J. Nougayrède, S. Homburg, F. Taieb, M. Boury, E. Brzuszkiewicz et al., Escherichia coli induces DNA double-strand breaks in eukaryotic cells, Science, vol.313, pp.848-851, 2006.

J. Putze, C. Hennequin, J. Nougayrède, W. Zhang, S. Homburg et al., Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae, Infect Immun, vol.77, pp.4696-4703, 2009.

C. A. Brotherton and E. P. Balskus, A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity, J Am Chem Soc, vol.135, pp.3359-3362, 2013.

X. Bian, J. Fu, A. Plaza, J. Herrmann, D. Pistorius et al., In vivo evidence for a prodrug activation mechanism during colibactin maturation, Chembiochem Eur J Chem Biol, vol.14, pp.1194-1197, 2013.

C. A. Brotherton, M. Wilson, G. Byrd, and E. P. Balskus, Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity, Org Lett, vol.17, pp.1545-1548, 2015.

X. Bian, A. Plaza, Y. Zhang, and R. Müller, Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety, Chem Sci, vol.6, pp.3154-3160, 2015.

L. Zha, M. R. Wilson, C. A. Brotherton, and E. P. Balskus, Characterization of polyketide synthase machinery from the pks island facilitates isolation of a candidate precolibactin, ACS Chem Biol, vol.11, pp.1287-1295, 2016.

Z. Li, J. Li, J. Gu, J. Lai, B. M. Duggan et al., Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin, Nat Chem Biol, vol.12, pp.773-775, 2016.

L. Zha, Y. Jiang, M. T. Henke, M. R. Wilson, J. X. Wang et al., Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring, Nat Chem Biol, vol.13, pp.1063-1065, 2017.

N. S. Guntaka, A. R. Healy, J. M. Crawford, S. B. Herzon, and S. D. Bruner, Structure and functional analysis of ClbQ, an unusual intermediate-releasing thioesterase from the colibactin biosynthetic pathway, ACS Chem Biol, vol.12, pp.2598-2608, 2017.

M. Xue, E. Shine, W. Wang, J. M. Crawford, and S. B. Herzon, Characterization of natural colibactin-nucleobase adducts by tandem mass spectrometry and isotopic labeling. Support for DNA alkylation by cyclopropane ring opening, Biochemistry, vol.57, pp.6391-6394, 2018.

M. R. Wilson, Y. Jiang, P. W. Villalta, A. Stornetta, P. D. Boudreau et al., The human gut bacterial genotoxin colibactin alkylates DNA, Science, vol.363, p.7785, 2019.

N. Bossuet-greif, D. Dubois, C. Petit, S. Tronnet, P. Martin et al., Escherichia coli ClbS is a colibactin resistance protein, Mol Microbiol, vol.99, pp.897-908, 2016.

N. Bossuet-greif, J. Vignard, F. Taieb, G. Mirey, D. Dubois et al., The colibactin genotoxin generates DNA interstrand cross-links in infected cells, mBio, vol.9, pp.2393-2410, 2018.

G. Cuevas-ramos, C. R. Petit, I. Marcq, M. Boury, E. Oswald et al., Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells, Proc Natl Acad Sci U S A, vol.107, pp.11537-11542, 2010.

T. Secher, A. Samba-louaka, E. Oswald, and J. Nougayrède, Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells, PLoS One, vol.8, 2013.

. Chagneau,

J. C. Arthur, E. Perez-chanona, M. Mühlbauer, S. Tomkovich, J. M. Uronis et al., Intestinal inflammation targets cancer-inducing activity of the microbiota, Science, vol.338, pp.120-123, 2012.

A. Cougnoux, G. Dalmasso, R. Martinez, E. Buc, J. Delmas et al., Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype, Gut, vol.63, pp.1932-1942, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101227

G. Dalmasso, A. Cougnoux, J. Delmas, A. Darfeuille-michaud, and R. Bonnet, The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment, Gut Microbes, vol.5, pp.675-680, 2014.

C. M. Dejea, P. Fathi, J. M. Craig, A. Boleij, R. Taddese et al., Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria, Science, vol.359, pp.592-597, 2018.

E. Buc, D. Dubois, P. Sauvanet, J. Raisch, J. Delmas et al., High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer, PLoS One, vol.8, 2013.

J. Raisch, E. Buc, M. Bonnet, P. Sauvanet, E. Vazeille et al., Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation, World J Gastroenterol, vol.20, pp.6560-6572, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01211998

D. Payros, U. Dobrindt, P. Martin, T. Secher, A. Bracarense et al., The food contaminant deoxynivalenol exacerbates the genotoxicity of gut microbiota, vol.8, pp.7-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608529

S. Tronnet, C. Garcie, N. Rehm, U. Dobrindt, E. Oswald et al., Iron homeostasis regulates the genotoxicity of Escherichia coli that produces colibactin, Infect Immun, vol.84, pp.659-675, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01605475

J. C. Arthur and C. Jobin, The complex interplay between inflammation, the microbiota and colorectal cancer, Gut Microbes, vol.4, pp.253-258, 2013.

J. C. Arthur, R. Z. Gharaibeh, M. Mühlbauer, E. Perez-chanona, J. M. Uronis et al., Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer, Nat Commun, vol.5, p.4724, 2014.

N. Babbar and E. W. Gerner, Targeting polyamines and inflammation for cancer prevention, Recent Results Cancer Res, vol.188, pp.49-64, 2011.

E. W. Gerner and F. L. Meyskens, Polyamines and cancer: old molecules, new understanding, Nat Rev Cancer, vol.4, pp.781-792, 2004.

K. Igarashi and K. Kashiwagi, Modulation of cellular function by polyamines, Int J Biochem Cell Biol, vol.42, pp.39-51, 2010.

M. Stewart, T. Dunston, T. T. Woster, P. M. Casero, and R. A. , Polyamine catabolism and oxidative damage, J Biol Chem, vol.293, pp.18736-18745, 2018.

A. C. Goodwin, C. Shields, S. Wu, D. L. Huso, X. Wu et al., Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis, Proc Natl Acad Sci U S A, vol.108, pp.15354-15359, 2011.

E. W. Gerner, E. Bruckheimer, and A. Cohen, Cancer pharmacoprevention: targeting polyamine metabolism to manage risk factors for colon cancer, J Biol Chem, vol.293, pp.18770-18778, 2018.

C. W. Tabor and H. Tabor, Polyamines in microorganisms, Microbiol Rev, vol.49, pp.81-99, 1985.

C. W. Tabor, H. Tabor, and Q. W. Xie, Spermidine synthase of Escherichia coli: localization of the speE gene, Proc Natl Acad Sci U S A, vol.83, pp.6040-6044, 1986.

P. Martin, I. Marcq, G. Magistro, M. Penary, C. Garcie et al., Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli, PLoS Pathog, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02391854

C. Garcie, S. Tronnet, A. Garénaux, A. J. Mccarthy, A. O. Brachmann et al., The bacterial stress-responsive Hsp90 chaperone (HtpG) is required for the production of the genotoxin colibactin and the siderophore yersiniabactin in Escherichia coli, J Infect Dis, vol.214, pp.916-924, 2016.

S. Homburg, E. Oswald, J. Hacker, and U. Dobrindt, Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli, FEMS Microbiol Lett, vol.275, pp.255-262, 2007.

K. Igarashi and K. Kashiwagi, Effects of polyamines on protein synthesis and growth of Escherichia coli, J Biol Chem, vol.293, pp.18702-18709, 2018.

C. N. Patel, B. W. Wortham, J. L. Lines, J. D. Fetherston, R. D. Perry et al., Polyamines are essential for the formation of plague biofilm, J Bacteriol, vol.188, pp.2355-2363, 2006.

M. Barbagallo, D. Martino, M. L. Marcocci, L. Pietrangeli, P. et al., A new piece of the Shigella pathogenicity puzzle: spermidine accumulation by silencing of the speG gene, PLoS One, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00975894

R. Campilongo, M. Martino, L. Marcocci, P. Pietrangeli, A. Leuzzi et al., Molecular and functional profiling of the polyamine content in enteroinvasive E. coli: looking into the gap between commensal E. coli and harmful Shigella, PLoS One, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01166985

Y. Pan, C. Liao, C. Kuo, K. Duan, P. Liang et al., The critical roles of polyamines in regulating ColE7 production and restricting ColE7 uptake of the colicin-producing Escherichia coli, J Biol Chem, vol.281, pp.13083-13091, 2006.

R. Tofalo, S. Cocchi, and G. Suzzi, Polyamines and gut microbiota, Front Nutr, vol.6, p.16, 2019.

C. C. Hanfrey, B. M. Pearson, S. Hazeldine, J. Lee, D. J. Gaskin et al., Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota, J Biol Chem, vol.286, pp.43301-43312, 2011.

Y. Sugiyama, M. Nara, M. Sakanaka, A. Gotoh, A. Kitakata et al., Comprehensive analysis of polyamine transport and biosynthesis in the dominant human gut bacteria: potential presence of novel polyamine metabolism and transport genes, Int J Biochem Cell Biol, vol.93, pp.52-61, 2017.

C. H. Johnson, C. M. Dejea, D. Edler, L. T. Hoang, A. F. Santidrian et al., Metabolism links bacterial biofilms and colon carcinogenesis, Cell Metab, vol.21, pp.891-897, 2015.

M. A. Ali, E. Poortvliet, R. Strömberg, and A. Yngve, Polyamines in foods: development of a food database, Food Nutr Res, vol.55, p.5572, 2011.

F. Madeo, T. Eisenberg, F. Pietrocola, and G. Kroemer, Spermidine in health and disease, Science, vol.359, p.2788, 2018.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc Natl Acad Sci U S A, vol.97, pp.6640-6645, 2000.

J. R. Johnson, E. Oswald, T. T. O'bryan, M. A. Kuskowski, and L. Spanjaard, Phylogenetic distribution of virulence-associated genes among Escherichia coli isolates associated with neonatal bacterial meningitis in the Netherlands, J Infect Dis, vol.185, pp.774-784, 2002.