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Abstract 

Soil organic carbon (SOC) is an acknowledged indicator for land degradation, but 

conventional determination of SOC remains tedious, especially regarding SOC stock (in 

kgC m
-2

 for a given depth layer), which is the product of SOC concentration (gC kg
-1

) by 

volumetric mass (kg dm
-3

). Diffuse reflectance infrared spectroscopy (DRIS) is a time- and 

cost-effective approach, which uses calibrations for making predictions. The aim of this paper 

is to propose an overview of DRIS uses for estimating SOC, thus land degradation. Indeed, 

many papers have demonstrated the precision of DRIS for quantifying SOC concentration, at 

different scales. Current development of large soil calibration databases and improvements in 

spectral data analysis pave the way for ever-wider use of DRIS, which should help solving the 

soil data crisis, regarding SOC especially. The increasing availability of portable 

spectrometers allows SOC quantification in the field, which seems particularly promising; but 

large calibration databases made of soil spectra acquired in the field are difficult to build, 

while large collections of analyzed soil samples (air dried, 2-mm sieved) already exist. Some 

recent studies indicate that DRIS can also be used for predicting SOC stock, even from sieved 

samples, which represents an efficient option because determining the volumetric mass is 

particularly tedious and an obstacle for exactly specifying the role of soils in the global carbon 

cycle. In short, DRIS has strong potential for supporting better evaluation of soil and land 

degradation, and the availability of spectrometers at increasingly affordable prices reinforces 

this potential. 
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1. Introduction 

Land degradation represents huge challenge. It consists in the reduction of biological or 

economic productivity and complexity of agroecosystems as a result from combined 

pressures, including land use and management practices (UNCDD, 1994). This phenomenon 

is considered pervasive and systemic, with negative impacts on biodiversity and ecosystem 

services (IPBES, 2018) and on climate change (IPCC, 2019). The scientific community has 

provided evidences on the drivers of land degradation (Mbow et al., 2015; Tully et al., 2015; 

Sklenicka, 2016; Safriel, 2017) and on means to combat it (de Vente et al., 2016; Kust et al., 

2017; Sanz et al., 2017; Felix et al., 2018; Giger et al., 2018). In September 2018, the General 

Assembly of the United Nations adopted the Sustainable Development Goals, which, in 

particular, aim at restoring degraded lands and soils and at achieving a land degradation 

neutral world by 2030 (Target 15.3; United Nations, 2018). This represents a clear political 

recognition of the key role of soils and lands to achieve sustainable development. Land 

Degradation Neutrality (LDN) has been defined as "a state whereby the amount and quality of 

land resources necessary to support ecosystem functions and services and enhance food 

security remains stable or increases within specified temporal and spatial scales and 

ecosystems" (UNCCD, 2016). A scientific conceptual framework has been developed to 

implement LDN and provide guidance to monitor progress to LDN (Cowie et al., 2018). For 

these purposes, degradation is assessed through three indicators as proxies for the capacity of 

land to deliver ecosystem services: land cover, land productivity, and soil organic carbon 

(SOC). 

Indeed, SOC is the main constituent of soil organic matter, which has a long-acknowledged 

and key role in soil fertility through nutrient release, structure stabilization, improvement in 

water-holding capacity and soil biodiversity, biodegradation of contaminants, etc. (Lal, 2006). 

Moreover, SOC is the largest terrestrial carbon pool, and is thus an important component in 

the global carbon cycle (Lal, 2019). Organic carbon is present in the soil in a wide range of 

chemical forms: carbohydrates, proteins and protein-derived compounds, lipids, phenols and 

cyclic nitrogenous compounds, and still unknown compounds (Paul, 2016). Analyzing the 

exact molecular composition of organic matter in soils is hardly feasible due to its complex 

nature. So SOC has often been separated into fractions having homogenous characteristics 

(Chenu et al., 2015): firstly alkali/acid solubility pools (fulvic acids, humic acids and humin); 

then more functional pools, for instance kinetic pools, having specific turnover rates (labile, 

stable, resistant), or chemical functional groups (alkyl, O-alkyl, aromatic, carbonyl, etc., 

determined by nuclear magnetic resonance). Studying such SOC fractions allows deep 
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understanding of SOC composition, dynamics and stability as affected by climate, mineralogy 

or land use and management. However, studying such SOC fractions is not necessarily the 

most appropriate level for assessing land degradation, especially when looking at practical 

indicators. Actually, total SOC is considered by both scientists and farmers a primary 

indicator of soil quality and health, which itself is considered a primary indicator of 

sustainable land management (Doran, 2002). When dealing with land degradation practically, 

it therefore seems relevant to focus on total SOC (simply denoted SOC hereinafter). 

Conventional quantification of SOC requires analyzing SOC concentration, which is generally 

carried out by Dumas combustion or sulfochromic oxidation, using reagents and producing 

wastes that are toxic (Pansu & Gautheyrou, 2006). Moreover, SOC concentration (in gC kg
-1

) 

is not an additive variable, thus quantifying SOC at field, region or country scale involves 

determining the apparent volumetric mass (or bulk density, Db, in kg dm
-3

), in order to 

calculate SOC stock (in gC dm
-3

, or in kgC m
-2

 for a given soil layer), which is additive 

(Poeplau et al., 2017). The determination of Db is generally achieved by drying at 105°C then 

weighing a known volume of intact soil (with undisturbed structure), which is most often 

collected using a bevelled cylinder thus requires digging a pit or using a mechanized coring 

device. Quantifying SOC is thus tedious using conventional approaches, especially for SOC 

stock.  

In recent decades, increasing attention has been paid to diffuse reflectance infrared 

spectroscopy (DRIS) for characterizing soil properties, SOC concentration especially (Dalal 

& Henry, 1986; Sudduth & Hummel, 1991; McCarty et al., 2002; Barthès et al., 2006; Bellon-

Maurel & McBratney, 2011). Indeed, DRIS is a time- and cost-effective, non-destructive and 

reproducible approach, with no reagent required and no waste generated; moreover a single 

spectrum may be used to assess various properties. In its current uses DRIS is based on 

calibration, using multivariate regression and developed on calibration samples characterized 

by both spectral data and conventional reference data; then calibration can be applied to 

predict the property considered on new samples only from their spectrum. Indeed, the 

property is not measured but predicted, with known uncertainty, quantified using standard 

error of prediction. As stated by Reeves (2010), conventional analytical approaches produce 

small amounts of highly accurate, expensive data, while DRIS produces large amounts of 

low-cost, fair quality data, with specified uncertainty. In this way, McBratney et al. (2006) 

considered the combination of DRIS and multivariate statistics an opportunity for solving the 

soil data crisis.  
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This paper proposes an overview to demonstrate the relevance of DRIS for high-speed and 

low-cost quantification of SOC concentration and stock. So, given the key role of SOC in soil 

fertility and in the global carbon cycle, we aim at demonstrating that DRIS represents great 

opportunity for evaluating the land capacity to deliver ecosystem services. 

 

2. DRIS quantification of SOC concentration 

2.1. Physical background and historical outlines 

Infrared radiation causes molecular bonds to vibrate, and the vibrations absorb energy at 

wavelengths that depend on bond strength, on the atoms involved, and on chemical 

environment (Siesler, 2007). So when compared with the incident radiation, the radiation 

reflected by a solid sample is modified in the spectral regions that correspond to energy 

absorption by the sample. Fundamental vibrations occur in the mid infrared region (4000-

400 cm
-1

, i.e. 2500-25,000 nm), while their overtones and combinations mostly vibrate in the 

near infrared region (800-2500 nm), where they overlap (Bellon-Maurel & McBratney, 2011). 

Reflected spectra thus display much clearer peaks in the mid than in the near infrared range 

(Stenberg et al., 2010; cf. Figure 1), which explains why the former have long been used for 

molecule identification, based on visual observation. For instance, the regions around 2750-

2670 and 1730-1710 cm
-1

 have been assigned to saturated aliphatic carboxylic acids, and the 

region around 1650 cm
-1

 to amides (Socrates, 2001; Barthès et al., 2016). Such peak 

recognition is hardly possible with near infrared spectra (except for water, cf. Figure 1), 

though spectral regions could also be assigned to chemical compounds (Workman & Weyer, 

2008; Barthès et al., 2016). In general statistical tools are required for analyzing near infrared 

spectra, hence the more recent applications of this spectral range for analytical purposes. 

However, absorption is much stronger in the mid than in the near infrared range (cf. Figure 1), 

according to the vibrations they are associated with (i.e. fundamentals vs. overtones, 

respectively; Bellon-Maurel & McBratney, 2011). As a consequence, the reflected radiation is 

stronger in the near infrared, thus requires less sensitive and less costly sensors. This explains 

the rapid development of quantitative applications of near infrared spectroscopy once 

computer and data analysis sciences developed, followed, after a while, by their counterparts 

in the mid infrared range. 

Numerous authors have reported the usefulness of DRIS for characterizing SOC concentration 

based on spectra acquired in laboratory conditions (most often on air dried, 2-mm sieved 

samples). Bowers & Hanks (1965) were the first to demonstrate the qualitative effect of SOC 

on visible and near infrared reflectance (VNIR) spectra by comparing the same soil sample 
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with and without SOC. Quantification of SOC concentration from NIR spectra was firstly 

achieved by multiple linear regression, using a few wavelengths, then by principal component 

regression (PCR) and partial least squares regression (PLSR), which are more sophisticated 

procedures, based on latent variables (i.e. small numbers of orthogonal variables inferred from 

large numbers of redundant observed variables, such as infrared spectra, and used for 

replacing them in regression procedures; Dalal & Henry, 1986; Sudduth & Hummel, 1991). 

Similar PLSR approach was then used for inferring SOC concentration from mid infrared 

reflectance (MIR) spectra (Janik et al., 1995) Since then, numerous papers have used PLSR to 

infer SOC concentration from VNIR, NIR or MIR spectra; while some authors used nonlinear 

regression procedures such as local regressions (predictions made only using spectral 

neighbours) or data mining approaches like neural networks, boosted regression trees, random 

forests, etc. (Stenberg et al., 2010; Ramirez-Lopez et al., 2013; Vågen et al., 2016); and others 

tested spiking, which consists of enriching the calibration database with samples from the 

target set (Guerrero et al., 2010, 2014). 

Assessing the fit between predictions and observations has often been achieved using R², 

which is widely known and, to some extent, allows comparison between different studies. 

However, R² represents proportionality rather than similarity, thus may sometimes result in 

inappropriate judgement (though this has rarely been the case in the domain considered). The 

root mean square error (RMSE, often called standard error of prediction) is more specific but 

not very informative as long as the variable distribution has not been presented; moreover it 

hardly allows convenient comparisons between studies. The RPD (ratio of performance to 

deviation) is the ratio of observed standard deviation to RMSE, which integrates information 

on the variable distribution thus can be used for comparing the predictions of different 

variables, or different studies. Bellon-Maurel et al. (2010) however considered RPD 

inappropriate for variables that do not have normal distribution, and instead, recommended 

RPIQ (ratio of performance to interquartile distance, which is the ratio of interquartile 

distance to RMSE). Nevertheless, RPIQ has not been widely used to date, so RPD has 

remained useful for comparison between studies, and we have used it hereinafter, along with 

R². According to Chang et al. (2001), predictions of soil properties were considered accurate 

when RPD ≥ 2, and acceptable when 1.6 ≤ RPD < 2.0. 

 

2.2. Large calibration databases 

In their review on SOC quantification by DRIS, Bellon-Maurel & McBratney (2011) insisted 

on the need for as large and exhaustive calibration databases as possible. Some work had 
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already be done in the VNIR range by Shepherd & Walsh (2002) for eastern and southern 

Africa, by Brown et al. (2006) for the USA, and other continents to a lesser extent, and by 

Viscarra Rossel & Webster (2012) for Australia (Table 1). These studies gathered samples 

from different experiments, trials and surveys. More systematic spectral databases have then 

been presented, which aimed at covering areas relevant from geographical or administrative 

viewpoints. Noticeable work has been carried out in France using the national soil quality 

monitoring network and its associated bank of soil samples collected regularly over the 

French metropolitan territory (Arrouays et al., 2002), either using the VNIR, NIR or MIR 

range, and topsoils only or both top- and subsoils (Gogé et al., 2012, 2014; Grinand et al., 

2012; Clairotte et al., 2016; Table 1). Several authors have also worked with the LUCAS 

(Land use/cover area frame statistical survey; Tóth et al., 2013) VNIR database, which 

represents the topsoils from 23 European Union countries, more or less densely sampled. 

They distinguished cropland, grassland, woodland, other mineral soils and organic soils, 

possibly used covariables, and either performed data mining approaches (Stevens et al., 2013) 

or local PLSR (Nocita et al., 2014). Interestingly, local PLSR yielded better predictions than 

data mining approaches without covariable, but worse results when using sand as covariable 

(Table 1); moreover, using geographical coordinates as covariables did not improve the 

results (Nocita et al., 2014). Other large VNIR calibration databases have been built in China 

(Shi et al., 2015, who improved predictions when using spectral but also geographical 

neighbours for calibration) and Australia (Lobsey et al., 2017, who performed local 

calibration with independent validation in Australia but also New Zealand; Table 1). An 

attempt has even been made to build a global VNIR library, using samples from 92 countries 

(Viscarra Rossel et al., 2016a). Though the diversity of conventional methods used for 

analyzing SOC concentration (dry combustion, wet oxidation, loss on ignition, etc.), 

predictions using a machine learning algorithm with spectral pre-classification were accurate. 

Table 1 shows that most studies achieved accurate predictions of SOC concentration using 

large soil spectral libraries, with R²val and RPDval around 0.8 and > 2 in general, and up to 0.9 

and > 3 sometimes, respectively, even using common regression approach (PLSR). When 

procedures were optimized, in particular the representativeness of calibration samples (e.g. 

using spectral neighbours) and the spectral range (e.g. MIR for soils from temperate regions, 

cf. 2.5), standard error of prediction close to standard error of laboratory reference analysis 

could be achieved (e.g. 2.0 vs. 1.0-1.5 g kg
-1

 according to Clairotte et al., 2016, and Stevens et 

al., 2013, respectively). In such conditions, DRIS could helpfully be used in SOC estimation 

and monitoring for LDN planning; but to our knowledge, this has not been the case yet. 
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2.3. Types of soil samples used for spectrum acquisition 

Spectrum acquisition in laboratory conditions is generally made on air-dried, 2-mm sieved 

soil sample, which is the most general soil preparation for laboratory analyses and for long-

term sample conservation (Pansu et al., 2001). However, the sample may be further prepared 

for specific analyses or purposes; for instance SOC analysis by dry combustion is made on 

finely ground sample (e.g. < 0.2 mm; Pansu & Gautheyrou, 2006). Studies that compared 

NIRS predictions made on coarsely vs. finely prepared samples indicated in general that fine 

grinding (from < 0.2 to < 0.5 mm) resulted in better prediction of SOC concentration than 

coarse preparation (from < 2 to < 4 mm) in clayey soils but not in coarse-textured soils (Dalal 

& Henry, 1986; Fystro, 2002; Reeves et al., 2002; Russel, 2003; Barthès et al., 2006; Brunet 

et al., 2007). These contradictory effects have been explained by the size and arrangement of 

particles, which affect light transmission (Chang et al., 2001; Barthès et al., 2006). More 

accurate MIRS prediction of SOC concentration using spectra acquired on 0.2- than on 2-mm 

samples is a less controversial result, though it has rarely been studied (Barthès et al., 2016). 

Actually, to our knowledge, all studies carried out to date in laboratory conditions (except the 

above-mentioned) have used finely ground samples for MIR spectroscopy (< 0.2 mm and 

sometimes finer), which indicates there is implicit agreement that MIR requires finely ground 

samples. 

Moreover, several authors reported more accurate VNIRS prediction of SOC concentration on 

air-dried cores (a few dm in size) or clods (a few cm in size) than on air-dried, 2-mm sieved 

samples, possibly because higher bulk density in clods or cores would result in higher 

reflectance (Morgan et al., 2009; Fontán et al., 2010). 

Gras et al. (2014) even achieved more accurate VNIRS prediction of SOC concentration on 

field-moist than on air-dried clods, probably due to better light transmission. Indeed, 

increasing moisture reduces the refraction difference between soil particles and pore spaces, 

thus increases forward light scattering, hence the probability of photon absorption by soil 

particles (Twomey et al., 1986). Actually, several authors reported similar or better VNIRS 

performance in field than in laboratory conditions (cf. Table 2), which is counterintuitive a 

priori because, among other things, field acquisition involves variable soil moisture and the 

presence of coarse particles (which are removed before reference analyses used for 

calibration). But field conditions might be beneficial to some respects due to higher sample 

density, and higher cohesion in moist conditions (Stevens et al., 2008; Gras et al., 2014). 

However, Morgan et al. (2009) achieved less accurate VNIRS prediction of SOC 
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concentration on field-moist cores than on air-dried, 2-mm sieved samples, probably because 

field-moist cores had contrasting moisture contents (sampling had been performed in rather 

hot conditions with possible storms or irrigation, and at different depths). Veum et al. (2018), 

Allory et al. (2019) and Hutengs et al. (2019) similarly reported less accurate SOC prediction 

in field than in laboratory conditions firstly due to variable in-situ soil moisture content: 

moisture conditions might vary among depth layers (when several were sampled) and/or 

during long field campaigns (Table 2).  In the study reported by Morgan et al. (2009), 

prediction accuracy ranked as follows: air-dried cores > air-dried 2-mm sieved > field-moist 

cores. While for Gras et al. (2014), also on a range of soils, the rank was: field-moist cores 

> field-moist clods > air-dried clods > air-dried 2-mm sieved. In that study, field-moist 

samples had rather homogeneous soil moisture because all had been collected in wet 

conditions in winter. In laboratory conditions, Stenberg (2010) also observed that VNIRS 

predictions of SOC concentration were more accurate on standardized rewetted than on air-

dried samples, all sieved at 2 mm. 

These results suggest the following trends: 

- prediction accuracy increases with sample particle size, from finely ground samples to cores, 

due to better light transmission; except on ground clayey soils, for which prediction is better 

on 0.2- than on 2-mm samples, probably due to higher homogeneity and lower diffusivity of 

finely ground clayey samples; 

- prediction is better on moist than on dried samples when moisture is homogeneous among 

samples, due to better light transmission, but this is the opposite when moisture content 

varies among samples, because varying moisture brings noise to the spectra; thus field 

spectroscopy would be recommended outside dry periods and rainfall (or irrigation) events; 

- prediction is better on 2-mm sieved than on coarsely prepared soil samples (clods, etc.) 

when the soil is rich in coarse particles (> 2 mm), and the difference increases with their 

proportion. 

These trends have to be confirmed with other studies that would compare different sample 

preparations, moistures and coarse particle contents, on large and diverse sample sets as far as 

possible. 

 

2.4. Spectrum acquisition in laboratory vs. field conditions 

As seen above, spectrum acquisition on field moist samples, possibly cores or clods (coarsely 

crushed cores) may yield accurate predictions. Getting soil spectra directly onsite, in the field, 

has aroused much interest because this eliminates the need for sample packaging, transport, 
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drying, crushing and sieving, except for calibration purposes. This allows characterizing many 

samples and improves even more time- and cost-effectiveness (Viscarra Rossel et al., 2011). 

However, prediction of soil attributes using spectra acquired in the field most generally 

requires, to date, calibration with spectrum acquisition in the field, which is more tedious than 

spectrum acquisition in the lab. This explains why much less applications to soils have been 

carried out in the field than in the laboratory. Indeed, collections of conventionally analyzed 

soil samples are available air-dried and sieved (i.e. ready to be scanned), but no such 

collection of analyzed samples is available with samples as they were in the field. So 

calibration of field spectra requires specific field campaign and conventional analyses, which 

is particularly tedious and costly if the calibration database has to be representative of a 

country. 

Nevertheless some work has been done. Sudduth & Hummel (1993) were the first to report 

NIR spectrum acquisition in the field. Then a range of studies reported good predictions of 

SOC concentration at either local, regional or multi-regional scale, using VNIR spectra 

acquired in boreholes, on fresh cores, on crushed fresh samples, from the soil surface, from a 

measurement height of 1 m, or on-line with a spectrometer probe fitted to a subsoiler 

(Mouazen et al., 2006; Stevens et al., 2008; Kusumo et al., 2008, 2011; Nocita et al., 2011; 

Gras et al., 2014; Cambou et al., 2016; Nawar & Mouazen, 2018, 2019; Allory et al., 2019; 

Hutengs et al., 2019; Pei et al., 2019). Prediction results were often good, but not as good in 

general as in laboratory conditions (R² = 0.71 to 0.87 and RPD = 1.9 to 2.8 in cross- or 

external validation; Table 2). However, less accurate in situ VNIR predictions of SOC 

concentration have sometimes been reported (Morgan et al., 2009; Veum et al., 2018; Nawar 

& Mouazen, 2019; R²val = 0.64-0.65 and RPDval = 1.5-1.7), and even poor ones (Hutengs et 

al., 2019; R²val = 0.27 and RPDval = 1.2). This might be due to variable moisture content 

among samples (cf. 2.3) or insufficient representativeness of calibration samples (e.g. selected 

at random). 

Much less field work has been carried out using MIRS, because transportable MIRS is recent 

technology. In an exploratory study, Izzauralde et al. (2013) achieved good SOC predictions 

from MIR spectra of samples collected at different depths in a field, using calibration samples 

from that field, from another field and from archived samples (R²val = 0.77 and RPDval = 2.1). 

Ji et al. (2016) studied two fields using MIR spectra acquired at 5-cm depth, and achieved 

good SOC predictions for one field, where the soil was very organic, but poorer ones for the 

other field, less organic (R² = 0.86 and 0.60 and RPD = 2.6 and 1.6 in cross-validation, 

respectively). Hutengs et al. (2019) studied 90 fields (one sample per field) in a small region 
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and achieved acceptable SOC predictions (R²val = 0.63 and RPDval = 1.7). According to the 

authors, variable soil moisture content during field campaign (in spring) affected prediction 

accuracy negatively; but the fact that MIR spectra had been acquired from the soil surface 

while SOC was analyzed at 0-5 cm depth might also be considered (Table 2). 

Developing tools for applying calibrations built in laboratory conditions (on air-dried, 2-mm 

sieved samples) to spectra acquired in the field (moist, structured, with coarse particles, etc.) 

represents a great challenge and would have important consequences. Indeed, this would 

allow applying easy-to-build calibration databases made from archived soil collections to 

easy-to-get field spectra. Some authors have begun trying to remove the effects of moisture 

and structure from spectra, by identifying the spectral subspaces they affect then projecting 

the spectra orthogonally. Minasny et al. (2011) studied 2-mm sieved samples at different 

moisture contents and reported that VNIRS prediction accuracy of SOC concentration, instead 

of being deteriorated for moist samples (R²val decreased from 0.83 for air-dried samples to 

0.56 for wet samples, and RPDval decreased by 70%), was similar whatever sample moisture 

content after spectrum "orthogonalization". Ge et al. (2014) studied intact cores and 2-mm 

sieved samples either air-dried or wet, and observed that VNIRS prediction of SOC 

concentration using wet cores was improved after orthogonalization (R²val increased from 0.49 

to 0.53 and RPDval increased by 30%). This was mainly due to the removing of moisture 

effect, while the effect of structure was more difficult to address. Such approaches require 

scanning samples in different moisture and structural conditions, which is tedious, and has 

been limited to rather small sample sets to date. 

 

2.5. Spectral range: (V)NIRS vs. MIRS 

Many papers have reported better prediction of SOC concentration using MIR than (V)NIR 

spectra (Reeves et al., 2001, 2002; McCarty et al., 2002; McCarty & Reeves, 2006; Viscarra 

Rossel et al., 2006; Igne et al., 2010; Dong et al., 2011; Xie et al., 2011); but it is worth noting 

that they concerned temperate regions (except Dong et al., 2011), and rather homogeneous 

soil sample sets in general. The trend was less clear in other studies (Madari et al., 2005; 

Yang et al., 2012), while some even reported better NIRS than MIRS predictions (Madari et 

al., 2006; Ludwig et al., 2008; Rabenarivo et al. 2013; Barthès et al., 2016; and also Shao & 

He, 2011, for N concentration), regarding tropical and subtropical regions (except Ludwig et 

al., 2008) and more diverse sample sets. 

The supposedly superior performance of MIRS has been attributed to the richer information it 

provides (cf. Figure 1): more defined peaks, assigned to fundamental vibrations; while NIR is 
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the range of o+verlapping overtones and combinations (Reeves, 2010; Bellon-Maurel & 

McBratney, 2011). However, in Al and Fe oxide-rich soils (i.e. in particular tropical and 

subtropical regions), MIR information relating to SOC could be partly masked due to the 

overlap of regions relating to mineral and organic components (e.g. metal oxides often absorb 

at 1020-970 and 1100-825 cm
-1

 while carbohydrates and polysaccharides absorb at 1080-1030 

and 1170-950cm
-1

, respectively; Rabenarivo et al., 2013). And this would explain better NIRS 

than MIRS prediction of SOC in tropical and subtropical regions. But this result has to be 

consolidated with other studies, on large and diverse sample sets as far as possible. 

Importantly, Barthès et al. (2016) reported noticeably poorer MIRS predictions using spectra 

acquired on 2- than on 0.2-mm samples; thus MIRS requires fine grinding, which is 

somewhat tedious and contradicts the time- and cost-effectiveness of the approach. In 

contrast, these authors found little difference in SOC prediction accuracy when NIR spectra 

were acquired on 2- vs. 0.2-mm samples. This is confirmed by the fact that all cited MIRS 

applications used finely ground soil (< 0.2 mm or finer), while most cited NIRS applications 

used more coarsely-prepared soil (< 2 mm in general). 

 

3. DRIS quantification of SOC stock 

Sample SOC stock (gC dm
-3

) is calculated as the product of SOC concentration (gC kg
-1

) and 

apparent volumetric mass (or bulk density, Db, kg dm
-3

), preferably weighted by the 

proportion of fine earth (< 2 mm; Poeplau et al., 2017); and then reported for a given depth 

layer (kgC m
-2

 or MgC ha
-1

 for that depth layer).  

Some studies have attempted to estimate SOC stock from measurement of Db and DRIS 

prediction of SOC concentration: Cardinael et al. (2015) used VNIR spectra acquired on field-

moist intact cores, and Baldock et al. (2018) used MIR spectra acquired on air-dried, 2-mm 

sieved sample; but these studies presented predictions of SOC concentration, not SOC stock. 

Moreover, conventional determination of Db is tedious, as it involves collecting samples of 

known apparent volume, which requires opening pits or using hydraulic coring machine. 

Some studies used other approaches to determine Db. Priori et al. (2016) studied samples from 

Sicilian fields, and besides VNIRS prediction of SOC concentration on air-dried, 2-mm 

sieved samples, they predicted Db using a pedotransfer function that involved measured SOC 

concentration and texture. These authors achieved R²val = 0.77 and RPDval = 2.1 for SOC 

stock prediction on fine earth (< 2 mm), which was then corrected for semi-quantitatively-

estimated volumetric gravel content. On field-moist intact cores, Lobsey & Viscarra Rossel 

(2016) and Viscarra Rossel et al. (2016b, 2017) used gamma-ray attenuation for predicting 
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Db, which was corrected for volumetric moisture content using VNIR spectra; and spectra 

were also used for predicting SOC concentration. However, these authors aimed at evaluating 

SOC stock at the field level, and did not present comparisons between observed and predicted 

SOC stocks at the sample or profile level (except Viscarra Rossel et al., 2016b, who predicted 

SOC stocks at the profile level using kriging in addition to gamma-ray attenuation and 

VNIRS, which added a layer of uncertainty: in leave-one-out cross-validation, they achieved 

R² = 0.4-0.5 and RPD = 1.3-1.4). Attempts to directly predict Db using DRIS have rarely been 

successful: several studies obtained poor predictions (R²val < 0.3 and RPDval < 1.2; Minasny et 

al., 2008; Moreira et al., 2009; Veum et al., 2015). Some authors reported good figures of 

merit (R²val = 0.64-0.81 and RPDval = 1.7-2.2; Askari et al., 2015; Roudier et al., 2015; 

Cambou et al., 2016; Pérez-Fernández & Robertson, 2016). But this might sometimes have 

been due to homogenous soil population (Roudier et al., 2015), or conversely to very wide 

distribution (prediction error being actually larger than in other studies; Pérez-Fernández & 

Robertson, 2016), or to aggregation of sites with poor within-site prediction (Cambou et al., 

2016). 

Actually, in their review Bellon-Maurel & McBratney (2011) recommended direct DRIS 

prediction of SOC stock, and considered works in that direction should be a priority. And 

indeed, doing so, some authors have got promising results. Roudier et al. (2015) achieved 

good predictions of sample SOC stock in one large arable field, using VNIR spectra from 

fresh intact cores taken with hydraulic coring equipment mounted on a truck (R²val = 0.85 and 

RPDval = 2.6). Cambou et al. (2016) achieved acceptable prediction of sample SOC stock in 

two agroforestry fields 250 km apart using VNIR spectra of fresh cores collected using 

handheld auger (R²val = 0.70 and RPDval = 1.8), which is a much lighter approach thus opens 

exciting prospects. Cores collected with such manual auger are made of partly disturbed soil 

material; but the results indicate they nevertheless contain information on structure and SOC 

stock, which can be extracted from their VNIR spectra. Of course, information on SOC stock 

is poorer than from intact soil materials, which explains why prediction was less accurate in 

the latter study than in the former (cores with disturbed vs. undisturbed soil material, 

respectively); along with the probable fact that the homogeneity of the soil sample set was 

lower in the latter study than in the former (two agroforestry sites in undulating loess areas 

250 km apart vs. one arable site in a sand plain, respectively), which often makes DRIS 

predictions less accurate (Brunet et al., 2007). Allory et al. (2019) also scanned intact soil 

material but on pit walls, and achieved good VNIR prediction of sample SOC stock in urban 

soils of two French cities 800 km apart (R²val = 0.78 and RPDval = 2.2), though marked 
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differences between soils (calcareous or acid soils, under parks or streets). Unexpectedly, 

these authors achieved noticeably more accurate sample SOC stock prediction from spectra 

acquired in laboratory conditions (air-dried, 2-mm sieved samples; R²val = 0.89 and 

RPDval = 3.1), probably due to variable soil moisture during in situ spectrum acquisition. 

Accuracy was even improved when SOC stock was considered at the profile level (in 

kgC m
-2

; R²val = 0.94 and RPDval = 4.4) than at the sample level (in gC dm
-3

), probably 

because some uncertainties at the sample level could offset each other at a more integrated 

level. 

 

4. Conclusions and perspectives 

Many studies have evidenced the usefulness of DRIS for quantifying SOC concentration, 

especially when using large calibration databases (e.g. national spectral databases), with R² up 

to 0.9 and RPD up to 3.3 in external validation. And it is likely that improvements in spectral 

data analysis will allow even more accurate predictions, in particular through approaches such 

as local calibration and spiking. Complementary use of soil expert knowledge could also be 

fruitful, for instance for calibrations based on soil textural or mineralogical classes, or using 

covariables easy to obtain (e.g. sand content). 

Though more and more portable instruments allow implementation in the field, it may be 

assumed that most DRIS applications to soils will still long be carried out in laboratory 

conditions. Indeed, building calibration databases with spectra acquired in the field represents 

huge work, moreover field spectra may be acquired according to different procedures (on the 

soil surface, on clods, on cores, on pit walls, etc.) and spectra acquired in different conditions 

cannot easily be grouped in a common calibration database. In contrast, large calibration 

databases using soil spectra acquired in laboratory conditions are already available, will very 

probably become larger, and are often based on one type of soil samples (i.e. air-dried, 2 mm 

sieved). Developing tools that would allow using calibration databases built in laboratory 

conditions for making predictions from field spectra is a very exciting perspective; but 

according to the results achieved to date, such solution will not be operational soon. 

As emphasized by Bellon-Maurel & McBratney (2011), direct DRIS prediction of SOC stock 

represents an efficient option, using spectra acquired in field conditions, or more simply, in 

laboratory conditions. Indeed, determining SOC stock without having to determine the 

volumetric mass (except for calibration purposes), in particular without having to tediously 

collect intact soil cores, represents noticeable progress and should help getting much more 

extensive information on SOC stocks. 
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Soil organic carbon is the largest carbon pool in terrestrial ecosystems, thus an important 

component in the global carbon cycle. Moreover, because of its multifunctional role and its 

sensitivity to land management, SOC is one of the major indicators used for evaluating land 

degradation neutrality. Therefore providing guidance to help countries to estimate and 

monitor SOC for LDN planning is a key issue. Where SOC monitoring is necessary to verify 

LDN achievement, accurate data are needed (Chotte et al., 2019). DRIS has strong potential, 

either considering SOC concentration or stock, for supporting better evaluation of soil and 

land degradation, and the availability of spectrometers at increasingly affordable prices 

reinforces this potential. 
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TABLE 1 Predictions of SOC concentration from large spectral libraries. Scanned samples were 2-mm sieved, air-dried, except for Gogé et al. (2012, 

2014), who used 1-mm sieved, 55°C-dried samples, and Grinand et al. (2012) and Clairotte et al. (2016), who used 0.2-mm ground, 40°C-dried samples. 

Abbreviations and/or brief explanation of regression approaches: PLSR, partial least squares regression; local PLSR, uses spectral neighbours for PLSR; 

"double local" PLSR, uses spectral and spatial neighbours; LW PLSR, locally weighted PLSR (neighbour contributions depend on their similarity with 

target samples); spiking, consists of enriching the calibration set with a few target samples; MARS, multivariate adaptive regression spline; RT, regression 

tree; BRT, boosted RT; Cubist, rule-based RT; SVMR, support vector machine regression 

 

Reference Range Library Validation set Approach R²val RPDval 

       Shepherd & Walsh (2002) VNIR > 1000 topsoils, different countries 33% at random MARS 0.80 2.2 

       Brown et al. (2006) VNIR > 4100 samples, several depths and continents 1/6th cross-validation BRT 0.82/0.87
†
 2.4/2.8

†
 

       Viscarra Rossel & Webster (2012) VNIR > 10,000 samples, several depths, Australia 33% best represented RT 0.79
‡
 2.2

‡
 

       Gogé et al. (2012) VNIR > 2100 topsoils representating France 33% best represented LW PLSR 0.86 2.7 

       Grinand et al. (2012) MIR > 2100 topsoils representating France 80% at random, 10 repl. PLSR 0.89 3.0 

       Gogé et al. (2014) VNIR > 2100 topsoils representating France External, 24 km² area LW PLSR + spiking 0.58 1.4 

       Shi et al. (2015) VNIR > 2700 tospoils from China 10% well represented PLSR 0.50 1.4 

 
VNIR > 2700 tospoils from China 10% well represented Local PLSR 0.69 1.8 

 
VNIR > 2700 tospoils from China 10% well represented "Double local" PLSR 0.74 2.0 

       Clairotte et al. (2016) NIR > 3800 top- and subsoils representing France 10% best represented PLSR 0.85 2.0 

 
NIR > 3800 top- and subsoils representing France 10% best represented Local PLSR 0.89 3.0 

 
MIR > 3800 top- and subsoils representing France 10% best represented PLSR 0.88 2.5 

 
MIR > 3800 top- and subsoils representing France 10% best represented Local PLSR 0.92 3.4 

       Stevens et al. (2013) 
 

> 19,000 topsoils representing Europe 33% best represented 
   

 
VNIR Cropland 

 
SVMR 0.67/0.79

†
 1.7/2.2

†
 

 
VNIR Grassland 

 
SVMR 0.71/0.87

†
 1.9/2.7

†
 

 
VNIR Woodland 

 
SVMR 0.75/0.89

†
 2.0/2.9

†
 

 
VNIR Other mineral soils 

 
SVMR 0.78/0.86

†
 2.1/2.6

†
 

 
VNIR Organic soils 

 
Cubist 0.76/0.76

†
 2.0/2.0

†
 

       Nocita et al. (2014) 
 

> 19,000 topsoils representing Europe 30% best represented 
   

 
VNIR Cropland 

 
Local PLSR 0.79/0.84

†
 2.1/2.5

†
 

 
VNIR Grassland 

 
Local PLSR 0.81/0.84

†
 2.3/2.5

†
 

 
VNIR Woodland 

 
Local PLSR 0.79/0.85

†
 2.1/2.5

†
 

 
VNIR Organic soils 

 
Local PLSR 0.76/0.76

†
 2.0/2.0

†
 

       Viscarra Rossel et al. (2016a) VNIR > 23,000 samples, several depths, all continents 25% at random Cubist after classif. 0.89 3.3 

       Lobsey et al. (2017) VNIR > 17,000 samples, several depths, Australia External, two 5-km² areas Local PLSR 0.78-0.84 2.0 

       † 
Using sand as covariable. 

‡
 Prediction for log10SOC. 
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TABLE 2 Predictions of SOC concentration using VNIR or MIR spectra acquired in the field, and 

when reported, homologous predictions using spectra acquired in laboratory conditions, on 2-mm 

sieved, air-dried samples (in italics; same sets and regression procedures). All studies performed PLSR 

(partial least squares regression) except Nawar & Mouazen (2019), who used random forest. 

Abbreviations and/or brief explanations of procedures: CV, cross-validation; LOO CV, leave-one-out 

CV; RD CV, repeated double CV; Ext., external validation with around 30% samples in general, 

selected either at random or on samples well represented by calibration samples (denoted "repres."; e.g. 

selecting every third sample after SOC-sorting); spiking, consists of enriching the calibration set with a 

few target samples 

 

Reference Range Spectrum No of Scale Type of R² RPD 

  
acquisition samples and 

 
validation 

  

   
depth layers 

            Mouazen et al. VNIR Crushed topsoil 186, 1 Many fields, regional LOO CV 0.76 2.0 
(2006) VNIR 2 mm sieved, dry 

   
0.80 2.2 

        Stevens et al. VNIR From 1 m height 117, 1 10 fields in 1 region LOO CV 0.76 2.1 
(2008) VNIR 2 mm sieved, dry 

   
0.75 2.0 

        Kusumo et al. VNIR Intact soil core 210, 2 7 fields in 1 region Ext. random 0.75 2.0 
(2008) 

               Morgan et al. VNIR Intact soil core 540, 7 6 fields in 1 region Ext. random 0.64 1.5 
(2009) VNIR 2 mm sieved, dry 

   
0.73 1.7 

        Kusumo et al. VNIR Intact soil core 90, 5 1 field LOO CV 0.86 2.7 
(2011) 

               Nocita et al. VNIR Soil surface 113, 1 130-km transect Ext. repres. 0.84 2.5 
(2011) VNIR 2 mm sieved, dry 

   
0.93 3.7 

        Gras et al. VNIR Disturbed soil core 201, 1 6 fields in 1 country CV 4 groups 0.86 2.8 
(2014) VNIR Soil surface 201, 1 6 fields in 1 country CV 4 groups 0.82 2.4 

 
VNIR Crushed topsoil 201, 1 6 fields in 1 country CV 4 groups 0.83 2.4 

 
VNIR 2 mm sieved, dry 

   
0.80 2.3 

        Cambou et al. VNIR Disturbed soil core 288, 3 2 fields 250 km apart Ext. repres. 0.75 2.0 
(2016) 

               Nawar & Mouazen VNIR 15 cm depth 268+spiking, 1 4 fields in 1 region Ext. repres. 0.78 2.1 
(2018) VNIR 2 mm sieved, dry 

   
0.84 2.5 

        Veum et al. VNIR Borehole 708, 5 22 fields in 2 states Ext. random 0.64 1.6 
(2018) VNIR 2 mm sieved, dry 

   
0.82 2.3 

        Allory et al. VNIR Pit wall 132, 2 to 7 5 sites 850 km apart Ext. repres. 0.83 2.4 
(2019) VNIR 2 mm sieved, dry 

   
0.95 4.6 

        Hutengs et al. VNIR Soil surface 90, 1 90 fields in 1 region RD CV 0.27 1.2 
(2019) VNIR 2 mm sieved, dry 

   
0.66 1.3 

        Nawar & Mouazen VNIR 15 cm depth 122, 1 1 field Ext. repres. 0.65 1.7 
(2019) VNIR 15 cm depth 139, 1 1 field (another one) Ext. repres. 0.71 1.9 

 
VNIR 15 cm depth 240+spiking, 1 4 fields 300 km apart Ext. repres. 0.75 2.0 

        Pei et al. VNIR Borehole 90, 4 1 field Ext. random 0.77 2.1 
(2019) VNIR Borehole 58, 4 1 field (another one) Ext. random 0.87 2.7 

 
VNIR Borehole 148, 4 2 fields 3 km apart Ext. random 0.80 2.2 

        Izzauralde et al. MIR Crushed soil 110, 3 1 field Ext. 90%
†
 0.77 2.1 

(2013) 
               Ji et al. MIR 5 cm depth 120, 1 1 field LOO CV 0.86 2.6 

(2016) MIR 2 mm sieved, dry 
   

0.90 3.2 

 
MIR 5 cm depth 121, 1 1 field (another one) LOO CV 0.60 1.6 

 
MIR 2 mm sieved, dry 

   
0.61 1.6 

        Hutengs et al. MIR Soil surface 90, 1 90 fields in 1 region RD CV 0.63 1.7 
(2019) MIR 2 mm sieved, dry 

   
0.77 2.0 

        † 
Calibration using some archived samples, samples from another site, and 10% samples of the current experiment 

 



24 
 

FIGURE 1 MIR and NIR spectra of SOC-rich and -poor Malagasy topsoil samples that had been 

40°C oven-dried and 0.2-mm ground (59 and 5 gC kg
-1

, respectively). Abscissas are usually 

wavenumbers (in cm
-1

) for mid infrared and wavelengths (in nm) for near infrared (2500 nm 

= 4000 cm
-1

). In the mid infrared, absorbance is stronger and spectra display more informative peaks 

(near infrared peaks mostly relate to water, e.g. at 1400, 1900 and 2200 nm) 
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