inputs d j r are subject to the saturation contraints [START_REF] Antonelli | Continuous stirred tank reactors: easy to stabilise?[END_REF]. We will therefore again use the result of proposition 3.1 to design the control law.

In order to guarantee that the condition (6) will be fulfilled, we will look at a dynamic control law of the form:

dd j r dt = J(d 1 r , . . . , d Mr r )δ j (P j r , N j r , T, T * ) ( 34 
)
where

J(d 1 r , . . . , d Mr r ) := Mr l=1 d l r -d l min D m,l + d l r -d l min × d l max -d l r D M,l + d l max -d l r . ( 35 
)
Let's denote ξ the time variable defined by:

∂ t ξ = J(d 1 r , . . . , d Mr r ) and ∂ ξ t = 1 J(d 1 r , . . . , d Mr r )
.

In the new time ξ, the equation (34) rewrites as follows:

d dj r dξ = δ j ( P j r , Ñ j r , T , T * ). (37) 
After simple computations, we can show that with: 

d( T -T * ) dξ = a( T * -T ). (39) 
From proposition 3.1, we then conclude that the control law (34) with δ j defined by (38) will ensure the convergence of T -T * towards 0 in time t and the fulfillment of constraint [START_REF] Antonelli | Continuous stirred tank reactors: easy to stabilise?[END_REF].

D. Summary of the control strategy

Finally, the control law can be written as follows. For the cropland subsystems, the manure distribution coefficients are given by: ∀k = 1 : M c ,

β k = T k Mc l=1 T l (40) 
with:

dP k * dt = H k (P k * )η k (P k c , N k c , P k * ) (41) 
dT k dt = K k (T k )γ k (P k c , N k c , T k , P k * ) (42) 
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dd j r dt = J(d 1 r , . . . , d Mr r )δ j (P j r , N j r , T, T * ) (43) 
where

T * := Mc l=1
T l , with J and δ j respectively given by ( 35) and (38).

For the numerical implementation of the control law, note that the modification used in [START_REF] Antonelli | Continuous stirred tank reactors: easy to stabilise?[END_REF] has been applied, which consists in applying the following practical control law:

dT k dt =    max(0, K k γ k ) if T k ∈ [T min k , T min k + ε T [ K k γ k if T k ∈ [T min k + ε T , T max k -ε T ] min(0, K k γ k ) if T k ∈]T max k -ε T , T max k ]
(44) with ε T > 0 instead of (42). The same modification (with ε d > 0) has been applied to equation (43).

V. NUMERICAL EXAMPLE

In this section we consider a meta-ecosystem composed of M c = 2 cropland subsystems and M r = 3 rangeland subsytems. The parameters of each cropland and rangeland subsystem are given in table I. We applied the control law described in section IV on this meta-ecosystem, with the following parameter values (where P k min :=

C k min s k c h k c
):

P 1 min = 7, P 2 min = 2, k 1 = k 2 = 0.04, T min 1 = T min 2 = 0, T max 1 = 16, T max 2 = 25, K m,1 = K M,1 = K m,2 = K M,2 = 0.01, b = 0.04, ξ 1 = ξ 2 = 0.9, ω 1 = ω 2 = 0.6, ε T = 0.5, d 1 min = d 2 min = d 3 min = 0, d 1 max = 0.035, d 2 max = 0.04, d 3 max = 0.03, ε d = 0.001, D m,1 = D M,1 = D m,2 = D M,2 = D m,3 = D M,3 = 0.002, θ 1 = θ 2 = θ 3 = 1/M r = 1/3, a = M r 2 2Mr = 192.
Note that the maximal value d k max considered here is not equal to In figure 2 (top), the evolution of the crop production at the scale of the whole agricultural plots network (variable C) and the one of that we have chosen. For each cropland subsystem, the quantity of manure β k T that is spread on the subsystem as fertilizer is plotted: it well follows the setpoint T k while never exceeding the value T max k = 30 (third subfigure in 2). Finally, the value of the manure distribution coefficients β k are shown on figure 2 (bottom). We see that the distribution between the two cropland subsystems varies with time. At the beginning of the year, most of the manure is spread on one of the cropland subsystem whereas it is more balanced at the end of the year.

In figure 3 (top), the flux of nutrients removed from the rangeland subsystems to feed the livestock (variable T ) is shown with its setpoint value T * . In figure 3 (bottom), the rangeland removal rates that are applied are shown. We see that the removal has to be greater at the beginning of the year, when the plants in cropland subsystems are still small. Note here again that saturation constraints on the control inputs d k r are respected. The difference between the control input values d k r and the upper bounds d k max at the beginning of the year are due to the introduction of parameter ε d in the control law.

VI. CONCLUSION

In this paper, we propose a strategy to control the cropproduction in a network of agricultural plots. This network is composed of two types of subsystems: some rangeland subsystems, and some cropland subsystems. The rangeland subsystems are used to feed the livestock which is parked separately from the rangeland and cropland fields. The manure produced by the livestock is then used as fertilizer on the cropland subsystems. The objective was to reach a given crop production (at the scale of the agricultural plots network) while ensuring a minimal production in each of the cropland subsystems. The control inputs being subject to saturation constraints, we proposed to use a method base on a time-scale transformation in order to design the control law. The control law was composed of two loops: one that control the crop production with the flux of manure coming from the livestock farms and the second one to control the flux of manure with the rate at which the plant biomass is removed from rangeland subsystems to feed the livestock. We applied this control strategy on a simple example of network composed of three rangeland subsystems, and two cropland susbsytems. The simulations give satisfactory results. The next step will consist in considering bigger networks that will be more realistic to see if the control strategy is sufficiently robust. 

Fig. 1 .

 1 Fig. 1. Scheme of the network of agricultural plots.

Mc k=1 s k c h k

  c P k * . Let's now show how to make Mc k=1 s k c h k c P k * converge towards C * , by using T k := β k T , k = 1 : M c as control inputs.

Mc k=1 s k c h k

  c P k * towards C * . We will proceed in two steps. First, after simple computations, we can show that if N k c = N k * with:

  where ψ j (P, N ) := G j r (P, N )m j r Pd j r P , a > 0 and Mr j=1 θ j = 1, the closed loop dynamic of T -T * (in time ξ) is a first order one:

  r as defined in[START_REF] Antonelli | Continuous stirred tank reactors: easy to stabilise?[END_REF]. We took a smaller value, in order to force the value d k r to reach the upper bound. The objective was to make the crop production C reach the value:C * = 70 kgN (45)at the end of the year. The results are shown in figures 2 and 3.
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Fig. 2 .. ( 3 )

 23 Fig. 2. Time evolution of the variables related to the control of C with T and β k . From top to bottom: (1) Crop production at the scale of the network C, crop production setpoint C * and intermediate variable Mc k=1 s k c h k c P k * . (2) Plants biomass in each cropland subsystem P k c , plants biomass setpoint P k *

Fig. 3 .

 3 Fig. 3. Time evolution of the variables related to the control of T with d k r (second control loop). Top: Livestock-mediated nutrient transfer from rangeland subsystem T and its setpoint T * . Bottom: Rangeland removal rates d k r , k = 1 : 3.

TABLE I TABLE

 I OF PARAMETERS VALUES OF THE AGRICULTURAL PLOTS NETWORK CONSIDERED IN THE NUMERICAL EXAMPLE.
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