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Bazile J, Jaffrezic F, Dehais P, Reichstadt M, Klopp C, Laloe D,
Bonnet M. Molecular signatures of muscle growth and composition
deciphered by the meta-analysis of age-related public transcriptomics
data. Physiol Genomics 52: 322–332, 2020. First published July 13,
2020; doi:10.1152/physiolgenomics.00020.2020.—The lean-to-fat ra-
tio is a major issue in the beef meat industry from both carcass and
meat production perspectives. This industrial perspective has moti-
vated meat physiologists to use transcriptomics technologies to deci-
pher mechanisms behind fat deposition within muscle during the time
course of muscle growth. However, synthetic biological information
from this volume of data remains to be produced to identify mecha-
nisms found in various breeds and rearing practices. We conducted a
meta-analysis on 10 transcriptomic data sets stored in public data-
bases, from the longissimus thoracis of five different bovine breeds
divergent by age. We updated gene identifiers on the last version of
the bovine genome (UCD1.2), and the 715 genes common to the 10
studies were subjected to the meta-analysis. Of the 238 genes differ-
entially expressed (DEG), we identified a transcriptional signature of
the dynamic regulation of glycolytic and oxidative metabolisms that
agrees with a known shift between those two pathways from the
animal puberty. We proposed some master genes of the myogenesis,
namely MYOG and MAPK14, as probable regulators of the glycolytic
and oxidative metabolisms. We also identified overexpressed
genes related to lipid metabolism (APOE, LDLR, MXRA8, and
HSP90AA1) that may contribute to the expected enhanced mar-
bling as age increases. Lastly, we proposed a transcriptional
signature related to the induction (YBX1) or repression (MAPK14,
YWAH, ERBB2) of the commitment of myogenic progenitors into
the adipogenic lineage. The relationships between the abundance
of the identified mRNA and marbling values remain to be analyzed
in a marbling biomarkers discovery perspectives.

bovine; meta-analysis; muscle; public data; transcriptomic

INTRODUCTION

The management of muscle mass and/or of meat-eating
qualities requires a good understanding of the molecular driv-
ers of muscle growth and composition. Indeed, in cattle as in
other vertebrates, muscle is composed of several tissues, such
as muscle fibers as well as connective and adipose tissues (41).
Genetic (breed, sex, etc.) and nongenetic (age, nutrition, etc.)
factors strongly influence the growth of each cell type within
muscle (9). For example, aging, the most influential nongenetic

factor, decreases muscular fiber and increases intramuscular
adipose and connective tissues proportions (9, 26, 41, 48).
Consequently, these age-related muscular composition varia-
tions affect sensorial and nutritional meat-eating qualities (41).
This has motivated the age-dependent high-throughput molec-
ular characterization of bovine muscle (4, 14, 30, 33, 43, 50,
55, 57, 72). The aim of these studies was to further knowledge
important in managing an optimal trade-off between muscle
growth and composition and to enhance beef production and
consumer satisfaction. However, to date, there is little consen-
sus on the molecular signature of muscle fiber growth relative
to connective and adipose tissues (15, 18, 21, 63). Meta-
analysis (52), as well as the emerging concept of data reuse for
transcriptomic [microarray or RNA-Seq (56)] or proteomic
results (71), offers the opportunity to produce knowledge from
available data with several advantages: reduced cost, reduced
use of animals, and reliable and robust results that have been
recorded in several independent studies. The first and rare
attempts of bovine public “omics” data meta-analyses have
successively provided signatures of the lactation process in
dairy cattle (23), predictors of oocyte quality in the bovine
(35), and conserved gene expression patterns between species
for normal and pathological muscles (6). We thus hypothesized
that the meta-analysis of available muscular transcriptomic
data would allow us to identify robust molecular signatures of
muscle growth and composition, especially marbling. We use
variation of postnatal ages across studies as a proxy for
physiological variation in muscular mass, composition, and
intramuscular lipid content. We use, reuse, reannotate and
analyze 10 muscular transcriptomic data sets available from
meat-producing bovines to describe transcriptomic signatures
of muscle according to muscle growth and breed. To our
knowledge, this is the first attempt to reuse public bovine
muscular transcriptomic data to identify conserved patterns
between breeds and rearing practices and to propose potential
indicators of muscular growth and composition in bovine.

MATERIAL AND METHODS

The work presented in this article was conducted in accordance
with guidelines previously proposed for meta-analysis of microarrays
data sets (52, 70). All data analysis was performed using R statistical
software (version 3.5.2) (51).Correspondence: M. Bonnet (e-mail: muriel.bonnet@inrae.fr).
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Data Retrieval

Data sets and their corresponding raw expression data were
collected from the public repositories Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) (7) or PubMed (https://
pubmed.ncbi.nlm.nih.gov) of the National Center for Biotechnology
Information, as well as from the Web of Science (WoS; https://
www.webofknowledge.com/). These publications (43, 50) and data
sets (from GSE5659, GSE48136, GSE21782) were identified using
keywords related to muscle (muscle, myo*, satellite cells; where *
allows one to broaden the search to every word starting with “myo”
such as myofiber, myogenesis, etc.), growth (growth, hypertrophy,
atrophy, hypermuscled, hypermuscularity, double-muscled, mar-
bling), bovine species (bovine, calf, steers, heifers, cows, beefs, bulls),
methods (transcript*, microarray, chip, gene array), and exclusion
criteria (fetal, disease, cardio*, heart). Of the hundreds of data sets
retrieved, we selected 25 transcriptomic data sets (18 from GEO, 7
from the WOS, see the PRISMA flowchart in Fig. 1), obtained in the
longissimus thoracis muscle. These 25 transcriptomic data sets re-
ported comparisons between bovines differing within the study only
by the age (similar breed and rearing practice and same sex). We
removed duplicate data from the GSM132170 and GSM132194 (38)
(a GSM stands for GEO samples and corresponds to 1 data set, a GSE

(GEO Series Experiment) may comprise several GSM) that have been
reanalyzed in the most recent GSE5659. We then excluded a data set
that has been obtained by RT-PCR, as there would be too few genes
to include in the meta-analysis (37), an RNA-Seq data set (29), and a
microarray data set due to the lack of gene identifiers (GSE60844).
Six data sets comparing a fetal and a postnatal age were excluded
because cellular and biological pathways involved in pre- and post-
natal muscle growth are very different (47). It was not possible to
update gene identifiers of three data sets on the current version of the
bovine genome due to the lack of sequences for the microarrays. We
excluded these three data sets. Thus, 10 data sets were finally sub-
jected to data preprocessing, gene identifier update, and meta-analysis
as described thereafter (Fig. 1). These 10 data sets were stored in GEO
as three GSE, namely GSE21782 (1 data set), GSE48136 (3 data sets),
and GSE5659 (6 data sets) and reported mRNA abundance assayed by
microarrays in muscles from five bovine pure- or cross-breeds aged
from 31 to 732 days after birth (Table 1). The GSE5659 reported data
from 147 samples differing by the breed, the nutrition or the age.
Thus, six subdata sets were created from the GSE5659 (with 2–4
technical replicates per animal) to perform the comparison between
two ages. These subdata sets were named E2, E3, E4, E6, E8, and E9
and were produced from a noncommercial microarray (39). We have
created one subdata set from GSE21782, namely the study E5, with
data from three muscles produced from the Affymetrix Bovine Ge-
nome Array (50). Three subdata sets were created from GSE48136,
named E1, E7, and E10 with data from 13 or 14 muscles.

Data Renormalization

Most of the time, raw data from GEO correspond to already
preprocessed and/or normalized data. However, to remove artefacts
and to ensure that each study follows the same procedure we normal-
ized the preprocessed microarray data. To achieve this goal, each
selected microarray data set was verified manually to take into
account if they were labeled according to a dye swap or a dye switch
protocol, if the data were paired, normalized, and log-transformed.
According to these indications, the values the from GSE21782 and
GSE48136 were normalized with the anapuce package normalization
function (73), converted into log base 2, and the sign was reversed in
case of a dye swap or dye switch. The abundances of replicated probes
or of technical replicates were averaged. Because data from GSE5659
(6 data sets, most of half of the available data) were expressed as ratio,
data from the remaining four data sets were also expressed as mRNA
ratio calculated as the log abundance in the muscle of the oldest
bovine divided by the log abundance in the youngest animal. Based on
the similarity of variance abundances between the biological repli-
cates, 59 biological replicates from 10 data sets were included in the
meta-analysis.

Gene Identifier Update to Match Probes with the Last Version of
the Bovine Genome

As the data sets were obtained over the last decade and were
performed with probes that targeted genes putatively different from
the current version of bovine genome, the gene IDs of the probes were
updated. Thus, probe IDs were matched with their corresponding
official gene symbol updated on the current bovine genome (UCD1.2)
using the pipeline sigReannot as previously described by Casel et al.
(12). In brief, a BLAST (blastall 2.2.26) (2) was performed using the
FASTA files provided within the raw data GPL file of each microar-
ray. The criteria applied for successful BLAST results were continu-
ous stretch of at least 15 base pairs for 50 or 20 bp for 70 mers and
a global identity percentage of at least 85%. The sequences of probes
were blasted against various banks of the current bovine genome,
namely verified bovine transcripts, bovine ncRNA, against the whole
genome, and against annex databases namely RefSeq Bos taurus,
RefSeq Sus scrofa, RefSeq Mus musculus, RefSeq Homo sapiens, and
ab initio bovine cDNA (all versions available in June 2018). The
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Fig. 1. Prisma flowchart of the data selection. In total, 10 studies comparing
muscular transcripts abundance between 2 ages of bovine were included in the
meta-analysis. The characteristics of the included studies are listed in Table 1.
n, Number of data sets/publications; GEO, Gene Expression Omnibus; WoS,
Web of Science.
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success rate of gene name update ranged from 23.7% (E6) to 64.7%
(E5) of probes IDs updated with a gene name.

Meta-analysis

Since the number of genes were different between studies (from
995 to 10,638 gene names), the 715 common genes across the 10 data
sets, were gathered and loaded in the meta-analysis. The meta-
analysis was performed using the mRNA ratio abundances based on P
value combination by the inverse normal method. Meta-analysis
calculates for each study, the P value of differential ratio for paired
data with moderated t test method (Limma) using the package
metaMA (version 3.1.2) (42). P values were corrected for multiple
testing with a Benjamini-Hochberg correction and were considered as
significant when P � 0.05. Whenever a gene was found several
times in a same sample, the mean of the abundance ratios for this
gene was calculated and used for the meta-analysis. By the end,
meta-analysis was performed for 715 unique genes that had ex-
pression values across all the 10 studies. Based on the Benjamini-
Hochberg adjusted P values (� 0.05) a list of differentially
abundant mRNA between two postnatal ages was realized.

Cluster Analysis and Annotation according to Gene Ontology

Heatmap and clustering methods were applied to group mRNA
together based on the similarity of their abundance pattern. Coex-
pressed genes were identified by a hierarchical clustering procedure
(hclust) implemented in the R package stats (version 3.6.0) on which
the best.cutree function was used (https://github.com/larmarange/
JLutils/blob/master/man/best.cutree.Rd) to determine the best parti-
tion to cut the dendrogram based on the highest relative loss of inertia
criterion. Best.cutree was applied to the average ratio values of the
differentially abundant mRNA between two postnatal ages. Then a
graphical representation was performed with the pheatmap package
(version 1.0.12 (36)). Gene names within each cluster were analyzed
for Gene Ontology (GO) enrichment using ProteINSIDE [https://
www.proteinside.org/ (32)]. To take advantage of the better annota-
tions within human, the GO enrichment analysis was performed in the
human species, and GO terms with a Benjamini-Hochberg adjusted P
value � 0.001 were considered.

Functional Analyses

The topological analysis of networks constructed between the gene
products of the DEG and the human proteins [because protein-protein
interactions (PPI) were much more described in human than bovine]
declared in Psicquic (3) was realized with ProteINSIDE (32). We
recorded the number of interactions, as well as centralities that were
proven as efficient to reveal proteins that play important roles in a
network, namely betweenness and closeness centralities. In brief,
betweenness centrality quantifies how frequently a node is on the
shortest path between every pair of nodes to detect bottlenecks in a
network. Closeness centrality quantifies how short minimal paths are
from a given node to all others; a large closeness indicates that a node
is close to the topological center of the network. Centralities were
calculated on a PPI network that linked the gene products identified as
differentially abundant (DEG) in the meta-analysis and interacting
proteins declared in IntAct, BioGrid, and UniProt databases. Values of
betweenness and closeness centralities were downloaded to identify
proteins with the highest values of centralities. Only PPI that were
reported by experiments were considered; thus 6,903 PPI were iden-
tified between 3,249 proteins; of these 214 were DEG from the
meta-analysis (version of ProteINSIDE Database was 1.2.11 and of
Psicquic 1.4.11).

Analysis of Genes Mapped in Quantitative Trait Locus Regions

The genes that were found as differentially expressed between two
ages were mapped against quantitative trait locus (QTL) regions usingT
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the ProteINSIDE webservice that uses resources from the Cattle QTL
database (https://www.animalgenome.org/cgi-bin/QTLdb/BT/index).
We mapped genes in regions where QTL related to muscle growth
(lean meat yield, longissimus muscle area), intramuscular fat content
(intramuscular fat, marbling score), and carcass adiposity (fat thick-
ness at the 12th rib, subcutaneous fat, rib fat) were reported.

Data Analysis according to the Physiological Age of Bovine

Across lifespan, the rate of hypertrophy and growth of longissimus
thoracis muscle, as well as the percent of intramuscular fat are very
different among bovine breeds (26) because of differences in adult
weight. Regarding muscle composition, the amount of intramuscular
lipids strongly increases from 8 to 14 mo of age in early- and
late-maturing breeds (26) corresponding to a degree of maturity
(DoM) of 0.30 � 0.07. Thus, to ensure relevant data-mining across
the five pure- or cross-breeds under the meta-analysis we calculated
the DoM (Table 1) of the animals, which is the ratio between slaughter
body weight (kg) and adult body weight (kg). The 10 studies used for
the meta-analysis were then categorized according to the early (group
1), mid (group 2), and more than the mid (group 3) animal growth,
keeping in mind that marbling deposition begins from 0.30 DoM and
is high after 0.50 DoM (Table 1). The first group is composed from
studies E1, E2, E3, and E4, which compared muscles from bovines
from 0.18 up to 0.36 of adult weight or DoM. The second group is
composed from studies E5, E6, E7, E8, and E9, which compared
bovines from 0.1 to 0.52 of DoM. The third group with the study E10
reported results from bovine muscles from 0.22 to 0.62 of DoM. An
average ratio of mRNA abundance per group of DoM was calculated
as the mean of the individual abundance ratio between old and young
bovines per studies and by group.

RESULTS

Identification of DEG

We considered 125 bovines from Angus, Belmont Red,
Chinese Red Steppe pure breeds, as well as from Piedmontese
� Hereford and Wagyu � Hereford crossbreds over the time
course of longissimus thoracis muscle growth, i.e., from 31 to
732 days of postnatal life (Table 1). A total of 10 microarray
data sets have been used, which provided 715 genes that were
quantified for their mRNA abundance in all the data sets. Of
these, 238 genes were identified as differentially expressed
(DEG, P value adjusted by the Benjamini-Hochberg correction
� 0.05) between two ages and whatever the breed. Of these,
214 mRNA were overabundant and 24 were less abundant
when older bovines were compared with the youngest animals.
The top 20 mRNA with the highest significant (P � 0.05)
fold-change were FMO5, CYCS, TCAP, SMG7, RPL29,
CTSS, PGAM2, STRA6, CYC1, STXBP1, ASPH, MAPK14,
GPRC5C, ARPC5, DUSP1, RPS12, ACSL3, TIMP1, and
HSPA5, all of them having a ratio �2.5 (log 2 fold change
�1.35 when old bovines were compared with the youngest
ones).

Among the 238 DEGs, 97 mRNA were identified as differ-
entially abundant between two ages in at least two studies and
the meta-analysis. Of these, 15 DEGs were identified in more
than half of the studies and the meta-analysis: namely, MB

was DEG in six studies and the meta-analysis; ASB12, FN1,
LRRC20, PKM in five studies and the meta-analysis; and
ACTN3, ATF4, CLNS1A, CLU, COPG1, CYC1, GPI,
PFKFB3, PGAM2, PGK1 in four studies and the meta-analysis

Among the 238 DEGs between two ages, 17 were exclusively
identified in the meta-analysis, namely APOE, CAMTA2, CTSH,
HMBS, HSP90AA1, LDLR, MGC148714, MXRA8, MYL12A,
NNT, RPL32, RPLP0, RPS13, SGCE, SOD2, STAC3, and
UQCR11.

Cluster Analysis and GO Annotation

To group DEG with similar abundance variation, we applied
a hierarchical clustering to the 238 mRNA differentially abun-
dant according to the age. Three clusters were identified with
two global profiles consisting of up- (clusters 1 and 3) and
downregulated (cluster 2) gene expression when older animals
were compared with younger ones (Figs. 2 and 3).

Cluster 1 contains 78 genes with the highest abundances in
studies 10, 5, and 3 comparing Angus at 375 versus 155 days,
Chinese Red Steppe at 732 versus 31 days, and Angus at 215
versus 155 days. The lowest abundances were recorded in
studies 8 and 9 comparing Piedmontese � Hereford and
Wagyu � Hereford at 366 versus 214 days (Fig. 3). The top
biological processes related to 78 genes that are annotated by
enriched (P � 1.13E-03) GO terms are reported in Fig. 2. Of
the 78 annotated genes, ACTN3, TNNT1, TNNC2, MYBPC1,
TPM2, MYL3, STAC3, MB, and MYH1 are annotated by five
terms related to muscle organization and contraction (muscle
filament sliding, skeletal muscle contraction, slow-twitch skel-
etal muscle fiber contraction, muscle contraction, transition
between fast and slow fiber, sarcomere organization, and skel-
etal muscle cell differentiation). PGK1, LDHA, OGDH, PKM,
GPI, MDH2, ATF4, GOT2, PGK1, PDHA1, BSG, and PLN
are annotated by six GO terms related to glucose metabolism
and signaling (glycolytic process, gluconeogenesis, canonical
glycolysis, pyruvate metabolic process, response to insulin).
DHRS3, NNT, MDH2, PDHA1, OGDH, CYC1, SOD2,
LDHA, ATP5F1B, COX7B, ATP2A1, GOT2 are annotated by
seven terms related to oxidative metabolism (oxidation-reduc-
tion process, tricarboxylic acid cycle, proton transmembrane
transport, oxaloacetate metabolic process, 2-oxoglutarate met-
abolic process, mitochondrial ATP synthesis coupled proton
transport, and ATP biosynthetic process). Less numerous DEG
are annotated by terms related to cell volume homeostasis
(CLNS1A, AQP1), skeletal muscle (FOS, ASB2), or fat cell
(MB, FABP4) differentiation, as well as negative (ANGPTL4,
NNT, AQP1, CD74) and positive (LDHA, TXNIP, ATF4,
CTSD) regulation of apoptotic process.

Cluster 2 contains 24 genes with the highest abundance
ratios in studies 4 and 9 comparing Wagyu � Hereford at 214
versus 92 days and at 366 versus 214 days. The lowest
abundance ratios were recorded in studies 1 and 10 comparing
Angus at 215 versus 155 and at 375 versus 155 days (Fig. 3).
The top biological processes related to the 24 genes that are

Fig. 2. Heatmap and clustering of 238 differentially expressed genes (DEGs) from the meta-analysis, have highlighted 3 clusters. Gene names by cluster were
subjected to a Gene Ontology (GO) annotation (ProteINSIDE). Results of enrichment are expressed as –log10 (P value) to visually plot them on graphs, which
means that –log10 (P value) of 3, 2, and 1.3 correspond to a P values of 0.001, 0.01, and 0.05, respectively. The genes or the number of genes that have been
annotated by a GO term are written next to the bar.
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annotated by enriched (P � 3.69E-03) GO terms are reported
in Fig. 2. Of these 24 genes, RPS9, RPL18, RPL32, RPLP0,
RPS13, IGFBP3, ATG5, RBBP7 are annotated by terms re-
lated to translation (translational initiation, translation, cyto-
plasmic translation, posttranslational protein modification).
RBBP7, HYAL2, ENO1, H3F3A are annotated by GO terms
related to cell cycle (negative regulation of cell growth, nega-
tive regulation of chromosome condensation, telomeric hetero-
chromatin assembly, negative regulation of G0 to G1 transi-
tion). IGFBP3, CYP19A1, RPLP0 are annotated by terms
related to hormone or cytokine signaling (positive regulation of
insulin-like growth factor receptor signaling pathway, positive
regulation of estradiol secretion, interleukin-12-mediated sig-
naling pathway).

Cluster 3 contains 136 DEG with the highest positive abun-
dance ratios in studies 1, 7, and 10 comparing Angus at 215
versus 155 days, at 155 versus 275 days, and at 375 versus 155
days of life. The lowest negative abundance ratios were re-
corded in studies 8 and 2 comparing Piedmontese � Hereford
at 366 versus 214 days and Belmont Red at 366 versus 244
days of life (Fig. 3). The top biological processes related to the
132 genes that are annotated by enriched (P � 1.61E-6) GO
terms are reported in Fig. 2. MAPRE2, MYOG, DDIT3,
GNAI1, USP16, PIK3C3, ENSA, TERF1, NR3C1, ANAPC11,
DUSP1, CSF2, CTSH, CXCL12, FN1, CAPNS1, NPM1,
TIMP1, ERBB2, HAS2, SFRP4, PHB, ASPH, TIMP2 are
annotated by GO terms related to cell cycle, and positive or

negative regulation of cell population proliferation. FSTL1,
TNF, CSRP3, PMCH, SFRP4, MGP, BIN1, CREG1, MYOG,
MAPK14, ELN, CSRP3, SGCE, UTRN are annotated by GO
terms related to muscle development (multicellular organism
development, skeletal muscle tissue development, muscle or-
gan development). ADRB2, PCBP1, MYOG, TNF, NR3C1,
YBX1, CAMTA2, NFIC, SERPINE1, MAPK14, NFKB2,
DDIT3, NPM1, USP16, CSRP3, SMG7, TERF1, HSP90AA1,
APOE, PHB, ASPH, YWHAH, NCOR1, YBX3, CREG1,
CTDSP2 and ERBB2 are annotated by GO terms related to the
regulation of transcription (positive regulation of transcription
by RNA polymerase II, telomere maintenance via telomerase,
positive regulation of transcription, DNA-templated, negative
regulation of transcription by RNA polymerase II, regulation
of transcription by RNA polymerase II). GSPT1, RPS2,
MRPL2, RPL19, EIF4G2, RPL29, RPL27A, MRPL35,
RPL15, RPS12, RPL24, RPS12, HSPA14, CST3, APOE,
FSTL1, TIMP1, FN1, MXRA8 are annotated by GO terms
related to the regulation of translation (translation, translational
initiation, cytoplasmic translation, posttranslational protein
modification). Other biological processes relevant to muscle
structure and metabolism were enriched within the DEG from
cluster 3: oxidation-reduction process (NDUFB9, IFI30, CYCS,
SDHA, FMO5, ACOX2, UQCR11, ACADS, ASPH, IDH3B),
lipid metabolic process (ACADS, FDFT1, ACOX2, ACSL3,
LDLR, LIPE, PLA2G2A, APOE, PLA2G12A), muscle contrac-
tion (TPM1, FXYD1, MYL12A, ASPH, UTRN), and extra-
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Fig. 3. Radar plot of mean log ratio profiles of the mRNA abundance by cluster and by study. A log ratio of �1 or 1 indicates a twofold variation in abundance.
Shown near the name of the studies (E1–E10) are the breed, and the physiological ages are compared. DoM, degree of maturity.
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cellular matrix disassembly (TIMP2, CTSK, CAPNS1,
TIMP1, CTSS).

Network Analysis and Linkage with Muscle Growth

Identification of genes with the highest regulatory potential
through network analysis. To identify the genes with the
highest regulatory potential we evaluated the closeness and
betweenness centralities of the DEG product within a PPI
network. Of the 50 top genes with the highest closeness and
betweenness centralities, 29 were found in the two lists of
centralities. Of these YBX1, HSPA5, STXBP1, YWHAH,
SDHA, HSP90AA1, and ERBB2 are among the genes with the
highest fold change. Six additional DEG (RPL29, CYCS,
MAPK14, FDFT1, MYOG, AQP1) are among the genes with
the highest fold change, and closeness or betweenness central-
ities (Fig. 4).

Identification of QTL related to muscle growth and marbling
around DEG identified by meta-analysis. Of the 238 DEG
identified by the meta-analysis, OGDH, EIF4A2, ANGPTL4,
RBM38, ROMO1, CYC1, AQP1, SLA, DES, IGFBP3 are near
QTL for marbling fat or marbling score. Moreover, CLNS1A,
PKM, ACAT1, COQ8A, ATG101, CSDE1, CLU, GOT2,
TXNIP, LDHA, CAMK2D, ANGPTL4, HMBS, CYC1, IRF8,
SBDS, MYH1, PDLIM1, SLA, LRRC20, ATP2A1, VEGFC
are near QTL for lean meat yield. STAC3, CKM, OGDH,
ATG101, GPI, TPPP3, EIF4A2, NNT, AQP1, RTN2, DES,
ATG5, IGFBP3 were shown to be near QTL related to longis-
simus muscle area. Of these, GOT2, TXNIP (longissimus
muscle area), CYC1 (marbling and lean meat yield QTL), and
AQP1 (marbling and longissimus muscle area) are among the
top 50 DEG with the highest fold changes.

Identification of the most differentially abundant mRNA
regarding the phases of muscular growth. Genes with ratio of
abundance between two ages (not log2 ratio) � 0.5 and � 2
were mined according to the growth phase of the bovine. We

listed mRNA with the top fold change during the early (up to
0.32 DoM, group 1), mid (up to 0.52 DoM, group 2), and more
than the mid (up to 0.62 DoM, group 3) animal growth. Among
the 238 DEG of the meta-analysis, the number of mRNA that
are twofold higher in older than younger muscle are 42, 20, and
204 for groups 1, 2, and 3. Of these and when a maximum of
30 mRNA was considered by group, TCAP and SMG7 were
identified in groups 1 and 2, ASPH, STXBP1, RPS12, CYCS,
MYOG in groups 2 and 3, and PFKFB3, ATRAID, SDHA,
ARPC5, FMO5, PHB, ELN, STRA6, TIMP1 in groups 1 and
3 (data not shown). The number of genes downregulated more
than twofold are 10, 3, and 10 for groups 1, 2, and 3,
respectively. Of these, TMED9 was identified in groups 2 and
3, while ENO1 and MATR3 were identified among the most
regulated genes in groups 1 and 3 (data not shown).

DISCUSSION

Postnatal muscle growth requires the concerted regulation of
numerous genes to ensure hypertrophy, but also metabolic and
contractile differentiations. Moreover, muscle is not just com-
posed of muscular contractile cells; satellite cells, adipocytes,
fibrocytes, endothelial cells, pericytes, nonsatellite stem cells
within the muscle also contribute to muscle growth by hyper-
trophy (increase in cell volume) and hyperplasia [increase in
cell number (9)]. The rates and waves of growth for the
different muscular cell types vary according to age and and at
similar age according to the breed (26). Thus, the proportion of
muscular, fibrous, and adipose (called marbling) cells deter-
mines the muscle composition with consequences on meat-
eating qualities and thus on the economic value of bovine meat.
Using publicly available microarray data from muscles of both
high muscling (Belmont Red, Piedmontese � Hereford), high
marbling (Angus, Wagyu � Hereford), and intermediate (Chi-
nese Red Steppe) bovine breeds, we carried out a meta-analysis
to identify DEGs between two postnatal ages distributed from
10 to 62% of mature weight, also cited as 0.1–0.62 DoM. As
main results, we identified 238 DEG between two ages what-
ever the bovine breeds. Of these, 97 were identified as DEG in
at least two independent studies and in the meta-analysis, when
we carried out a one-to-one data set analysis, while 17 were
never described before as DEG between two ages. Among the
DEG, we emphasized mRNA that could be transcriptional
signatures of muscular lipid deposition as the result of regu-
lated metabolisms or of the differentiation of news adipocytes.

Transcriptional Signature of the Dynamic Regulation of
Glycolytic and Oxidative Metabolisms

Besides protein synthesis, glycolytic and oxidative metabo-
lisms are the pathways that sustain postnatal muscle growth.
Muscles use both carbohydrates and fatty acids as energy
sources, according to a ratio that differs between glycolytic and
oxidative fibers of a muscle and according to the age. An
increased oxidative metabolism is generally concomitant to an
increase in marbling (8, 11). Accordingly, we detected a
muscular twofold mean overexpression for genes related to
glycolysis (GPI, PDHA1, PGAM2, PGK1, PKM) and tricar-
boxylic acid cycle (IDH3B, MDH2, OGDH, SDHA, SUCLG1)
when bovines from 0.32 and 0.18 DoM were compared (group
1), and for the five breeds. However, the abundances of these
10 mRNA were similar between bovines at 0.52 or 0.10 DoM
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Fig. 4. Venn diagram (5) highlighting genes among the 238 differentially
expressed genes (DEGs) of the meta-analysis that were found with the
highest betweenness centrality (BC), closeness centrality (CC) and fold
change (FC).
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(group 2), while they were 2.5 (glycolytic)- to 5.5 (oxidative)-
fold higher in muscle from bovine at 0.62 than 0.22 DoM
(group 3). These results may reflect known variation in the
metabolic properties of muscle at puberty that generally occurs
in cattle at a DoM of ~0.5. The DoM near puberty represents
an inflection point, as has been reported in the quadratic and
cubic relationships of ICDH (tricarboxylic acid cycle enzyme)
and LDH (glycolytic enzyme) activities regressed with the
DoM of the bovines in several breeds (58). The dynamic nature
of the abundance of mRNA related to glycolytic and oxidative
metabolisms with DoM may reflect the use of glycolytic
metabolism to supply energy during periods of rapid growth
before puberty and the use of glycolytic and more importantly
oxidative metabolism during muscle aging probably in rela-
tionship to an increased proportion of lipid deposit (9). We
observed a similar dynamic nature of mRNA abundance re-
lated to fast glycolytic or slow oxidative fibers. Indeed, MYH1
mRNA (coding for MyHC-2x isoform), related to fast glyco-
lytic fiber, was overexpressed in groups 1 and 3, while the
slow-type mRNA such as TNNT1 related to oxidative fibers
was overexpressed only in group 3.

From the current meta-analysis, we proposed that dynamic
regulation of the glycolytic and oxidative metabolisms may
result from the signaling of two muscular master genes MYOG
and MAPK14. The myogenin (MYOG) and the mitogen-
activated protein kinase p38 alpha (MAPK14) mRNA are
among the top fold change according to the age and with a high
regulatory potential suggested by high centralities within the
network. MYOG and MAPK14 are key transcription factors of
muscle-specific genes, and they are recognized markers of
differentiated fibers and of differentiating satellite cells (27, 44,
54, 61). However, increased MYOG and MAPK14 mRNA
abundance during muscle growth and after puberty (top fold
change in group 3 with an increase of 9- and 10-fold) is much
less documented than an overexpression during myogenesis,
which raises the question of the significance of MYOG’s and
MAPK14’s persistent expression in adult bovine muscle deci-
phered by the current study. One possible explanation for
MYOG overexpression in bovine muscle, especially after pu-
berty, is to shift muscle enzymatic activity from glycolytic
toward oxidative metabolism, as has been reported in several
mice models (24).

In differentiated contractile muscular fibers, MAPK14
was shown to be a key regulatory gene of glucose and
insulin signaling pathways in muscle from monogastric
species (66, 69). Additionally, TXNIP may contribute to or
be a sign of enhanced oxidative metabolism. TXNIP was
found as a mRNA with a high fold-change and as a gene
close to a chromosomal region with a QTL of meat yield.
The gene TXNIP encodes the thioredoxin�interacting pro-
tein that has been shown to regulate both insulin-dependent
and insulin-independent pathways of glucose uptake in
human skeletal muscle (45). The current meta-analysis
quantified TXNIP mRNA overexpression of 2.6- and 5.6-
fold in groups 1 and 3 of DoM, which parallels the over-
expression of glycolytic mRNA however with a higher
fold-change. Thus, MOYG, MAPK14, and TXNIP may
contribute to the dynamic regulation of glycolytic and oxi-
dative metabolisms within bovine muscle from 0.1 to 0.62
of DoM.

Transcriptional Signature Related to Lipid Metabolism

Of the 17 DEG between two ages that were identified
exclusively by the meta-analysis, APOE, LDLR, MXRA8, and
HSP90AA1 upregulation may be related to lipid metabolism
and enhanced marbling. Indeed, circulating triacylglycerols
such as VLDL and chylomicrons contribute to ATP production
within the contractile muscular cells and to energy storage
within adipocytes in bovine muscle through lipoprotein lipase
(LPL) activity (10). APOE and LDLR are among the regula-
tory proteins involved in lipid delivery to muscle. Apolipopro-
tein E (APOE) is synthesized primarily by the liver and the
adipose tissue but also by the muscle, and it regulates blood
lipid and lipoprotein levels in multiple ways. For example,
APOE acts as a ligand for low-density lipoprotein receptor
(LDLR) and affects the activities of LPL (34). Furthermore,
accumulated data report that APOE contributes to adipogenesis
by inducing the assembly of triglycerides in adipocytes (40).
LDLR mRNA was shown to be highly abundant in the heart
but also present in skeletal muscle and adipose tissues accord-
ing to an age-related pattern in mice (68). Studies using
LDLR-deficient and transgenic mice have provided evidence
for the contribution of LDLR in VLDL-triglyceride metabo-
lism in peripheral tissue including muscle, and for triglyceride
storage in adipocytes (64). Interestingly, another major physi-
ological regulator of triacylglycerol metabolism through LPL
activity in muscle is angiopoietin-like protein 4 (ANGPTL4)
protein. The current study reports a 2 (APOE and LDLR)- or
4.5 (ANGPTL4)-fold overexpression of mRNA abundance in
0.62 compared with 0.22 DoM bovines (group 3). These
overexpressions may be a sign of regulation of triacylglycerol
breakdown and storage within muscular adipose cells, if we
assume that in bovines as in monogastric species these mRNA
are much more abundant in adipose than muscular cells. In
agreement with this hypothesis of the transcriptional signature
of adipose cells, LIPE and FABP4 mRNA abundances fol-
lowed the same pattern as APOE and LDLR mRNA and were
among the 238 DEG identified by the current meta-analysis.
LIPE is an adipose enzyme involved in the lipolysis of triac-
ylglycerol stored within adipocytes, and a balance between
triacylglycerol synthesis and lipolysis was repeatedly observed
during lipid deposition (65). COPG1 is a coatomer GTPase
involved in lipolysis signaling within skeletal muscle (17) and
was also overexpressed with age in the present study. FABP4
is a well-known adipose cell marker within the muscle, and its
mRNA abundance was shown to be overexpressed with in-
creased marbling of bovine muscle (31, 36).

MXRA8 and HSP90AA1 mRNA abundance was also iden-
tified among the overexpressed DEG between two ages (2- and
2.5-fold for MXRA8 and HSP90AA1 between bovines of 0.62
and 0.22 or 0.52 and 0.1 DoM). MXRA8 is a transmembrane
protein that can modulate activity of various signaling path-
ways (28). However, to date a link between MXRA8 and lipid
metabolism has been documented by only one publication.
MXRA8 was indeed shown as an upregulated gene when
bovines with high carcass adiposity and marbling were com-
pared with slightly adipose bovines (16). The heat shock
protein HSP 90-alpha (HSP90AA1) is related to muscular
physiology by regulating transforming growth factor �
(TGF��), by folding the myosin motor domain and organizing
the filament structure of myofibers (22). Inhibition of
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HSP90AA1 function was reported to block TGF-�-induced
signaling and transcriptional responses through enhanced ubiq-
uitination and degradation of Smad3 in various cell lines (62).
In bovine reduced myostatin abundance, a member of the
TGF-� family was associated with higher muscle mass and
lower intramuscular fat content (1). Thus, the upregulation of
HSP90AA1 (one of the mRNA with the highest fold change
and centralities) in the muscle of aging bovine may contribute
to the upregulation of TGF-� with a putative positive impact
on adipogenesis or lipid metabolism. In agreement with these
various signaling mechanisms related to an increased lipid
deposition with age, we reported an overexpression of TNF-�I
mRNA in 0.62 compared with 0.22 DoM bovines. In bovine
muscle, decreased abundance of TNF-�I mRNA was associ-
ated with increased longissimus muscle area and decreased
marbling (13).

Transcriptional Signature of a Balance between Adipogenic
and Myogenic Lineages

Muscle grows by hypertrophy of muscular contractile cells
and by hyperplasia and hypertrophy of other myogenic cell
types, among them the most important being satellite cells.
Indeed, the number of fibers being fixed at birth in bovine (47),
satellite cells are a well-known muscle resident myogenic
progenitor recruited for muscle growth. Once recruited, satel-
lite cells express muscle-specific transcriptional factors includ-
ing MYOG and MAPK14, found upregulated in groups 2 and
mainly 3 for MYOG and in group 3 for MAPK14. However, an
age-related decrease in satellite cell activity is thought to exist
in bovines as in monogastric species and may partly result from
MAPK14 upregulation. Indeed, inhibition of MAPK14 signal-
ing was shown to maintain bovine satellite cells stemness (20)
and to decrease the adipogenic transdifferentiation of C2C12
myoblasts (49). Beside satellite cells, fibrocyte/adipocyte pro-
genitors are a well-known muscle resident cell population
recruited for muscle growth under the control of several pro-
teins, among these, bone morphogenetic protein 7 (BMP 7) (9,
59). Y�box�binding protein (YBX1) depletion was shown to
lead to a loss of Bmp7 expression and decreased adipogenesis
in mice (46).The protein 14-3-3 eta encoded by the gene
YWHAH is involved in a large spectrum of both general and
specialized signaling pathways. siRNA-mediated silencing of
YWHAH leads to an increased number of adipose cells differ-
entiated from mesenchymal skeletal stem cells (19). The gene
ERBB2 encodes the receptor tyrosine-protein kinase erbB-2,
which has been shown to regulate the expression of acetylcho-
line receptors and glucose transport within normal skeletal
muscle, as well as to favor the activation of quiescent satellite
cells in mice (25) and protein synthesis in culture bovine
satellite cells treated with testosterone analog (67). Moreover,
ErbB2 signaling downregulation was proposed to enhance
the differentiation of adipogenic progenitors through up-
regulation of the Akt pathway and downregulation of Erk-1
(60). MAPK14, YBX1, YWAH, and ERBB2 were among
the mRNA with the highest fold change and with the highest
centralities and are thus genes with high regulatory potential
through various pathways. Strong upregulation of those
genes, especially in muscle from 0.62 compared with 0.22
DoM bovines, may be favorable (YBX1) or repressive
(MAPK14, YWAH, ERBB2), depending on the presence of

their downstream targets, the differentiation of myogenic
progenitors into adipogenic cells. Collectively, these results
highlight a probable fine-tuning of gene expressions for
muscle growth probably involving several cell populations
and cross talk between cell types.

Conclusion

The present study was designed to identify DEG between
two different ages in growing bovine muscle, by using meta-
analysis of multiple microarray data sets throughout the animal
lifespan in five breeds or crossbreeds. The difference between
two ages was used as a proxy of intramuscular lipid content
variation, in the absence of enough muscular microarray data
sets carried out in bovines divergent only by marbling. In total,
we identified 238 DEG between two ages; of these, many are
related to the known dynamic regulation of contractile and
metabolic properties of muscle. Network and fold-change
ranking analysis highlights some potential “hub” genes that
were proposed to contribute to the regulation of dynamic
contractile and metabolic pathways. We also highlight tran-
scriptional signatures of lipid metabolism and of the contribu-
tion of muscle-resident progenitor cells to the myogenic or the
adipogenic growth with possible impact on the lean-to-fat ratio
within muscle and thus on marbling. These findings have
practical implications as they pave the way through the second
step of the marbling biomarkers discovery pipeline; that is the
qualification step (53). Indeed, we provide a list of DEG valid
for different breeds that are regulated in muscle when bovines,
after and before puberty, are compared as a proxy of marbling.
The qualification step requires the demonstration that the
differential abundance of a candidate biomarker observed in
the current meta-analysis driven discovery phase is seen by an
alternative method. In the case of mRNA, quantitative PCR
should be a valuable method to confirm current DEG as
differentially abundant between groups of bovine divergent for
marbling and also to investigate the relationship between the
mRNA abundance and the intramuscular fat content. Thus, the
present meta-analysis achieved the expected goals: the verifi-
cation and validation of independent results and the production
of conclusive findings related to transcriptional signatures of
lipid deposition. Numerous genes were not discussed in this
paper and are made available to meat physiologists interested
in the regulation of protein deposition or in the regulation of
growth of the connective tissue.
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