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Abstract: Mitochondria alterations are a classical feature of muscle immobilization, and autophagy is

required for the elimination of deficient mitochondria (mitophagy) and the maintenance of muscle

mass. We focused on the regulation of mitochondrial quality control during immobilization and

remobilization in rat gastrocnemius (GA) and tibialis anterior (TA) muscles, which have very different

atrophy and recovery kinetics. We studied mitochondrial biogenesis, dynamic, movement along

microtubules, and addressing to autophagy. Our data indicated that mitochondria quality control

adapted differently to immobilization and remobilization in GA and TA muscles. Data showed i)

a disruption of mitochondria dynamic that occurred earlier in the immobilized TA, ii) an overriding role

of mitophagy that involved Parkin-dependent and/or independent processes during immobilization

in the GA and during remobilization in the TA, and iii) increased mitochondria biogenesis during

remobilization in both muscles. This strongly emphasized the need to consider several muscle groups

to study the mechanisms involved in muscle atrophy and their ability to recover, in order to provide

broad and/or specific clues for the development of strategies to maintain muscle mass and improve

the health and quality of life of patients.

Keywords: immobilization; recovery; mitophagy; microtubules; physical inactivity; skeletal muscle

1. Introduction

Skeletal muscle provides power and strength for locomotion and posture and is the major

reservoir of body proteins that can be mobilized during catabolic situations (i.e., cardiovascular

diseases, cancer cachexia, chronic obstructive pulmonary diseases (COPD), chronic kidney diseases,

diabetes, stressful events, etc.) to preserve vital functions. This can lead to muscle wasting, which,

if too severe and/or prolonged, has adverse metabolic consequences, i.e., reduction in the effect of

treatments, increased hospitalization times, and mortality [1,2].

Periods of immobilization or acute inactivity are often features of catabolic conditions,

are inherently associated with weakness and/or frailty, and further contribute to muscle atrophy.

In addition, muscle disuse is characterized by i) a decline of mitochondrial function, ii) an imbalance

between mitochondrial biogenesis and degradation by autophagy (mitophagy), and iii) a decreased

mitochondria abundance and/or oxidative capacity in animals and humans [3–12]. Preserving the

mitochondrial function enables preventing muscle loss during muscle disuse [4,8,9,13]. In fact,
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the accumulation of abnormal/defective mitochondria by default of their elimination is a major

contributing factor to muscle wasting [14]. Proper elimination of the damaged organelles requires

i) their segregation by fission and regulation of their motility along microtubules (MTs) and ii)

their addressing to autophagy through parkin-dependent and/or independent pathways [15–17].

Muscle disuse is associated with altered fission processes and with defective mitochondrial addressing

to autophagy [7,18–21]. However, the role of mitochondrial trafficking on MTs and, more generally,

the management of mitochondria alterations during recovery in skeletal muscle pending disuse are

poorly documented.

We previously used a cast immobilization rat model where the leg was fixed in plantar

flexion. In that model, the gastrocnemius (GA) muscle mass decreased during immobilization

and stabilized immediately after cast removal. Meanwhile, the tibialis anterior (TA) muscle moderately

atrophied during immobilization, but further atrophied after cast removal. We also reported

the thickening of the extracellular matrix (ECM) and activation of the mitochondria-associated

apoptotic pathway in both TA and GA during immobilization and/or remobilization, suggesting

a deterioration of mitochondria function [22,23]. The thickening of the ECM may reflect mechanical

tension and skeletal muscle adaptations to muscle immobilization. The chaperone-assisted selective

autophagy (CASA) is a tension-induced autophagy pathway that plays a critical role in mechanically

strained cells and tissues [24]. In the CASA pathway, BAG3 (i.e., BCL2-associated athanogene 3)

is a co-chaperone involved in the transcription of YAP1 (i.e., yes-associated protein 1), which is

activated in situations of ECM stiffening or cell stretching [25] or in response to mechanical tension

in vivo [24]. Regulation of YAP1 expression by mechanical tension may protect against skeletal muscle

atrophy caused by denervation [25]. These markers of mechanical tension/loading are also involved

in the regulation of mitochondria quality control (MQC): i) YAP1 regulates mitochondria fission

during myoblast differentiation [26] and Bnip3 (i.e., BCL2/adenovirus E1B 19 kDa protein-interacting

protein 3-like)-related mitophagy in microglial cells [27]. ii) BAG3 is critical for the maintenance of

mitochondrial homeostasis under stress conditions in cardiomyocytes [28].

In the current study, our objective was to determine how mitochondria quality control was

regulated during immobilization and remobilization in both GA and TA muscles that do not exhibit

similar kinetics of atrophy and recovery. The aim was to decipher in a single study the mechanisms

involved in mitochondria biogenesis, dynamic, movement along MTs, and addressing to autophagy

in these two muscle groups. Addressing these questions is crucial for a better understanding of the

mechanisms underlying muscle loss and recovery.

2. Results

2.1. Mitochondria Biogenesis Adaptations during Muscle Immobilization and Remobilization Could Not
Explain Changes in Mitochondria Abundance

Table 1 shows that GA muscle mass decreased during immobilization (−24% vs. Con, p <

0.05) without a change in muscle fiber cross-section area (CSA) (Con: 2923 +/− 173 vs. Imm: 2768

+/− 208 µm2). During remobilization, however, GA muscle mass stabilized, while fiber CSA decreased

(−19% vs. Con, p < 0.05). The TA muscle mass decreased during immobilization by 18% (vs. Con,

p < 0.05), and further diminished during remobilization (−35% vs. Con and −18% vs. Imm, p < 0.05).

We previously reported that this was associated with a decrease of TA muscle fiber CSA [22,23,29].

Mitochondria homeostasis is often deregulated during muscle disuse [3].



Int. J. Mol. Sci. 2020, 21, 3691 3 of 18

Table 1. GA and TA muscle mass.

GA TA

Mass (g) Mass (mg)

Con
Imm
Rem

2.316 ± 0.053
1.751 ± 0.051 *
1.708 ± 0.049 *

796 ± 20
656 ± 10 *

519 ± 20 *§

Con, control non-immobilized; Imm, immobilized; Rem, remobilized; GA, gastrocnemius; TA, tibialis anterior. All
values are means ± SEM. * p < 0.05 vs. Con, § p < 0.05 vs. Imm. Statistics are described in the Material and Methods
section.

In accordance, Figure 1A shows that citrate synthase activity was reduced in immobilized GA

(−45% vs. Con, p < 0.05), suggesting a decrease in mitochondria content. However, this could not

be explained by changes in protein or mRNA levels for markers of mitochondria biogenesis (i.e.,

PGC1-α, NRF1, and TFAM). Indeed, Figure 1B,C show that PGC1-α protein and TFAM mRNA levels

did not change during immobilization, whereas NRF1 mRNA levels increased (+65% vs. Con, p < 0.05).

After 1 week of GA remobilization, citrate synthase activity returned to basal values (Figure 1A), and

this was associated with elevated levels of PGC1-α protein (+250% vs. Con, p = 0.13) and NRF1 mRNA

(+33% vs. Con, p < 0.05).

 

−

 

΅

Figure 1. The expression of mitochondria biogenesis markers increased during remobilization. Citrate

synthase activity was measured in the gastrocnemius (GA) (A) and the tibialis anterior (TA) (D),

as described in Section 4. Protein levels for PGC-1α were assessed by Western blots in the GA (B) and

the TA (E), quantified and normalized using Ponceau red staining for uneven loading. Representative

Western blots are shown below each graph, and molecular weights are given in kDa. mRNA levels for

NRF1 and TFAM were measured in the GA (C) and the TA (F) by RT-qPCR. Data were normalized using

18S rRNA. Protein and mRNA levels were expressed as % from the Con group. Statistical differences

were assessed by ANOVA, as described in Materials and Methods. * p < 0.05 vs. Con, § p < 0.05 vs.

Imm; Con, non-immobilized rats; Imm, immobilized; Rem, remobilized.

The TA did not display the same changes. Figure 1D shows that citrate synthase activity did not

change during TA immobilization or remobilization, suggesting that TA mitochondria abundance
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remained stable. Figure 1E shows that PGC1-α protein levels increased in remobilized TA muscles

(+60% and 110% vs. Con and Imm, respectively, p < 0.05). Similarly, NRF1 and TFAM mRNA levels

increased, respectively, by 63% and 76% compared to Con in the remobilized TA (Figure 1F). These data

suggested that mitochondrial abundance decreased in the GA or remained stable in the TA without any

reduction in mitochondrial biogenesis during immobilization or even an increase during remobilization.

All these observations suggested a predominant role of mitophagy during GA immobilization and

TA remobilization.

2.2. Mitochondria Fusion and Fission Were Imbalanced in GA and TA Muscles during Immobilization
and Remobilization

Mitophagy is often associated with an imbalance of mitochondria fusion and fission, which are

involved in the removal of damaged mitochondria. We thus investigated the impact of immobilization

and remobilization on fission (FIS1, DRP1) and fusion (OPA1 and MFN2) markers. During GA

immobilization, FIS1 and MFN2 protein levels did not change, and OPA1 protein levels were reduced

(−30% vs. Con, p < 0.05) (Figure 2A). After 1 week of GA remobilization, FIS1 protein levels tended to

be elevated (+53% vs. Con, p = 0.06), and OPA1 protein levels remained quite low (−23% vs. Con,

p = 0.07) (Figure 2A). During TA immobilization, both FIS1 and OPA1 protein levels tended to increase

(+44% and +52% vs. Con, respectively; p = 0.07) in (Figure 2B). After 1 week of TA remobilization,

further protein level accumulation prevailed for FIS1, MFN2, and OPA1 (+136%, +54%, and +122% vs.

Con, respectively, p < 0.05) (Figure 2B). Protein levels of DRP1 did not change during immobilization

or remobilization, regardless of the muscle.
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Figure 2. A concomitant increase of mitochondria fusion and fission markers during TA remobilization.

Protein levels for FIS1, MFN2, and OPA1 were assessed by Western blots in the GA (A) and the TA

(B), quantified and normalized using Ponceau red staining for uneven loading. Several isoforms of

OPA1 tune mitochondrial adaptations. Thus, the 2 isoforms detected here were quantified together.

Representative Western blots are shown below each graph, and molecular weights are given in kDa.

Data were expressed as % from the Con group. Statistical differences were assessed by ANOVA, as

described in Materials and Methods. * p < 0.05 vs. Con, § p < 0.05 vs. Imm; Con, non-immobilized rats;

Imm, immobilized; Rem, remobilized.

All these data indicated an imbalance in mitochondrial dynamics in the immobilized GA and in

the remobilized TA and thus suggested segregation of mitochondria for their elimination by autophagy.

2.3. Mitochondria Trafficking along Microtubules Was Induced in Both Muscles during Immobilization
and/or Remobilization

In addition to mitochondrial fission, the motility of mitochondria along microtubules (MTs) also

seems to be important for mitophagy [15]. We measured mRNA levels of key markers of mitochondria

movements along MTs. Dysferlin is involved in T-tubule formation and vesicle trafficking [30].

The small GTPase miro regulates mitochondrial trafficking along MTs by acting as a receptor for

mitochondrial recruitment of the TRAK adaptors to drive movements mediated by the MT-based motor

proteins—kinesin and dynein [31]. In the GA (Figure 3A), the mRNA levels for MIRO1, kinesin (KIF5B),

and dynein (DYNC1H1) were elevated (~+100% vs. Con, p < 0.05) during immobilization and were

either normalized (MIRO1, DYNC1H1) or reduced (KIF5B) during remobilization. A slight increase in

the mRNA levels of dysferlin also prevailed during GA immobilization and remobilization. In the TA,

dysferlin increased during immobilization and remobilization (+163% and +83%, respectively, vs. Con,

p < 0.05). During TA immobilization, mRNA levels for MIRO1 and kinesin (KIF5B) increased (~+110%

vs. Con, p < 0.05), while those for TRAK1 decreased (−45% vs. Con, p < 0.05). Conversely, during

TA remobilization, high mRNA levels were still observed for MIRO1 (+110% vs. Con, p < 0.05) and

KIF5B (+65% vs. Con, p = 0.07), while those of TRAK1 returned to control values. Dynein (DYNC1H1)

mRNA levels did not change during TA immobilization or remobilization. These data suggested that



Int. J. Mol. Sci. 2020, 21, 3691 6 of 18

mitochondria trafficking was induced along the MTs in both muscles during immobilization and/or

remobilization that might enable proper addressing of mitophagy.

 

−

Figure 3. The expression of microtubules-based mitochondria trafficking markers increased during

remobilization. The mRNA levels for Dysferlin, TRAK1, MIRO1, the kinesin KIF5B, and the dynein

DYNC1H11 were measured in the GA (A) and the TA (B) by RTqPCR and were normalized using 18S

rRNA. Data were expressed as % from the Con group. Statistical differences were assessed by ANOVA,

as described in Materials and Methods. * p < 0.05 vs. Con, § p < 0.05 vs. Imm; Con, non-immobilized

rats; Imm, immobilized; Rem, remobilized.

2.4. Parkin-Dependent and -Independent Mitophagy Was Activated in Muscles during Immobilization
or Remobilization

Cells execute mitophagy through two non-redundant mechanisms. The Parkin-dependent

pathway involves the E3 ligase Parkin and the ubiquitin-conjugating enzyme—UBE2L3 [32], and

the Parkin-independent pathway involves the stress-induced BNIP3, BNIP3L/NIX, and FUNDC1

molecular adaptors [33]. Immobilization of GA did not change the protein levels of Parkin and UBE2L3

(Figure 4A), but resulted in increased levels of BNIP3L/NIX (+175% vs. Con, p < 0.05), FUNDC1

(+43% vs. Con, p < 0.05), and BNIP3 (+48% vs. Con, p < 0.05) mRNAs (Figure 4B). After 1 week of

GA remobilization, these mRNA levels returned to basal values (Figure 4B). Figure 4C shows that

Parkin and UBE2L3 protein levels did not change during TA immobilization but increased after 1

week of TA remobilization (+26%, p < 0.05 and +33%, p = 0.07 vs. Con, respectively). In addition,

only BNIP3L/NIX mRNA levels increased in TA muscles during immobilization (+60% vs. Con,

p < 0.05) and remained elevated during remobilization (+54% vs. Con, p = 0.08) (Figure 4D). At the

same time, increased mRNA levels for BNIP3 (+70% vs. Con, p < 0.05) and FundC1 (+37% vs. Imm,

p < 0.05) prevailed during TA remobilization. Altogether, these data suggested that mitophagy was

induced in both muscles during either immobilization or remobilization with a predominant role of the

Parkin-independent mechanisms in the immobilized GA and both Parkin-dependent and independent

mechanisms in the remobilized TA.
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Figure 4. Parkin-dependent and independent mitophagy addressing pathways increased in the TA

during remobilization. Protein levels for Parkin and UBE2L3 were assessed in the GA (A) and the

TA (C) by Western blots, quantified and normalized using Ponceau red staining for uneven loading.

Representative Western blots are shown below each graph, and molecular weights are given in kDa.

mRNA levels for BNIP3L/NIX, FUNDC1, BNIP3 were measured in the GA (B) and the TA (D) by

RTqPCR and were normalized using 18S rRNA. Data were expressed as % from the Con group.

Statistical differences were assessed by ANOVA, as described in Materials and Methods. * p < 0.05 vs.

Con, § p < 0.05 vs. Imm; Con, non-immobilized rats; Imm, immobilized; Rem, remobilized.

2.5. Autophagy Was Induced and Sustained during Immobilization and Remobilization in the TA

We then investigated the regulation of autophagy in immobilized and remobilized muscles. The

autophagy receptor SQSTM1 plays a central role in selective autophagy and serves as a key cargo

adaptor for addressing mitochondria to mitophagy [34], and induction of autophagy requires the

formation of autophagic vacuoles through lipidation of LC3 [35]. Figure 5A,B shows high protein

levels for SQSTM1, LC3I, and LC3II in the immobilized GA (+247%, +50%, and +117% vs. Con,

p < 0.05). During GA remobilization, SQSTM1 and LC3I protein levels remained slightly elevated

(+180% and 23% vs. Con, p = 0.06). Figure 5A,C shows that SQSTM1 protein levels increased

during TA immobilization (+193% vs. Con, p < 0.05) and remained elevated to a lower extent during

remobilization (+60% vs. Con, p < 0.05). LC3I and LC3II protein levels rose by 2–3 fold during TA

immobilization (vs. Con, p < 0.05) and further increased after 1 week of TA remobilization to reach

a 5–7 fold induction vs. Con group (p < 0.05). These data showed induction of autophagy in both

muscles during immobilization, which was sustained in the TA during remobilization.
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Figure 5. Autophagy was induced during muscle immobilization and remobilization. Protein levels

for SQSTM1, LC3I, and LC3II were assessed in GA (A,B) and TA (A,C) muscles by Western blots.

Two forms of LC3 were detected (LC3-I and LC3-II) and were quantified separately. Signals were

quantified and normalized using Ponceau red staining for uneven loading. Representative Western

blots are shown in (A), and molecular weights are given in kDa. Data were expressed as % from the

Con group. Statistical differences were assessed by ANOVA, as described in Materials and Methods.

* p < 0.05 vs. Con, § p < 0.05 vs. Imm; Con, non-immobilized rats; Imm, immobilized; Rem, remobilized.

2.6. Large and Sustained Activation of the CASA in the Immobilized and Remobilized TA

All these data taken together showed that the GA and TA muscles adapted differently to

immobilization and remobilization. In our model, the leg had been immobilized in plantar flexion,

as previously described [22,23,29]. As a result, the GA and TA muscles were, respectively, immobilized

in a shortened and lengthened position. Lengthening during TA immobilization might be likened

to a passive mechanical loading and might have influenced skeletal muscle adaptations to muscle

immobilization. We measured the expression of markers of the chaperone-assisted selective autophagy

(CASA), which is a tension-induced autophagy pathway. During GA immobilization, mRNA levels for

BAG3 decreased (−29% vs. Con, p < 0.05), while those for YAP1, HSPB8, and LAMP2 were elevated

(+43%, +110%, and +113% vs. Con, respectively, p < 0.05) (Figure 6A). During GA remobilization,

only HSPB8 mRNA levels remained elevated (+76% vs. Con, p < 0.05). In the immobilized TA, the

mRNA levels of BAG3, YAP1, HSPB8, and LAMP2 all raised to a greater extent and in a coordinated

manner (+107%, +95%, +370%, and +126% vs. Con, respectively, p < 0.05) (Figure 6B). It is noteworthy

that this increase sustained during remobilization but for HSPB8. Taken together, the high and

persistent induction of CASA in immobilized and remobilized TA indicated that tension adaptive

processes had taken place. This suggested that the TA underwent some mechanical stress during

immobilization due to lengthening.
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Figure 6. CASA (cross-section area) pathway was largely induced in immobilized and remobilized TA.

The mRNA levels for BAG3, HSPB8, LAMP2, and YAP1 were measured in the GA (A) and the TA (B)

by RTqPCR and were normalized using 18S rRNA. Data were expressed as % from the Con group.

Statistical differences were assessed by ANOVA, as described in Materials and Methods. * p < 0.05 vs.

Con, § p < 0.05 vs. Imm; Con, non-immobilized rats; Imm, immobilized; Rem, remobilized.

3. Discussion

Our main objective was to explore in a single study the regulation of mitochondrial quality control

(biogenesis, mitophagy, different pathways of altered mitochondria, mitochondrial motility, autophagy)

in two muscle groups (i.e., the gastrocnemius and the tibialis anterior), which have very different

atrophy and recovery kinetics upon immobilization and remobilization [22,23,29]. Our data indicated

that mitochondria quality control adapted differently to immobilization and remobilization in these

muscles with i) a disruption of mitochondria dynamic that occurred earlier in the immobilized TA,

ii) an overriding role of mitophagy during immobilization in the GA and during remobilization in the

TA that involved Parkin-dependent and/or -independent processes.

We reported here that citrate synthase activity decreased in the immobilized GA and then

normalized within one week of remobilization, but remained stable in the TA. This suggested a decline

in mitochondria abundance in the GA after 1 week of immobilization and no change in the TA. This was

in agreement with previous reports in animal models or in humans [7,9,10,19,20], where mitochondria

abundance declines during disuse in both muscles over longer durations of 2 to 4 weeks. Our study

indicated that the decrease in mitochondrial abundance began as soon as 1 week of immobilization

in the GA. We previously described that the proportion of type I and IIa fibers, i.e., with a high

content in mitochondria, increased in response to immobilization or remobilization in the TA and the
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GA [22]. These changes in the composition of muscle fiber types might, therefore, have contributed to

maintaining the abundance of mitochondria in the TA. However, it is unlikely that they alone have

contributed to the decrease in the abundance of mitochondria in GA. Mitochondria content depends

on the balance between mitochondria biogenesis and mitophagy. It is conventionally accepted that

mitochondria biogenesis decreases during physical inactivity. However, the expression of biogenesis

markers i) decreases over long periods of disuse (3 weeks), but is stable, reduced, or even increased in

the short term [5–9,21,36–38] and ii) may be uncoordinated [5,38]. In accordance, we reported here that

levels of mitochondria biogenesis markers were either stable or elevated during immobilization in both

muscles. This uncoordinated regulation of markers of mitochondria biogenesis might have negatively

influence the ability of mitochondrial biogenesis, as previously reported [5]. This might notably have

contributed to the decline in mitochondria abundance in the immobilized GA. Conversely, our data

suggested that mitochondria biogenesis was enhanced in the remobilized TA, while mitochondria

abundance remained stable, suggesting very likely an overriding role of mitophagy in that muscle.

Disrupted fusion/fission dynamics is a key factor contributing to enhancing mitophagy [9,39].

In accordance, we reported here an imbalance of mitochondria dynamics in both muscles. Mitochondria

fission, increased autophagy, and muscle atrophy are associated with increased FIS1 [4]. In our study,

FIS1 protein levels increased only in the TA during immobilization and in both muscles during

remobilization. This suggested that mitochondrial fission did not follow the same kinetics in GA and

TA, with higher induction in TA being triggered during the immobilization period. However, we could

not exclude increased mitochondria fission in the immobilized GA, as FIS1 may be dispensable for

fission in some conditions [40]. We also showed here that mitochondrial fusion adapted differently to

immobilization and remobilization in GA and TA muscles. While protein levels of MFN2 remained

stable during immobilization, those of OPA1 proteins were either reduced in GA or slightly induced

in TA. These discrepancies between GA and TA muscles were consistent with previous studies,

where protein levels for fusion proteins after unloading or immobilization for 1 week or more were

reduced in the GA [6,19] but stable in the TA [20]. In addition, we further showed that this uneven

muscle response was even more pronounced during remobilization. In fact, protein levels of these

fusion markers during remobilization remained low in the GA but increased in the TA beyond the

values of non-immobilized control animals. This was in contrast to other reports in immobilized

animals or bedridden people [20,41]. In these reports, fusion protein levels have been unchanged

or low in remobilized muscles following a long-term immobilization in animals [20] or a long

rehabilitation training period in humans [41]. We studied remobilization after a much shorter period of

immobilization and remobilization than in these studies. This enabled us to detect muscle adaptations

that could have been hidden or vanish over longer periods of immobilization and/or remobilization.

Together, these data suggested that GA muscle was characterized by low fusion during immobilization

and became concomitant with high fission during remobilization. Conversely, TA exhibited high

fusion and fission during remobilization. This disruption in mitochondria dynamics is in favor of i)

a segregation of damaged mitochondria components via fission in both muscle during remobilization

with ii) a greater need for mitochondria renewal in the remobilized TA, as witnessed by the increased

fusion and the coordinated induction of biogenesis markers that we reported in the TA.

Mitochondrial trafficking on MTs is also a key point for mitophagy [15]. Mitochondrial trafficking

actors include i) dysferlin involved in the biogenesis and shaping of the tubule-T system, ii) the

MT motor proteins dynein and kinesin for the transport of damaged and healthy mitochondria,

respectively, and iii) the adaptor protein TRAK1 and the mitochondrial protein MIRO1, allowing

tight coupling between MT motors and mitochondria for precise localization [15,42]. In addition,

targeting TRAK1 to mitochondria can increase kinesin-mediated mitochondria transport [43]. We

reported here that the expression of dysferlin increased in the immobilized TA during immobilization

and remobilization, suggesting changes in the formation of the MTs. In addition, we also reported that

Trak1 expression decreased during immobilization in the TA, and to a lesser extent and non-significantly

in the GA. This suggested a slowing of mitochondria motility along MTs during immobilization,
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despite the concomitant increase in MIRO1 and in the kinesin KIF5B expression in GA and TA muscles.

Both kinesin and dynein are involved i) in the late endosome and lysosome transport along MTs and

ii) in recycling lysosomal membranes and membrane proteins to reconstitute a pool of functional

lysosomes (i.e., lysosome tubulation) [44]. Thus, the increase in KIF5B expression that we observed

in both immobilized TA and GA might also favor lysosomal motility along MTs and regulate the

proper elimination of damaged mitochondria. This was consistent with the activation of autophagy

that we also observed in both muscles. Finally, the concomitant increased expression of KIF5B and

dynein in the immobilized GA suggested an increase in tubular lysosomes, which might evidence high

consumption of lysosomes and thus a need to replenish the pool of lysosomes in that specific muscle

during immobilization.

These concomitant changes in markers of mitochondria fusion, fission, and motility in

skeletal muscle during immobilization and remobilization raise the question of the distribution

of mitochondria in the myofibers. Indeed, mitochondria can be localized (i) close to myonuclei and the

sarcolemma (subsarcolemmal (SS) mitochondria) and (ii) between the myofibrils (intermyofibrillar

(IMF) mitochondria). This distinction between SS and IMF mitochondria is not absolute, as a continuity

in the network could exist: a sub-fraction could arise from the synthesis of mitochondria in another

region, and the processes of fission, fusion, and organelle movement are likely to determine the location

and morphology of the mitochondria. These SS and IMF mitochondria display some differences in

mitochondrial respiration, enzyme activities, lipid composition, protein synthesis, and adaptation

to muscle use and disuse [3]. Thus, the data reported here, indicating changes in the expression of

markers involved in mitochondria dynamic (FIS1, OPA1, MFN2) and mitochondrial motility (MIRO1,

TRAK1) along the microtubules (Dynein, Kinesin), supported the possibility of changes in mitochondria

distribution within the myofibers that may condition mitochondrial function.

Damaged mitochondria can be addressed to autophagy through Parkin-dependent and

-independent pathways [16,17,33]. Bnip3L/Nix, FundC1, and Bnip3 are mitochondrial receptors

that bind directly to LC3II to bring mitochondria to the autophagosome for degradation. We reported

here an overexpression of these three receptors along with increased LC3 lipidation in the immobilized

GA, with no change in Parkin and UBE2L3 expression. In the TA, only Bnip3L/Nix was overexpressed

with concomitantly increased lipidation of LC3 during immobilization. This strongly suggested that

Parkin-independent mechanisms were at work to enhance mitophagy during immobilization in both

GA and TA. These pathways were no more upregulated in the GA during remobilization, suggesting no

further need for mitochondria degradation in the GA one week after cast removal. This was in

accordance with a return to control mitochondria abundance (suggested by normalization of citrate

synthase activity) and with the immediate arrest of GA muscle atrophy after cast removal that we

previously reported [22]. Conversely, the expression of all mitochondrial receptors measured here was

elevated in remobilized TA, along with elevated levels of Parkin, UBE2L3, and LC3II. This suggested

that a significant need for autophagic removal of mitochondria still existed during the remobilization

of the TA, via both Parkin-dependent and Parkin-independent pathways.

TA and GA muscles differ by their metabolic and contractile properties but also by their anatomical

function and position. We previously reported that the proportion of fast-twitch type IIb fibers decreased

in both TA and GA muscles during immobilization, whereas the proportion of slow-twitch type I and

IIa fibers increased, respectively, in the GA and the TA. These changes in muscle fiber composition were

intensified during TA remobilization [22]. This suggested a shift in metabolic and contractile properties

towards a more oxidative metabolism during immobilization in both muscles. These changes in fiber

type proportions might have influence muscle adaptations to immobilization and remobilization and

thus might have contributed to or result from the additional muscle atrophy observed in the TA.

However, as both muscles undergo such metabolic differences during immobilization,

their anatomical position may also exert an important constraint on the adaptation of skeletal muscles to

disuse. The TA and GA muscles are antagonistic muscles: the TA is located in the anterior compartment

and the GA in the posterior compartment. Accordingly, the TA is fixed in a lengthened position and
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the GA in a shortened position when immobilizing in plantar flexion, as in the present study. This

essential difference most probably influences atrophy kinetics in both immobilized TA and GA muscles.

While immobilization induces both a reduction of muscle mass and fiber CSA in the TA [23], the

CSA of GA fibers was stable during immobilization, albeit a decrease of muscle mass. The decrease

in fiber CSA in the TA during immobilization, whereas remaining stable in the GA, was consistent

with a larger activation in the immobilized TA of the ubiquitin-proteasome system (UPS), which is

involved in contractile protein degradation [22]. In addition, we previously reported that apoptotic

processes were induced during GA immobilization [29,45]. This might suggest a loss of GA muscle

fibers. However, the immobilized TA displays a significant decrease in fiber CSA with a moderate loss

of muscle mass compared to the GA [23], as described in some previous studies [22,29,46–48]. We also

previously reported that the ECM surrounding the muscle fibers thickened during immobilization

and even more so during remobilization in the TA [22,23]. This could have minimized the impact of

immobilization on the TA mass.

The tension-induced degradation pathway CASA involves the chaperones—BAG3 and

HSPB8—for the delivery of misfolded proteins to autophagy [24]. BAG3 also stimulates the transcription

of the transcriptional regulator YAP1 [24] that senses mechanical tension and ECM stiffness [25,49].

In accordance, we reported here that CASA was activated during immobilization predominantly in the

TA with a greater overexpression of BAG3 and HSPB8 in the lengthened immobilized TA compared

to the shortened GA. This suggested a greater need for addressing altered proteins to autophagy in

the immobilized TA. The activation of CASA prevailed also in the remobilized TA and thus might

contribute to the further atrophy observed in this muscle after cast removal. We also reported that

YAP1 expression increased during immobilization to a greater extent in the TA vs. GA and remained

elevated during remobilization in the TA. Together, the regulation of these mechanical tension markers

suggested that lengthening during TA immobilization could be likened to passive mechanical loading,

resulting in specific muscle adaptation.

In addition, in normal conditions, it seems that the TA tendinous tissue undertakes most of the

lengthening during initial foot contact of walking and prevent potential damaging muscle stretch.

Thus, the ECM thickening may lead to a decreased ability of the TA muscle-tendon to prevent muscle

damage due to stretching upon muscle remobilization. This may have been exacerbated by the

lengthening of the TA during immobilization. In addition, there is likely to be an acute shortening of the

TA immediately after cast removal, which may constitute an atrophic stimulus, leading to the additional

muscle loss that prevails immediately after remobilization. Overall, all muscle characteristics, be they

metabolic, contractile, or anatomical, most likely collectively influence muscle adaptations in response

to immobilization and remobilization.

In conclusion, our data indicated a prominent role of mitophagy during immobilization

and remobilization. However, the mechanisms involved in mitophagy were not the same, i.e.,

parkin-dependent and/or -independent, according to the nature of the muscle considered (typology of

muscle fibers, anatomical position, and/or position in which they were immobilized). For example,

mitophagy might explain the decreased abundance of mitochondria in immobilized GA but might

contribute to increased mitochondrial turnover in remobilized TA when muscle atrophy had worsened.

Finally, we also suggested that lengthening/stretching during immobilization of TA could be assimilated

to passive mechanical loading, which influenced not only muscle atrophy but also muscle recovery

after cast removal. This study strongly emphasized the need to consider several muscle groups,

for example, according to their metabolic and contractile properties and/or their anatomical position,

to study the mechanisms involved in muscle atrophy and their ability to recover. In the same vein,

it would obviously be very interesting to validate the mechanisms described in this manuscript

in females, as they may also display specific mechanisms and/or response kinetics, particularly in

relation to hormonal cycles. This would provide broad and/or specific clues for the development of

appropriated and personalized strategies to maintain muscle mass and improve the health and quality

of life of patients.
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4. Materials and Methods

4.1. Ethical Approval

All experiments were conducted with the approval of the regional ethics committee (agreement

n◦ D633451, May 2017) in accordance with the European Directive 2010/63/EU on the protection of

vertebrate animals used for experimental and scientific purposes. This study was performed with

33 Wistar rats aged 6 months when muscle growth is stabilized to avoid any possible bias that could

arise with the use of younger growing animals. We chose to use male rats to rely on the relevant

literature and on our previous work [22,23,29,45] to provide a homogeneous overall message. Rats were

purchased from Charles River Laboratories (L’Arbresle, France), housed individually in the controlled

room (22 ± 2 ◦C, 60 ± 5% humidity, 12-h light/dark cycle, the light period starting at 8 h), fed ad libitum,

and given free access to water.

4.2. Experimental Design

After 3-weeks of acclimatization, the rats were subjected to unilateral immobilization of the hind

limb with an Orfit-soft plate (Gibaud, Saint Etienne, France) under a forene inhalation anesthesia.

Rats were immobilized in plantar flexion for 1 week (Imm, n = 11), as described previously [22,23,29,45].

For remobilization studies, casts were then removed, and animals were allowed to recover for 1 week

(Rem, n = 11) when differences in the kinetics of atrophy were greatest [22,23,29,45]. Immobilized and

remobilized groups were compared to a group of non-immobilized rats (Con, n = 11). Because muscles

may undergo ischemic processes during immobilization, we monitored animals daily to assess the

possible occurrence of edema or inflammation. Whenever necessary, casts were removed and changed.

At the end of the immobilization period, the cast did not induce significant blood flow impairment,

as less than 2% of the rats had exhibited leg edema or irritation. Animals slightly reduced, moderately,

their food intake during immobilization (−14% vs. Con, p < 0.05), without any change in body weight.

During remobilization, food intake was rapidly normalized.

4.3. Bodyweight and Sample Preparation

Bodyweight and food intake of rats were recorded each week during the acclimation period and

every day from immobilization. At the end of the immobilization or recovery periods, animals were

euthanized. Gastrocnemius (GA) and tibialis anterior (TA) muscles were carefully dissected, weighed,

and frozen in liquid nitrogen. Skeletal muscles were then pulverized into a fine powder in liquid

nitrogen and stored at −80 ◦C until further analyses.

4.4. Histological Analyses of Muscles

Ten micrometer thick cross-sections of TA and GA were performed at −25 ◦C using a cryostat

(HM500M Microm International, Fisher Scientific, Illkirch, France) and stained [22,23]. Observations

and image acquisitions were performed using a photonic microscope in bright field mode (Olympus

BX-51, Tokyo, Japan), coupled to a high-resolution cooled digital camera (Olympus DP72) and Cell-D

software (Olympus Soft Imaging Solutions, Münster, Germany) [22,23]. After the image acquisition for

each muscle section, the image analysis was performed using the Visilog 6.9 software (Noesis, Crolles,

France).

4.5. Quantitative Real-Time PCR Analysis

Total RNA from muscles (50 mg of muscle powder) was prepared using TRIzol reagent

(Fisher Scientific, Illkirch, France) according to the manufacturer’s protocol. Determination of RNA

concentration and integrity was performed using, respectively, a Nanodrop ND 1000 spectrophotometer

and a bioanalyzer (Agilent Technologies, Les Ulis, France). One microgram of total RNA was

treated with DNase I Amp grade (Fisher Scientific, Illkirch, France) to remove contaminating
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genomic DNA. Reverse transcription was performed using the superscript II reverse transcription

kit (Fisher Scientific, Illkirch, France) using random primers and according to the manufacturer’s

instructions. The IQ SYBR Green Supermix and the CFX96 Real-time PCR detection system (Bio-Rad

Laboratories, Marnes-la-Coquette, France) were used to perform real-time PCR reactions according

to the manufacturer’s instructions (see primer sequences used in Table S1). As most housekeeping

genes show variations during immobilization or remobilization, the 18S rRNA was used as a reference

gene (i.e., stable in our conditions). The comparative threshold cycle (2−∆∆CT) method [50] was used to

compare the relative mRNA expression between each group.

4.6. Protein Extraction

The soluble muscle proteins (100 mg of muscle powder) were extracted using a polytron in

10 vol. of an ice-cold buffer freshly prepared (pH 7.4) (20 mM HEPES, 1% triton ×100, 100 mM

potassium chloride, 2 mM EGTA, 0.2 mM EDTA, 1 mM benzamidine, 50 mM β-glycerophosphate,

50 mM sodium fluoride, 1 mM dithiothreitol (DTT), 0.1 mM phenylmethylsulfonyl fluoride (PMSF),

0.5 mM sodium vanadate, and proteinase inhibitor cocktail (Sigma, Saint-Quentin-Fallavier, France)).

Centrifugation of resulting homogenates was performed at 14,000× g (15 min, 4 ◦C), and protein

content was measured using the Bio-Rad Protein Assay kit. Samples were prepared by dilution of

aliquots of these supernatants in Læmmli buffer and stored at −80 ◦C until use.

4.7. Citrate Synthase Activity

Citrate synthase (CS) activities were measured at 37 ◦C on the above muscle homogenates (after

storage at −80 ◦C) using a spectrophotometer, as described [51]. Enzyme activities were expressed in

arbitrary units/min/µg muscle proteins.

4.8. Western Blot Analysis

Protein contents for the mitochondrial dynamin-like GTPase (OPA1), the mitofusin 2 (MFN2),

the mitochondrial fission 1 protein (FIS1), the peroxisome proliferator-activated receptor-gamma

coactivator 1-alpha (PGC1-α), the E3 ubiquitin-protein ligase PARKIN, the ubiquitin-conjugating

enzyme E3 L3 (UBE2L3), the ubiquitin-binding protein p62 (SQSTM1), and the microtubule-associated

proteins 1A/1B light chain 3B (LC3b) were assessed by immunoblotting. Briefly, proteins (30–50 µg)

were separated by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) using

10 to 15% acrylamide gels and transferred onto a PVDF membrane (Immobilon-PSQ 0.2 µm,

Merck-Millipore, Fontenay sous Bois, France; Hybond P 0.45 µm, Fisher Scientific, Illkirch,

France) using a tris-glycine-ethanol buffer (25 mM tris, 192 mM glycine, 10% ethanol, pH = 8.3).

For membranes dedicated to the immunodetection of FIS1 and LC3b (i.e., with a Pi > 8.0), a CAPS

(3-(cyclohexylamino)-1-propanesulfonic acid)-ethanol buffer (10 mM CAPS, 10% ethanol, pH = 11) was

used to optimize protein transfer. Blots were blocked for 1 h at room temperature with 5% skim milk in

TBS buffer with 0.1% tween-20 (TBS-T, pH = 7.8). For OPA1 and PGC1-α immunodetection, blots were

blocked with 5% BSA (Interchim, Montluçon, France) in TBS-T. Blots were then washed three times in

TBS-T and incubated (overnight, stirring, 4 ◦C) with the primary antibody diluted in TBS-T with 5%

BSA for all antibodies except for anti-LC3, which was diluted in TBS-T with 5% skim milk. For PGC1-α

immunodetection, blots were incubated 2 h at room temperature, according to the manufacturer’s

instructions. The primary antibodies used in this study are described in Table S2. Blots were then

washed in TBS-T and incubated for 1 h at room temperature with an appropriate secondary antibody

(HRP-conjugated anti-rabbit (#7074) or anti-mouse (#7076) IgGs, from Cell Signaling Technologies)

in 5% BSA or 5% skim milk in TBS-T, as for primary antibody. Detection was performed using the

Luminata Crescendo or Forte Western HRP substrate (Merck-Millipore) after washing the blots three

times in 1× TBS-T. Signals were visualized using the G: BOX ChemiXT4 (XL1) (Syngene, Fisher Scientific,

Illkirch, France) and then quantified using the GeneTools software (Syngene). As all the classical

“housekeeping” proteins (beta-actin, GAPDH . . . ) have levels that are not stable in skeletal muscle,



Int. J. Mol. Sci. 2020, 21, 3691 15 of 18

whether in immobilization or remobilization, signals were normalized against the amount of proteins

in each lane (determined following Ponceau red staining (Sigma-Aldrich, Saint-Quentin Fallavier,

France)) to correct for uneven loading. Representative images of the Ponceau red-stained membranes

corresponding to the target proteins assessed in the manuscript are shown in Figure S1.

4.9. Statistical Analysis

All data were expressed in % variation from the Con group and were means ± SEM. Two rats

were excluded from the protocol during the immobilization period because of edema or redness of

their immobilized leg. Data were analyzed for normality using the Shapiro–Wilk test. No set of data

was transformed for non-normality distribution. Data were analyzed by one-way analysis of variance

for the effects of immobilization and remobilization in each muscle. Post hoc comparisons between

groups were made using the Fisher’s PLSD test when significant differences were detected by ANOVA.

The level of significance was set at p ≤ 0.05. All tests were performed by using XLSTAT (version

2012.4.01, AddinsoftTM, Paris, France).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/10/3691/s1.
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