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Abstract7

Many species have a dormant stage in their life cycle, including seeds for
plants. The dormancy stage influences the species dynamics but is often un-
detectable. One way to include dormancy is to model it as a hidden dynami-
cal state within a Markovian framework. Models within this framework have
already been proposed but with different limitations: only presence/absence
observations are modelled, the dormancy stage is limited to one year, or
colonisation from neighbouring patches is not taken into account. We pro-
pose a hidden Markov model that describes the local and regional dynamics
of a species that can undergo dormancy with a potentially infinite dormancy
time. Populations are modelled with abundance classes. Our model consid-
ers the colonisation process as the indistinguishable influence of neighbour
non-dormant population states on a dormant population state in a patch.
It would be expected that parameter estimation, hidden state estimation
and prediction of the next non-dormant populations would have an expo-
nential computational time in terms of the number of patches. However, we
demonstrate that estimation, hidden state estimation and prediction are all
achievable in a linear computational time. Numerical experiments on simu-
lated data show that the state of dormant populations can easily be retrieved,
as well as the state of future non-dormant populations. Our framework pro-
vides a simple and efficient tool that could be further used to analyse and
compare annual plants dynamics like weed species survival strategies in crop
fields.
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1. Introduction10

A species’s distribution depends on its local and regional dynamics (Han-11

ski, 1998; Bullock et al., 2006). The metapopulation model, developed by12

Levins et al. (1969), uses colonisation and extinction parameters to describe13

a species dynamics across multiple patches. Levins’ model considered coloni-14

sation to be dependent on the fraction of occupied patches. Multiple studies15

have used the metapopulation concept on different types of species (Hanski,16

1994; Dornier et al., 2011). However, for many organisms (plants or animals)17

that can survive rough environmental conditions by stopping their develop-18

ment through a process called dormancy, the use of the original metapopu-19

lation model has been questioned due to the fact that the dormancy stage is20

not modelled (Freckleton and Watkinson, 2002; Bullock et al., 2006). Fréville21

et al. (2013) have shown that such models tend to overestimate colonisation22

and extinction parameters for annual plants with seed banks. Understand-23

ing and modelling dormancy in a species dynamics is important in order to24

better conserve and control the species.25

Multiple models have been developed to represent the dynamics of species26

that can undergo dormancy using information on the dormant and non-27

dormant populations of the species (Cohen, 1966; Levin et al., 1984; Jarry28

et al., 1995; Amarasekare and Possingham, 2001; Mistro et al., 2005; Soubeyrand29

et al., 2009; Han et al., 2014). However, in practice, data is often only col-30

lected on the species’ non-dormant population since the dormant population31

is hard to observe. This implies that the models mentioned above, which re-32

quire full knowledge about local dormant populations, would not be adapted33

to estimating a species’ local and regional dynamics from partial data alone.34

A model with incomplete information where the dormancy stage is modelled35

as a hidden variable and the non-dormant stage is the observable data is36

more appropriate to estimate the dynamics of a species that can undergo37

dormancy.38

The local dynamics of species with dormancy stages has already been39

studied using models with incomplete information (David et al., 2010; Quintana-40

Ascencio et al., 2011; Lamy et al., 2013; Fréville et al., 2013; Borgy et al.,41

2015; Manna et al., 2017). The models in Lamy et al. (2013), Fréville et al.42

(2013), Borgy et al. (2015), and Manna et al. (2017) use a Markovian frame-43

work where the current state of the population only depends on the state44

of the population in the previous time step. A classical extension of the45

Markov model to deal with incomplete observation is the Hidden Markov46
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Model (HMM). In a HMM, a hidden Markov chain emits information at47

each time step and the emitted information does not influence the states of48

hidden chain. By considering the species non-dormant population as observ-49

able and the species dormant population as hidden, it would be tempting to50

use HMM to study such species. However, the HMM does not include the51

influence of a species’ non-dormant populations on its dormant populations.52

Therefore, Borgy et al. (2015) and Pluntz et al. (2018) extended the HMM53

to include the influence of emitted observations on the hidden variables. The54

model was used to analyse the dynamics of weed species in crop fields from55

real data on weed abundance and weed occurrence. We will refer to this56

model as a HMM with Data Feedback (HMM-DF).57

The main limitation of the models developed by Pluntz et al. (2018),58

Borgy et al. (2015), Fréville et al. (2013), Lamy et al. (2013), Quintana-59

Ascencio et al. (2011), and David et al. (2010) is the absence of an explicit60

contribution of neighbouring patches in the colonisation process. Colonisa-61

tion, when modelled, is through seed rain, as the propagule rain effet de-62

scribed in Gotelli (1991). As a result, these authors consider patches to be63

independent. To take colonisation between patches into account, the model64

should include interactions between patches. Factorial HMM (Ghahramani65

and Jordan, 1997) or Coupled HMM (Brand et al., 1997; Wainwright and66

Jordan, 2008) are models that extend HMM to include interactions between67

patches (see Appendix A for a graphical representation). However, Factorial68

HMMs consider that the observation at time n depends on the state of the69

hidden variables of all chains at time n and, more importantly, that this ob-70

servation does not influence the hidden states at n+1. Thus, the colonisation71

process, from non-dormant populations to dormant ones, cannot be modelled72

with a FHMM. In a Coupled HMM the hidden state of a patch at time n in-73

fluences the hidden states of other patches at time n+1. This implies that the74

colonisation process occurs between dormant populations. This assumption75

is often wrong since dormant populations usually cannot move. In addition76

to having a dependency structure unsuited to model colonisation, the Ex-77

pectation Maximisation (EM) algorithm (Dempster et al., 1977), which is78

often used for parameter estimation based on incomplete information, has79

a time complexity exponential in terms of the number of patches, for both80

frameworks (Ghahramani and Jordan, 1997; Brand et al., 1997). The model81

proposed in Manna et al. (2017), which extends the model of Fréville et al.82

(2013), considered patches to be organised on a circle with colonisation com-83

ing from the closest neighbouring patches. Their model makes it possible to84
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compare the relative impact of seed dormancy and limited dispersal on the85

species dynamics. However, they conserved the limiting assumptions of the86

model of Fréville et al. (2013), such as: dormant and non-dormant popula-87

tions modelled by presence/absence; seed bank survival limited to one year;88

and the automatic presence of seeds in the seed bank when plants were found89

in the same patch at the previous time step.90

In order to avoid these assumptions, we propose a Multidimensional HMM91

with Data Feedback (MHMM-DF) that includes local (within patch) and92

regional (between patches) dynamics to describe the dynamics of species93

that undergo dormancy. The model considers that dormant and non-dormant94

populations depend stochastically on each other and the species non-dormant95

and dormant populations are modelled with abundance classes. The state96

of a dormant population in a given patch at time n is described as the97

result of four processes : (i) dormancy, i.e., survival of a population in the98

dormant stage between successive time steps where this survival is not limited99

in time; (ii) locally newly produced dormant individuals; (iii) colonisation100

from neighbouring patches; and (iv) exogenous colonisation. Processes (ii)101

and (iii) induce a dependency of the observed data on the hidden state.102

A MHMM-DF model is fully defined by the framework describing the in-103

teractions between populations. Since data on non-dormant populations are104

rarely collected over a long period of time, we propose a parametric version105

of the MHMM-DF. This version relies on simple probability distributions106

and functional forms for the sake of parsimony. The resulting parametric107

MHMM-DF has seven parameters and can characterise the dynamics of an-108

nual plants with seed banks.109

Regarding parameter estimation, the naive procedure that consists of ap-110

plying the EM algorithm on the reformulation of the MHMM-DF as a HMM111

with a single multidimensional chain has an exponential time and space com-112

plexity in terms of the number of patches. However, parameter estimation113

with exponential time and space complexity can only be done for a MHMM-114

DF with a small number of hidden states and a small number of patches.115

Thus, we demonstrate that for the MHMM-DF structure, estimation using116

the EM algorithm is achievable with a linear time and space complexity in117

terms of the number of patches. This linear complexity is obtained thanks118

to independence between dormant populations at time n and patch c and119

dormant populations in other patches at previous times, conditional on ob-120

served non-dormant populations. The same independence property is used121

for the Viterbi algorithm (Forney, 1973), which enables the recovery of the122
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state of the species’ dormant populations for all time steps with the same123

complexity. The Viterbi algorithm unlike the EM algorithm finds the most124

probable sequence of hidden states using a set of parameters, whereas the125

EM finds the set of parameters which is the most probable to have gener-126

ated the observable data. Additionally, the model can be used to predict the127

subsequent states of the species’ non-dormant population.128

We used simulated data to illustrate the quality of estimations provided129

by the EM algorithm for MHMM-DF, and of hidden state estimations and130

predictions provided by the Viterbi algorithm. Finally, using model selection131

techniques, we demonstrate how the framework can be used to discriminate132

between dynamics with and without dormancy or with and without coloni-133

sation.134

2. Multidimensional HMM with data feedback135

The MHMM-DF is a Dynamic Bayesian Network (Ghahramani, 1998). In136

the following sections we define the dependency structure of a MHMM-DF137

and model the interactions between dormant and non-dormant populations138

with a parametric version of the MHMM-DF.139

2.1. Definition140

Let us consider a set C of C patches. At time n ∈ {1, . . . , N} on patch141

c ∈ C two variables are defined: Xc,n is the abundance class of the dormant142

population (hidden) and Yc,n is the abundance class of the non-dormant143

population (observed). Their domains are ΩX = {0, 1, . . . , |ΩX | − 1} and144

ΩY = {0, 1, . . . , |ΩY |−1}, respectively. In order to simplify the expression of145

probabilities, we will resort to extra notations summarised in Table 1. The146

sequence of hidden variables of patch c forms the hidden chain c. A Multidi-147

mensional HMM with Data Feedback (MHMM-DF) of C dimensions models148

the joint dynamics of the C chains when the following two assumptions are149

fulfilled. First, for a given patch c at a given time n, the non-dormant popu-150

lation state Yc,n+1 only depends on the dormant population state Xc,n. The151

second assumption is that the dormant population state Xc,n+1 depends on152

the dormant population state of the same chain at the previous time step153

Xc,n, and on all non-dormant population states at time n + 1, Y C
n+1. This154

direct dependence of hidden variables on observable variables is the data feed-155

back part of the model. The dependences in the MHMM-DF are represented156

in Fig. 1 for two chains or patches.157
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Variable Domain Definition
Xc,n ΩX = {0, 1, . . . |ΩX | − 1} abundance class of dormant

population in patch c at time n
Yc,n ΩY = {0, 1, . . . |ΩY | − 1} abundance class of non-dormant

population in patch c at time n
XC
n ΩC

X {Xc,n, 1 ≤ c ≤ C}
Y C
n ΩC

X {Yc,n, 1 ≤ c ≤ C}
XC
n ΩnC

X {XC
n , 1 ≤ n ≤ N}

Y C
n ΩnC

X {Y C
n , 1 ≤ n ≤ N}

Table 1: Variables of the MHMM-DF.

The dynamics of a MHMM-DF is fully defined by three probabilities.158

The first one is the initial probability of the hidden states, P(XC
0 = xC0 ). For159

the sake of simplicity we will assume here that P(XC
0 = xC0 ) =

∏C
c=1 π(xc,0).160

The emission probability, defined as φ(xc,n−1, yc,n) = P(Yc,n = yc,n|Xc,n−1 =161

xc,n−1), models the awakening process, which corresponds to the generation162

of the local non-dormant population from the local dormant population. Fi-163

nally, the transition probability of the hidden variable of chain c, defined as164

A(xc,n−1, xc,n, y
C
n ) = P(Xc,n = xc,n|Xc,n−1 = xc,n−1, Y

C
n = yCn ), models the165

generation of the current dormant population at patch c, given the previous166

dormant population state and the non-dormant population state both lo-167

cally and in the neighbourhood. Note that in φ and A, variable ordering first168

corresponds to hidden variables and then to observed ones, and not to the169

temporal ordering of the events. In Section 3, we describe these probabilities170

in the case of annual plants.171

With these notations, the joint probability distribution of the hidden and172

observed variables of the C chains is:173

C

Π
c=1
π(xc,0)

N

Π
n=1

A(xc,n−1, xc,n, y
C
n )φ(xc,n−1, yc,n). (1)

174

2.2. Model parameterisation175

The estimation of φ and A functions in a non-parametric approach could176

be difficult, in particular, when the amount of available data is low. We177

present here a possible parameterisation for φ and A for the case where178

hidden and observed variables are abundance classes.179
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X1,0 X1,1 X1,2 ... X1,N

Y1,1 Y1,2 ... Y1,N

X2,0 X2,1 X2,2 ... X2,N

Y2,1 Y2,2 ... Y2,N

Figure 1: Dependency graph in a Multidimensional HMM with Data Feedback. Case of
two hidden chains (grey nodes). Blue edges are involved in the emission probability φ and
red ones in the transition probability A. Each chain emits its own observations and then
observations from all chains influence the next hidden state of a chain.

For a given value xc,n−1, φ(xc,n−1, yc,n) is modelled as a Binomial distri-180

bution with parameters |ΩY |, and pxc,n−1 . The probability pxc,n−1 is then181

modelled as a logistic regression: pxc,n−1 = 1
1+exp(−(µ0+µ1xc,n−1/|ΩX |))

, where µ0182

and µ1 are hyper parameters. Thus:183

φ(xc,n−1, yc,n) =

(
|ΩY | − 1
yc,n

)[
1

1 + exp(−(µ0 + µ1
xc,n−1

|ΩX |
))

]|ΩY |−1

×
[
exp(−(µ0 + µ1

xc,n−1

|ΩX |
))

]|ΩY |−yc,n−1

. (2)

The choice of a Binomial distribution combined with a logistic regression184

is motivated by the need for a parsimonious model (i.e., a model with few185

parameters). Additionally, a Binomial distribution combined with a logistic186

regression enables us to have a mean that increases when the class of the187

explanatory variables increases.188

The transition distribution A can also be modelled as a Binomial distri-189

bution. The parameters are (|ΩX |, pxc,n−1,yCn
), and the second parameter is190

7



again modelled as a logistic regression. It is natural to distinguish the influ-191

ence of yc,n from the influence of the observations on the chains other than192

chain c, so we propose to model pxc,n−1,yCn
as a function of xc,n−1, yc,n and193

y
C\c
n , where y

C\c
n = {yc′,n, c′ ∈ C, c′ 6= c} is the set of observations of all the194

patches except c at time n.195

Extracting a subset of y
C\c
n can be done in order to analyse a specific196

colonisation process. This will be the case, for example, in a metapopula-197

tion process where only populations from geographically-close patches can198

colonise a given patch. In other situations, it can be reasonable to assume199

that colonisation is possible with the same intensity from all patches. Coloni-200

sation scenarios can be modelled in the MHMM-DF framework by building201

an appropriate A function. Their suitability to data can be compared using202

model selection techniques. Here, for illustration purposes, we focused on203

models for which each patch contributes equally to colonisation.204

In order to limit the number of parameters in the regression model for205

pxc,n,yCn , we propose to aggregate y
C\c
n in a one dimension variable. There are206

several options to summarise the information in y
C\c
n . For instance, we will207

refer to mean colonisation as the colonisation process that considers that208

only the mean value of the non-dormant population state in patches other209

than c influences the dormant population state in patch c. The function that210

summarises the information is called fmean and associates the set of observed211

states of non-dormant population y
C\c
n to its mean value (rounded to the first212

smaller integer to remain in ΩY ). It is a measure of the mean colonisation213

capacity in the neigbourhood. The output of fmean is then used to define the214

logistic regression model for pxc,n,yCn as follows:215

pxc,n,yCn =
1

1 + exp(−(ν0 + ν1 × xc,n−1

|ΩX |
+ ν2 × yc,n

|ΩY |
+ ν3 × fmean(y

C\c
n )

|ΩY |
))
. (3)

Note that each explanatory variable was normalised.216

Finally, we modelled the initial distribution of the species dormant pop-217

ulation in patch c by using a parameterised Binomial distribution with pa-218

rameters |ΩX | and pτ where:219

pτ =
1

1 + exp(−τ)
. (4)

220
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Hyperparameters Interpretation for annual plants
Initial distribution P(xc,0) = π(xc,0)
τ Mean trend
Awakening process P(yc,n|xc,n−1) = φ(xc,n−1, yc,n)
µ0 Exogenous colonisation of non-dormant population

Not relevant for plants
µ1 Influence of seed bank state

on next adult plant population
Seed bank dynamics P(xc,n|xc,n−1, y

C
n ) = (xc,n−1, xc,n, y

C
n )

ν0 Exogenous colonisation by seed rain
ν1 Influence of the previous seed bank state

on the current one (dormancy)
ν2 Influence of local seed production

on the current seed bank state
ν3 Influence of neighbouring seed production

on the current seed bank state

Table 2: Parameterisation of a MHMM-DF using Binomial Logistic Regressions. The
hyperparameters are the parameters of the logistic regression.

This parameterisation of the MHMM-DF requires seven hyper parameters221

that are listed in Table 2. Using classical results of identifiability for HMM,222

we established that the MHMM-DF is generically identifiable as soon as C >223

2 under the mild assumption that N must be greater than 7 (see Appendix224

B).225

3. Modelling the dynamics of annual plants with a MHMM-DF226

The MHMM-DF is well adapted to describe the regional and local dynam-227

ics of annual plants like weeds. In order to model a species dynamics with a228

MHMM-DF, two assumptions must be made. The first assumption imposes229

immobility on the species’ dormant populations in a patch. This assump-230

tion is usually verified for annual plants since seeds are immobile once in the231

seed bank. The second assumption is that the species’ non-dormant popu-232

lation cannot directly influence another non-dormant population. A species’233

non-dormant population can only influence the species’ dormant populations.234

Thus, a non-dormant population will either die, become sterile or transform235

into a dormant population at the end of each time step. This assumption236
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is verified for annual plants when the time step is at least a year since the237

species’ non-dormant population does not live longer than a year. This im-238

plies a complete renewal of the plant’s non-dormant population between each239

time step.240

In a MHMM-DF for annual plant dynamics, the hidden variables or the241

species dormant populations (Xc,n)(c,n)∈{1,...,C}×{1,...,N} correspond to the seed242

bank’s state at time n in patch c. The observable variables or the species’243

non-dormant populations (Yc,n)(c,n)∈{1,...,C}×{1,...,N} correspond to the adult244

plant’s state at time n in patch c. The seed bank state is influenced by245

dormancy, colonisation and the current state of adult flora in the patch. All246

these processes are represented with red arrows in Fig. 1. The blue arrows247

correspond to germination and survival up to adulthood.248

For a parametric MHMM-DF with indistinguishable effects of neighbours,249

each hyperparameter is associated with a specific process of a plant’s dynam-250

ics, with the exception of τ , which is associated with the initial probability251

of dormant populations. With a parametric MHMM-DF, the annual plant252

dynamics is described by multiple processes: survival of seeds in the seed253

bank corresponding to the dormancy process (ν1); local production of seeds254

entering the local seed bank corresponding to the influence of the local non-255

dormant population on the local dormant population (ν2); and neighbouring256

production of seeds entering the local seed bank corresponding to the spa-257

tial colonisation process (ν3) and the germination process corresponding to258

(µ1). The exogenous colonisation process has two hyperparameters, µ0 and259

ν0. The exogenous production of seeds entering the regional seed bank by260

seed rain corresponds to the exogenous colonisation of dormant populations261

(ν0). The process modelled with the hyperparameter µ0 corresponds to ex-262

ogenous colonisation of non-dormant populations. This process is not present263

with annual plants. Even if this process cannot be removed, the smaller µ0264

is, the smaller the probability of non-dormant populations being colonised265

by the exterior will be. For instance, with µ0 = −5.7, the probability of266

exogenous colonisation of a non-dormant population occurring when all past267

populations are extinct is 0.004.268

4. Estimation269

A classical algorithm to estimate the parameters of a HMM model is270

the EM algorithm (Dempster et al., 1977). This iterative algorithm alter-271

nates an Expectation step and a Maximisation step, and converges towards272
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a local maximum of the log-likelihood. The E-step for HMM is the well-273

known Forward-Backward algorithm (Rabiner, 1989), which takes advantage274

of the linear structure of a HMM (see Fig. A.9) and variable elimination275

to efficiently compute all conditional probabilities of the hidden variables276

given the observations. However, when the hidden variables are multidimen-277

sional, the size of the domains and the structure of interaction can make the278

forward-backward algorithm intractable. Since chains only depend on one279

another through observations in MHMM-DF, we have demonstrated that280

independently running a forward-backward per chain is possible. While re-281

maining exact, it significantly reduces the computational complexity of the282

E step from exponential in terms of the number of patches O(|ΩX |2CN) to283

linear O(|ΩX |2CN). In this section, the EM algorithm is described for one-284

dimensional HMM and then detailed for MHMM-DF.285

4.1. EM algorithm for HMM286

A HMM (see Fig. A.9) is defined by: the initial probability π(x0), the287

emission probability φ(xn, yn) and the transition probability A(xn−1, xn). As288

can be observed the transition probability does not depend on observations,289

and is A(xn−1, xn) = P(Xn = xn|Xn−1 = xn−1). Let us denote λ = (π, φ,A)290

corresponding to the model’s parameters.291

Let us define Q(λ | λ′) = E[ln(P(XN , Y N |λ)|Y N = yN , λ′)]. The function292

Q can be expressed in terms of π, φ and A:293

Q(λ | λ′) =
N∑
n=0

∑
xn∈ΩX

γn(xn) ln(φ(xn, yn))

+
∑

x0∈ΩX

γ0(x0) ln(π(x0))

+
N∑
n=1

∑
xn−1∈ΩX

∑
xn∈ΩX

ξn(xn−1, xn) ln(A(xn−1, xn))

where γn(xn) = P(Xn = xn|Y N = yN , λt) and ξn(xn−1, xn) = P(Xn−1 =294

xn−1, Xn = xn|Y N = yN , λt).295

We denote λt as the current estimator at iteration t of the algorithm. The296

E-steps and M-steps are defined as follows:297

298

E-step: compute all the probabilities γn(xn) and ξn(xn−1, xn).299

M-step: update the parameter λ by maximising Q(λ | λt).300

301
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The direct application of the EM algorithm to a HMM where the hidden302

variable is of dimension C (i.e., xn = (x1,n, . . . , xc,n)) requires a number303

of computations that is exponential in C. Therefore, for multidimensional304

hidden states HMMs, the E step is generally intractable. However, for the305

structure of a MHMM-DF, we can derive an exact E-step that is only linear306

in terms of C.307

4.2. E step for MHMM-DF308

In a MHMM-DF, the C hidden chains are independent conditionally to309

all the observations:310

P(XC,N = xC,N |Y C,N = yC,N) =
C

Π
c=1

P(XN
c = xNc |Y C,N = yC,N).

This can be graphically seen in Fig. 1 where all the paths going from a hidden311

variable of chain c to a hidden variable of chain c′ go through an observed312

variable. This implies that the function Q(λ | λ′) can be written in terms of313

the following probabilities :314

ξc,n(xc,n−1, xc,n) = P(Xc,n = xc,n, Xc,n−1 = xc,n−1|Y C,N = yC,N , λt),
ρc,n−1(xc,n−1) = P(Xc,n−1 = xc,n−1|Y C,N = yC,N , λt).

The proof is provided in Appendix C. Consequently, we could consider ap-315

plying one forward-backward algorithm per chain. A direct mimicking of the316

forward-backward algorithm for a one-dimensional HMM would suggest that317

we define the auxiliary variable for chain c as :318

αc,n(xc,n) = P(Y C,n = yC,n, Xc,n = xc,n|λt)
319

βc,n(xc,n) = P(Y C
n+1 = yCn+1, ..., Y

C
N = yCN |Xc,n = xc,n, λt)

where yC,n = {yc,n′}1≤c≤C, 1≤n′≤n corresponds to the observations in all patches320

from the initial time step until step n. As opposed to the case C = 1, the321

variables Y C
n+1, ..., Y

C
N are not independent of Y C,n conditionally on Xc,n. As322

a consequence, the property αc,n(xc,n)βc,n(xc,n) ∝ P(Xc,n = xc,n, y
C,N |λt),323

which is crucial to calculate ρ and ξ in a HMM, does no longer hold. How-324

ever, the property can be recovered by defining the auxiliary variables of the325

E-step as:326

αc,n(xc,n) = P(Y C,n = yC,n, Xc,n = xc,n|λt),
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327

βc,n(xc,n) = P(Y C
n+1 = yCn+1, ..., Y

C
N = yCN |Y C,n = yC,n, Xc,n = xc,n, λt).

This way, the product αc,n(xc,n)βc,n(xc,n) is equal to P(Xc,n = xc,n, y
C,N |λt).328

The auxiliary variables can be defined by their recursive equations :329

αc,n(xc,n) ∝
∑

xc,n−1∈ΩX

αc,n−1(xc,n−1)φt(xc,n−1, yc,n)At(xc,n−1, xc,n, y
C
n ).

A complete proof is given in Appendix C. Equality is obtained by multi-330

plying the right part of the equation by the constant factorKc,n = P(y
C\c
n |yC,n−1).331

Kc,n is the probability of the observations in all patches except c at time n,332

conditionally on all the observations up to time n− 1. Let us define:333

α̃c,n(xc,n) =
∑

xc,n−1∈ΩX

α̃c,n−1(xc,n−1)φt(xc,n−1, yc,n)At(xc,n−1, xc,n, y
C
n )

where α̃c,0(xc,0) = αc,0(xc,0).334

Similarly we can show that335

βc,n(xc,n) ∝
∑

xc,n+1∈ΩX

βc,n+1(xc,n+1)At(xc,n, xc,n+1, y
C
n+1)φt(xc,n, yc,n+1).

Let us define:336

β̃c,n(xc,n) =
∑

xc,n+1∈ΩX

β̃c,n+1(xc,n+1)At(xc,n, xc,n+1, y
C
n+1)φt(xc,n, yc,n+1)

with β̃c,N(xc,N) = βc,N(xc,N).337

All the α̃ and β̃ can be calculated recursively. Thus, the probabilities of338

interest for the E-step are calculated using the following equalities:339

ρc,n(xc,n) =
β̃c,n(xc,n)α̃c,n(xc,n)∑
x∈ΩX

β̃c,n(x)α̃c,n(x)
,

ξc,n(xc,n−1, xc,n) =
At(xc,n−1, xc,n, y

C
n )β̃c,n(xc,n)α̃c,n−1(xc,n−1)φt(xc,n−1, yc,n)∑

(x,x′ )∈Ω2
X

A(x′ , x, yCn )β̃c,n(x)α̃c,n−1(x′)φt(x
′ , yc,n)

.
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We were also able to derive the expression of the likelihood in terms of340

the quantities α̃c,n and β̃c,n.341

P(yC,N) =

 ∑
xc,n∈ΩX

α̃c,n(xc,n)β̃c,n(xc,n)


×

 N∏
j=1

∏
l∈{1,...,C}\c

∑
xl,j−1∈ΩX

φ(xl,j−1, yl,j)
α̃l,j−1(xl,j−1)∑
x∈ΩX

α̃l,j−1(x)

 . (5)

See Appendix D for a proof.342

4.3. M step for MHMM-DF343

We present here the equations for the M step for a MHMM-DF model344

with indistinguishable effects of the neighbours, as defined in Section 2.2. In345

this case, the M-step corresponds to an update of the current estimators of346

the hyperparameters τ , µ = (µ0, µ1) and ν = (ν0, . . . , ν3) associated with347

(πτ , φµ, Aν). If (τt, νt, µt) are the current parameter estimators, and ρc,n348

and ξc,n are the corresponding functions computed during the E step, then349

(τt+1, νt+1, µt+1) are obtained by maximizing Q(λ|λt):350

Q(λ|λt) =
C∑
c=1

∑
x∈ΩX

ln(π(x))ρc,0(x)

+
C∑
c=1

N∑
n=1

∑
(xn,xn−1)∈Ω2

X

ln(A(xn−1, xn, y
C
n ))ξc,n(xn−1, xn)

+
∑

xn−1∈ΩX

ln(φ(xn−1, yc,n))ρc,n−1(xn−1).

The solution λ that maximizes Q(λ|λt) is a zero of the partial derivatives of351

Q. Thus:352

∂Q

∂τ
=

C∑
c=1

∑
xc,0∈ΩX

[(xc,0) +
(1− |ΩX |)

1 + exp(−τ)
]ρc,0(xc,0)

=
C(1− |ΩX |)
1 + exp(−τ)

− C +
C∑
c=1

∑
xc,0∈|ΩX |

xc,0ρc,0(xc,0),
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∂Q

∂µ0

=
C∑
c=1

N∑
n=1

∑
xc,n−1∈ΩX

[
(yc,n) + (1− |ΩY |)pxc,n−1

]
ρc,n−1(xc,n−1),

∂Q

∂µ1

=
C∑
c=1

N∑
n=1

∑
xc,n−1∈ΩX

[
(yc,n) + (1− |ΩY |)pxc,n−1

] xc,n−1

|ΩX |
ρc,n−1(xc,n−1)

where we recall that pxc,n−1 = 1

1+exp(−(µ1
xc,n−1
|ΩX |

+µ0))
.353

∂Q

∂ν0

=
C∑
c=1

N∑
n=1

∑
(xn,xn−1)∈Ω2

X

qxc,n,yCn ξc,n(xc,n−1, xc,n),

∂Q

∂ν1

=
C∑
c=1

N∑
n=1

∑
(xn,xn−1)∈Ω2

X

xc,n−1

|ΩX |
qxc,n,yCn ξc,n(xc,n−1, xc,n),

∂Q

∂ν2

=
C∑
c=1

N∑
n=1

∑
(xn,xn−1)∈Ω2

X

yc,n
|ΩY |

qxc,n,yCn ξc,n(xc,n−1, xc,n),

∂Q

∂ν3

=
C∑
c=1

N∑
n=1

∑
(xn,xn−1)∈Ω2

X

fmean(y
C\c
n )

|ΩY |
qxc,n,yCn ξc,n(xc,n−1, xc,n)

where qxc,n,yCn = [(xc,n) + (1− |ΩX |) 1

1+exp(−(ν0+ν1
xc,n−1
|ΩX |

+ν2
yc,n
|ΩY |

+ν3
fmean(y

C\c
n )

|ΩY |
))

].354

Note that each group of hyperparameters τ , ν and µ can be updated in-355

dependently of one another, since the group of partial derivatives associated356

with one of them does not involve the others. The numerical method used to357

search for the zeros is the limited-memory Broyden–Fletcher–Goldfarb–Shanno358

algorithm of Byrd et al. (1995).359

5. Hidden state estimation and prediction360

When managing annual plants, knowing the past history of the seed bank361

is valuable information that can be used to target control or conservation362

actions. In a MHMM-DF model, the species’ dormant population of patch363

c at all time steps up to N can be recovered by computing the most likely364

sequence given the observed sequences of non-dormant populations in all365
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patches. In this section, we show how to efficiently compute this sequence by366

deriving the Viterbi algorithm for MHMM-DF chain-by-chain. Prediction of367

the state of the adult flora the next season is also valuable information for368

management. We also describe how to predict the most likely non-dormant369

state of the species at time N + 1 based on the observations of the previous370

years.371

5.1. Hidden state estimation372

The Viterbi algorithm (Forney, 1973) finds the most likely sequence of373

hidden states. When applied to the MHMM-DF model, it makes it possible to374

recover the state of a species’ dormant population for any patch at any time.375

The most likely sequence of hidden states is the sequence of hidden states376

that maximises the joint probability of all the hidden variables conditional377

on the observations (i.e. non-dormant population). Thus, the following must378

be computed:379

argmax
xC,N∈ΩC×N

X

P(XC,N = xC,N |Y C,N = yC,N)

which is equivalent to computing:380

argmax
xC,N∈ΩC×N

X

P(XC,N = xC,N , Y C,N = yC,N).

As for the forward-backward algorithm, a direct application of the Viterbi381

algorithm is not possible due to the size of ΩC×N
X . However, here again we382

show that we can find the most likely sequence of hidden states independently,383

chain-by-chain. Independent recovery can be done due to the following prop-384

erty of MHMM-DF:385

max
xC,N∈ΩC×N

X

P(XC,N = xC,N , Y C,N = yC,N) =
C

Π
c=1

max
xNc ∈ΩN

X

P(XN
c = xNc , Y

C,N = yC,N).

Proof of this property can be found in Appendix E. Let us now consider a
single chain, c, and see how we can recursively compute the most likely state
of the hidden sequence for this chain. We first define:

δc,n(xc,n) = max
xn−1
c ∈Ωn−1

X

P(Xn−1
c = xn−1

c , Xc,n = xc,n, Y
C,n = yC,n),

where xn−1
c = (xc,1, . . . , xc,n−1). δc,n can be reformulated as:386
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δc,n(xc,n) = max
xc,n−1∈ΩX

Kc,nδc,n−1(xc,n−1)φ(xc,n−1, yc,n)A(xc,n−1, xc,n, y
C
n )

where Kc,n is the same constant as defined in the E-step for MHMM-DF. A387

detailed proof can be found in Appendix E. In order to avoid the constant,388

we define, for all c and all n, δ̃c,n as:389

δ̃c,n(xc,n) = max
xc,n−1∈ΩX

δ̃c,n−1(xc,n−1)φ(xc,n−1, yc,n)A(xc,n−1, xc,n, y
C
n )

where δ̃c,0 = δc,0. Then, in order to compute the most likely state of the390

hidden chain at patch c, we used the following intermediate quantity:391

ψc,n(xc,n) = argmax
xc,n−1∈ΩX

δ̃c,n−1(xc,n−1)φ(xc,n−1, yc,n)A(xc,n−1, xc,n, y
C
n ).

The Viterbi procedure is then as follows for each patch c:392

1. Initialization for all xc,0 ∈ ΩX :393

δ̃c,0(xc,0) = π(xc,0),
394

ψc,0(xc,0) = 0.

2. Forward recursion for n ∈ {1, ..., N}:395

δ̃c,n(xc,n) = max
xc,n−1∈ΩX

δ̃c,n−1(xc,n−1)φ(xc,n−1, yc,n)A(xc,n−1, xc,n, y
C
n ),

396

ψc,n(xc,n) = argmax
xc,n−1∈ΩX

δ̃c,n−1(xc,n−1)φ(xc,n−1, yc,n)A(xc,n−1, xc,n, y
C
n ).

Once the recursion is done, we can collect the hidden state of patch c at397

time N by looking at the state that maximises δ̃c,N . In a recursive manner,398

we can then collect the hidden state of patch c at times N − 1 to 1. Thus,399

the species’ dormant populations state can be recovered with the following400

procedure:401

1. Initialization :402

x̂c,N = argmax
xc,N∈ΩX

δ̃c,N(xc,N) = argmax
xc,N∈ΩX

max
xN−1
c ∈ΩN−1

X

P(XN
c = xNc , Y

C,N = yC,N).

2. Backward recursion for n ∈ {N − 1, ..., 0}:403

x̂c,n = ψc,n(x̂c,n+1)

where x̂c,n is the most likely state for Xc,n.404
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5.2. Prediction405

We predict the species non-dormant population state in patch c at time406

N + 1 as the state with maximum probability given the observed past non-407

dormant populations:408

ŷc,N+1 = argmax
yc,N+1∈ΩY

P(Yc,N+1 = yc,N+1|Y C,N = yC,N).

This predictor is easily obtained using the quantity ρc,N computed in the E409

step of EM for MHMM-DF:410

ŷc,N+1 = argmax
yc,N+1∈ΩY

∑
xc,N∈ΩX

ρc,N(xc,N)φ(xc,N , yc,N+1)

where ŷc,N+1 is the most likely state for Yc,N+1. A detailed proof can be found411

in Appendix F.412

6. Numerical experiments413

Three types of experiments are done using simulated data. The first ex-414

periment evaluates the quality of the estimators and characterises situations415

for which estimation may be difficult. The second experiment is model selec-416

tion. It illustrates how MHMM-DFs with the EM algorithm can be used to417

discriminate between different types of dynamics from observations. The last418

experiment evaluates the quality of predictions and hidden state estimation.419

The code used is available on Figshare and the digital object identifier is420

10.6084/m9.figshare.7796612.421

All the following simulations are done with C = 10 patches and N = 100422

time steps, where |ΩX | = |ΩY | = 5. For a given value of the vector (µ, ν),423

we simulated the states of dormant and non-dormant populations with mean424

colonisation and only used observations of non-dormant populations for pa-425

rameter estimation, hidden state estimation and prediction. The follow-426

ing numerical experiments were programmed with R. The M step of the427

EM algorithm uses the R function optimr with the limited-memory Broy-428

den–Fletcher–Goldfarb–Shanno algorithm. Since the EM algorithm finds a429

local maximum, we ran eight EM algorithms initialised with randomly gen-430

erated vectors of hyperparameters and selected the resulting vector of esti-431

mators with the highest likelihood. Most of the 8 starting point converged to432

the same result. The EM algorithm stops if the number of iterations exceeds433

100 or if max(max(|νt − νt−1|),max(|µt − µt−1|), |τt − τt−1|) < 0.01.434
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6.1. Quality of Estimation435

Figure 2: Evolution of the root mean squared error of the hyperparameters estimators
when the true values are (τ, µ0, µ1, ν0, ν2, ν3) = (−1,−3.7, 6.5,−3, 4, 2) and ν1 varies from
0 to 6.5 with a 0.5 step.See Table 2 for definitions of parameters.

The experiments are focused on the hyperparameters associated with A436

and φ. We used 14 vectors of hyperparameters (see Table 2 for definitions of437

parameters) for which we only had ν1, associated with the dormancy process438

(i.e., influence of the previous state of the dormant population on the cur-439

rent one), which varies from 0 to 6.5. The hyperparameters of the awakening440

process is fixed to µ = (−3.7, 6.5). The parameter µ0 was chosen to have a441

small probability of generating non-dormant population when the dormant442

population is extinct (abundance class 0). We then chose µ1 = 6.5 to simu-443

late situations where the influence of dormant populations on non-dormant444

populations is strong. The hyperparameter associated with the initial proba-445

bility is fixed at τ = −1. The hyperparameters associated with A are fixed at446

ν = (−3, ν1, 4, 2): low probability of external colonisation by propagule rain,447
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Figure 3: Evolution of the coefficient of variation of the hyperparameters estimators when
the true values are (τ, µ0, µ1, ν0, ν2, ν3) = (−1,−3.7, 6.5,−3, 4, 2) and ν1 varies from 0 to
6.5 with a 0.5 step.See Table 2 for definitions of parameters.

and intermediate strengths for the influence of the local and neighbouring448

non-dormant plant populations on the dormant populations. For each of the449

14 vectors, ten population trajectories were simulated, and for each trajec-450

tory the hyperparameters estimators were computed. The ten simulations451

were used to calculate the variance of the hyperparameters estimators, as452

well as the bias,the root mean squared error and the coefficient of variance.453

When the hyperparameter ν1 associated with dormancy takes interme-454

diate values all parameters are correctly estimated as seen from the root455

mean squared error (Fig. 2). However, when ν1 is either high or low, the456

variance, root mean squared error and bias of the estimators are large (see457

Figs. G.13, 2 and G.14), except for ν0 and µ0 (constant terms of the logistic458

regressions) which are always well estimated. When simulating data with459

a small ν1 (low survival of the dormant population), extinction of dormant460
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Figure 4: Evolution of the dormant population visited states in relation to A’s hyperpa-
rameters estimators when the true values are (τ, µ0, µ1, ν0, ν2, ν3) = (−1,−3.7, 6.5,−3, 4, 2)
and ν1 varies from 0 to 6.5 with a 0.5 step.See Table 2 for definitions of parameters.

populations is the most visited state and the observable neighbours are often461

extinct. Multiple simulations with small ν1 generated data with neighbours462

only in the extinction state thus making ν3 unidentifiable. Logically the463

unidentifiable parameter ν3 has a high coefficient of variance as shown in464

Fig. 3 and a high root mean squared error shown in Fig. 2. On the other465

hand when ν1 is large, the dormant population is predominantly in the max-466

imum state because all non-dormant populations will either maintain their467

previous state, though survival, or grow. This tendency was confirmed by468

computing state frequencies from simulations (see Fig. 4). Therefore, when469

ν1 is low, the poor quality of the estimator of µ1 (influence of the dormant470

population state on the non-dormant population state) could be explained471

by the fact that we seldom observe the awakening process in the data (i.e.,472

xc,n > 0 and yc,n+1 > 0), making estimation harder. When ν1 is high, (high473
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Figure 5: Evolution of the root mean squared error of the hyperparameters estimators
when the true values are (τ, µ0, µ1, ν0, ν1, ν2) = (−1,−3.7, 6.5,−3, 4, 4) and ν3 varies from
0 to 6.5 with a 0.5 step. See Table 2 for definitions of parameters.

survival of the dormant population) and all dormant populations frequently474

visit the maximum state, it becomes difficult to distinguish which process475

(dormancy, colonisation, local generation of dormant population) drives the476

dynamics since many different vectors of hyperparameters may generate the477

same data. When ν1 takes intermediate values, the species is not predomi-478

nantly visiting one extreme state, and the species survival strategy can easily479

be estimated. We observed the same phenomena for ν3, the hyperparame-480

ter associated with mean colonisation (see Figs. G.15, 6 and 5). However,481

in this case, variance remains low for low values of ν3 because experiments482

were run for ν1 = 4, a value that ensures that the seed survival process483

occurs. Appendix H shows an example of a confidence interval for varying484

ν3 and additionally explains how to calculate confidence intervals for each485

hyperparameter.486

22



Figure 6: Evolution of the Coefficient of variation of the hyperparameters estimators when
the true values are (τ, µ0, µ1, ν0, ν1, ν2) = (−1,−3.7, 6.5,−3, 4, 4) and ν3 varies from 0 to
6.5 with a 0.5 step. See Table 2 for definitions of parameters.

6.2. Model selection487

Model selection compares different models and chooses the one that best488

explains the data. Using simulated data, we used model selection techniques489

to compare a model with mean spatial colonisation against a model without490

spatial colonisation. Additionally, we repeated the experiment with a model491

without dormancy against a model with dormancy. Using the Akaike Infor-492

mation Criterion (AIC, Akaike 2011, Akaike 1981), we tried to determine493

whether a specific process is negligible in the species dynamics. When the494

AIC is calculated for each model, the model with the smallest AIC will be495

selected. However, if the difference in AIC between the models is not greater496

than 2, we then assume that we cannot determine which model is best suited497

for the data (Burnham and Anderson, 2004). In addition to the AIC, we498

looked at the sum of the Kullback-Leibler distance between the estimated499
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transition probability and the exact transition probability for each model.500

The model with the smallest value for the sum of the Kullback-Leibler is the501

best suited for the data. The parametric MHMM-DF, which will be referred502

to as the full model, has seven hyperparameters, whereas the model without503

spatial colonisation (ν3 = 0) and the model without dormancy (ν1 = 0) both504

have six hyperparameters.505

To select between the full model and the model without dormancy, we506

simulated 30 trajectories of population states, with 100 time steps and ten507

patches, where the hyperparameters were: µ = (−3.7, 6.5), τ = −1 and ν =508

(−3, ν1, 4, 2), where ν1 ∈ {0, 1, 2, 3}. Since the AIC penalizes models with509

more parameters, for ν1 = 0, 1, 2, 3, the full model was chosen respectively510

0 times, 0 times, 5 times and 22 times out of 30. On the other hand, the511

model without dormancy was chosen 20 times, 21 times, 4 times and 0 times512

out of 30, respectively. In the remaining cases, the difference in AIC was513

smaller than 2. The Kullback-Leibler based selection method chose the full514

model 19 times, 20 times, 22 times and 30 times out of 30, for ν1 = 0, 1, 2, 3515

respectively. As seen in Fig. G.13, when ν1 = 0, 1 or 2 estimators have a516

high variance. Additionally, the most visited state for dormant populations517

is the extinction state, as seen in Fig. 4. In our experiment, the dynamics518

considered are highly similar since simulating under one of the dynamics519

will give similar observations. However, when the hyperparameters are µ =520

(−3.7, 6.5), τ = −1 and ν = (−3, ν1, 8, 2), for ν1 ∈ {0, 1, 2, 3}, the full model521

was chosen 0 times, 11 times, 25 times and 22 times out of 30, respectively.522

As can be seen the results are more precise with a higher ν2 (influence of the523

local non-dormant population on the dormant population). This is due to524

the variance of the estimators being lower when ν2 = 8 than when ν2 = 4.525

To select a model between the full model and the model with spatial526

colonisation, we simulated 30 sets of data with hyperparameters : µ =527

(−3.7, 6.5), τ = −1 and ν = (−3, 4, 4, ν3), where ν3 ∈ {0, 1, 2, 3}. When sim-528

ulating with ν3 fixed to 0, the species dynamics does not have spatial coloni-529

sation. For ν3 = 0, 1, 2, 3, the full model was chosen one time, three times,530

24 times and 28 times out of 30, respectively. However, for ν3 = 0, 1, 2, 3 the531

difference in AIC was smaller than 2 respectively 19 times, 22 times, 6 times532

and 2 times out of 30. The Kullback-Leibler model selection chose the full533

model respectively 7 times, 25 times, 30 times and 23 times out of 30. The534

Kullback-Leibler method often favors the full model as opposed to the AIC535

method. This is due to the AIC penalizing models with more parameters536

and thus being less likely to chose a model which overfits the data.537
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6.3. Hidden state estimation and prediction538

Figure 7: Mean percentage of correctly recovered and predicted populations for ν1 (influ-
ence of the previous dormant population state) varying from 0 to 6.5.

We looked at the mean percentage of correctly recovered dormant popula-539

tion states and the mean percentage of correctly predicted next non-dormant540

population states. For a vector of hyperparameter, we simulated population541

trajectories in ten patches over 100 time steps with |ΩX | = |ΩY | = 5. We542

then simulated the non-dormant populations in the ten patches at the 101st543

time step, 100 times. We used the observed non-dormant population states544

of the first 100 time steps to estimate the hyperparameters using the EM al-545

gorithm. The estimators were then used to recover the dormant populations546

in the first 100 time steps over all the patches. Additionally, the estimators547

were used to predict the non-dormant populations in all patches for the 101st548

time step. The predictions were then evaluated using the 100 simulations of549

the 101st time step. Twenty-eight different vectors of hyperparameters, for550

which there were ten trajectories of populations, were simulated. For the first551
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Figure 8: Mean percentage of correctly recovered and predicted populations for ν0 (influ-
ence of external colonisation) varying from −6.5 to 0.

14 vectors of hyperparameters, all hyperparameters were fixed except for the552

hyperparameter associated with dormancy, which varied from 0 to 6.5. The553

hyperparameters were : µ = (−3.7, 6.5), τ = −1 and ν = (−3, ν1, 4, 2). The554

next 14 vectors of hyperparameters all had fixed values, with ν1 = 4, except555

for ν0, which varied from −6.5 to 0.556

557

We observed that the quality of hidden state estimation is rarely below558

70% (see Figs. 7 and 8) and is better with high values of ν1 (Fig. 7), i.e.559

when dormant population survival is high. On the other hand, the quality of560

prediction is low for high values of ν1. In this case, the dormant populations561

frequently visit the maximum state. There is almost no stochasticity in the562

dynamics of dormant populations (the variance of A is low) thus making563

their recovery easier. On the other hand, the percentage of correct predic-564

tion dropped to 40% when ν1 was large. The poor quality of prediction is565
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directly linked to the high variance in the non-dormant population distribu-566

tion. Since the dormant population is predominantly in the maximum state,567

the non-dormant population distribution, conditional on the dormant popu-568

lation being in the maximum state, is a binomial distribution with parameters569

(|ΩY |, 1
1+exp(−(µ0−µ1(|ΩX |−1)/|ΩX |))

) and its state distribution is as follows: the570

non-dormant population has a 44% chance to be in the maximum state, a571

39% chance to be in state 3, a 13% chance to be in state 2, a 2% chance to be572

in state 1 and a 0.1% chance to be extinct. As the model predicts the most573

probable state, it is not surprising to only have 40% of correct predictions.574

For low ν1 the situation is easier since the simulated dormant and non-575

dormant populations frequently visit the extinction state. In addition, the576

effect of the hyperparameter ν0, which corresponds to exogenous colonisation577

of the dormant population by propagule rain, contribute to adding extra578

noise in the species dynamics: hidden state estimation and next non-dormant579

population predictions are easier for low values of this parameter.580

Finally, to illustrate the scalability of the EM algorithm, the same exper-581

iment was reproduced with ten time steps with 100 patches with 30 simula-582

tions. The non-dormant population at the 11th time step was then simulated583

100 times. The exact values of the hyperparameters were : µ = (−3.7, 6.5),584

τ = −1 and ν = (−3, 3, 4, 2). We obtained 80% of correct prediction of585

the non-dormant population states and 68.9% of correct recovery of dormant586

population states. This is slightly less that when estimating from 10 patches587

and 100 time steps, maybe because estimation is easier from a small number588

of patched but long trajectories of observations than for the opposite.589

7. Discussion590

We propose the MHMM-DF framework that can describe, from abun-591

dance classes of non-dormant populations, the local and regional dynamics592

of annual plants that can undergo a potentially infinite dormancy. In a593

non-parametric approach, the MHMM-DF can be defined using only three594

probabilities: the initial probability, the transition probability from past pop-595

ulations to current dormant populations and the emission probability from596

past dormant populations to current non-dormant populations. For the sake597

of sparsity, we have proposed to model these probabilities as Binomial dis-598

tributions with the probability parameter modelled as a logistic function de-599

pendent on hyperparameters. Each hyperparameter is associated with a spe-600

cific process in the species dynamics. They describe the colonisation process601
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from neighbouring patches, the exogenous colonisation process from propag-602

ule rain, the dormancy process, the influence of the locally newly produced603

dormant individuals and the awakening process from dormant populations604

to non-dormant populations.605

The colonisation process from neighbouring patches for plants is asso-606

ciated with one hyperparameter and is described as the indistinguishable607

influence of neighbour non-dormant population states on a dormant popu-608

lation state in a patch. Several options exist to aggregate the neighbour609

states into a single variable and we proposed the mean colonisation. How-610

ever, this choice has drawbacks. The mean colonisation can assign the same611

value in ΩY for very contrasted configurations of neighbours states. Addi-612

tionally, when the number of patches increases, it increases the tendency for613

the mean colonisation process to be identical for every patch. To circumvent614

the first limit, we proposed the alphabetic colonisation (detailed in Appendix615

I), which only assigns the same aggregated value to two vectors of neighbour616

states if both vectors are equal though patch permutation. The influence of617

the neighbour patches are still indistinguishable. However contrasted distri-618

butions of the abundance classes of the neighbourhood will lead to different619

aggregated values. In practice, to create an ordinal variable from the vector620

of neighbours, we ranked the distributions of the abundance classes according621

to alphabetic (or lexicographic) order. We demonstrated that the parametric622

MHMM-DF with mean or alphabetic colonisation is generically identifiable623

for a least three patches.624

Different colonisation processes can be implemented preferably if identifi-625

ability is verified. Instead of considering one hyperparameter for the spatial626

colonisation process, the colonisation process could include a hyperparam-627

eter per number of non-dormant populations in each state as modelled in628

Gyllenberg and Hanski (1997). Each hyperparameter associated with the629

colonisation process would measure the influence of the number of neigh-630

bour non-dormant populations in a specific state. However, establishing the631

model’s identifiability is not straightforward, and moreover the model would632

require more data for estimation.633

Modelling the awakening process with a logistic regression for the proba-634

bility parameter of the binomial distribution implies that, when the dormant635

population is extinct, the probability of the non-dormant population being636

extinct is smaller than 1. In other words, non-dormant populations may be637

colonised by exterior non-dormant populations. However, since plants are638

sessile, colonisation of non-dormant populations by exogenous factors should639
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not be possible. Thus the use of the logit function can be questioned when640

modelling the awakening process. One option is to set the probability of ex-641

terior colonisation of non-dormant populations to a very low value instead of642

estimating it. Alternatively, we could model the awakening probability as a643

zero-inflated Binomial distribution. The zero-inflated Binomial distribution644

would force the non-dormant population to be extinct when the dormant one645

is extinct, and in the other situations, the awakening process would still be646

a Binomial distribution with logit regression. This is obtained by setting the647

mixture parameter of this zero-inflated model to 1 in the case of absence of648

a dormant population and to 0 otherwise. The generic identifiability is still649

satisfied for this model.650

The MHMM-DF framework is built under biological assumptions, where651

the dependencies between the species populations represent known biological652

processes. These biological processes are often modelled using precise infor-653

mation about the number of individuals (David et al., 2010). Even though,654

this type of modelling is rewarding, since predictions are more accurate, they655

are often computationally intensive when dealing with hidden dynamics and656

may have unidentifiable parameters. Modelling with abundance classes helps657

reduce the computational complexity. The parametric MHMM-DF is used658

to infer the input of each process on the species dynamics by learning statis-659

tical relationships, as opposed to mechanistic approaches that would require660

precise knowledge beforehand about mechanisms and environmental factors661

that influence the species dynamics.662

The MHMM-DF relies on two main assumptions about the species dy-663

namics. The model assumes dormant populations to be sessile and assumes664

that non-dormant populations do not influence one another directly. The665

first assumption implies that dormant populations can not travel between666

patches, which reduces the time and space complexity of the E step from667

exponential to linear in terms of patches, O(|ΩX |2NC), where C is the num-668

ber of patches, N is the number of time steps, and |ΩX | is the number of669

states of a dormant population. Reducing the computational complexity of670

the E step implies that dealing with a large number of patches is not an671

issue with a MHMM-DF. The second assumption implies that once a non-672

dormant population is observed, the non-dormant population will be renewed673

in the next time step. These two assumptions are verified for annual plants.674

Even though the MHMM-DF was created to model the dynamics of plants675

in patches, the model is general and could be applied to different organisms.676

In specific ecosystems, the assumption of seed immobility in the seed bank677
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is questionable. If it is relevant for most natural populations, where seeds678

are only mobile during dispersal, seeds in the seed bank of riparian ecosys-679

tems may move because of floods. Furthermore, in agricultural systems,680

tools or machines may transfer seeds from one seed bank to another. The681

second assumption, which assumes no interaction between past and current682

non-dormant populations, can easily be removed without hindering the com-683

plexity of the E step. Removing the assumption enables us to model the local684

non-dormant population’s survival between two time steps and the migration685

of non-dormant populations between patches. The associated parametric686

MHMM-DF with both survival and migration of non-dormant populations687

would have nine hyperparameters and is identifiable. Adding the survival688

process of non-dormant populations is relevant for plants since it would en-689

able us to study the dynamics of perennial plants. Even though, including690

the migration process is not relevant to plant dynamics, a model with migra-691

tion could be applied to many more species such as fresh water snails whose692

dormancy process would be seen as aestivation during dry seasons (Lamy693

et al., 2013).694

MHMM-DF can have multiple uses such as estimating a species’ dynam-695

ics via hyperparameters, discriminating between two different types of dy-696

namics, predicting the state of the next non-dormant populations and even697

recovering all past states of dormant populations. The results show that the698

estimators, obtained using the EM algorithm, have a low variance and low699

bias when the species’ populations are not predominantly visiting either the700

extinction state or the maximum state. On the other hand, distinguishing701

the input resulting from each process is difficult when dormant populations702

frequently visit an extreme state since many different vectors of hyperparam-703

eters have a similar likelihood. When only observing the non-dormant popu-704

lations, the predictions and hidden state estimations obtained were globally705

of good quality. When a population is inferred to be or to become extinct,706

errors in predictions and hidden state estimations seem to be dependent on707

exogenous colonisation. Additionally, errors in predictions and hidden state708

estimations depend on the variance of the Binomial distribution. The model709

selection technique is able to discriminate between dynamics with dormancy710

and dynamics without dormancy, or even dynamics with colonisation and711

dynamics without colonisation. In order to fully validate the parameterisa-712

tion, the model should now be tested on real data. For instance, studying the713

dynamics of weed species with the model could be a subsequent extension.714

Since multiple exterior factors can influence species dynamics, such as715
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temperature for plant germination (Taab, 2009; Seglias et al., 2018; El-716

Keblawy et al., 2017; Ueno, 2002; Gómez-González et al., 2018; Zhang et al.,717

2017), the logit function, associated with the awakening process, can include718

covariables to increase the model’s realism. For weed species in agricultural719

fields, the species dynamics could be made to depend on crop type (Borgy720

et al., 2015). It would be also relevant to model different sizes or types of721

neighbourhood, since the distance of seed dispersal or even the paths vary be-722

tween species (Nathan, 2000). Indeed colonisation may be related to specific723

dissemination agents, such as rivers for riparian ecosystems or agricultural724

machines for weed species. In the latter case, dispersal is not defined by a725

distance from the source but by the path formed by the successive patches in726

which the agricultural machines travelled before entering the current patch.727

In practice, the size or the paths for dispersal are not known. Using model728

selection and several MHMM-DF models associated to different neighbour-729

hoods, it would be possible to determine which model is best suited for a730

specific species.731

The framework presented is the first step towards modelling the local and732

regional dynamics of species with an undetectable life form. The MHMM-733

DF can be used to describe the dynamics of annual plants by only observing734

standing plants. Estimating the hyperparameters associated with an annual735

plant will help to identify which process has the greatest influence on the seed736

bank’s state. Moreover, groups of species with similar survival strategies can737

be identified using a classification based on their estimators.738
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X1 X2
... Xn

Y1 Y2
... Yn

Figure A.9: Hidden Markov Chain. Yn variables are observed at each time step n while
Xn variables (grey nodes) are not. The dynamics of the hidden variables is not influenced
by the observed variables.

X1,0 X1,1 X1,2 ... X1,n

Y1 Y2
... Yn

X2,0 X2,1 X2,2 ... X2,n

Figure A.10: Factorial Hidden Markov Model.

B. Proof of generic identifiability for a MHMM-DF with the mean864

colonisation process865

A HMM model with N time steps is generically identifiable if the set of866

values of θ such that P(Y N = yN |θ) = P(Y N = yN |θ′) has null Lebesgue867

measure. We use the results for HMM here to demonstrate the generic iden-868

tifiability of the MHMM-DF models with the mean colonisation process.The869

proof relies on Theorem 6 from Allman et al. 2009:870

Theorem 1 (Theorem 6 of Allman et al. (2009)). The parameters of871

a HMM with r hidden states and s observable states are generically identifi-872

able from the marginal distribution of 2L + 1 consecutive variables provided873

L satisfies874
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X1,0 X1,1 X1,2 ... X1,n

Y1,1 Y1,2 ... Y1,n

X2,0 X2,1 X2,2 ... X2,n

Y2,1 Y2,2 ... Y2,n

Figure A.11: Coupled Hidden Markov Model.

(
L+ s− 1
s− 1

)
≥ r.

This results holds for a HMM, with a dependency structure identical to Fig.875

A.9. We can convert a MHMM-DF model into a HMM with hidden variable876

Hn and observed variables On (see Fig. B.12) by grouping the observed and877

hidden variables of all patches, Hn = (XC
n , Y

C
n+1), and by setting On = Y C

n+1.878

Note that the observed variables are duplicated. We will denote φhmm and879

Ahmm as respectively the emission and the transition probabilities of the880

HMM (Hn, On)n∈{0,...,N−1}. φ
hmm is deterministic, and Ahmm depends on the881

probabilities φ and A of the MHMM-DF.882

When applying Theorem 1 to the HMM defined by (Hn, On) we obtain883

the following theorem884

Theorem 2. The parameters (φhmm, Ahmm) of the HMM model correspond-885

ing to the conversion of a MHMM-DF are generically identifiable from seven886

consecutive observations, if |ΩX | ≤ |ΩY |, and if C > 2.887

Proof.888
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(XC
0 , Y

C
1 ) (XC

1 , Y
C

2 ) ... (XC
n−1, Y

C
n )

Y C
1 Y C

2
... Y C

n

Figure B.12: Conversion of a MHMM-DF into a HMM. When grouping the observed and
hidden variables of the MHMM-DF and duplicating the observed variables, the dependency
structure is identical to a classical HMM.

The number of possible hidden states is r = |ΩX |C |ΩY |C , the number of889

possible observable states is s = |ΩY |C and L = 3. We must show that the890

following inequality is satisfied:891 (
|ΩY |C + 2
|ΩY |C − 1

)
≥ |ΩX |C |ΩY |C .

The inequality can be reformulated as:892

(|ΩY |C + 2)(|ΩY |C + 1) ≥ |ΩX |C .

Since we assume that |ΩX | ≤ |ΩY |, the inequality is true.893

�894

895

This theorem demonstrates the generic identifiability of Ahmm and φhmm,896

considered as non-parameterised, but not yet the generic identifiability of φ897

and A. We now consider the model with a non-distinguishable effect of the898

neighbours, defined by φµ and Aν and provide sufficient conditions for their899

generic identifiability. We need to prove that (Ahmmµ,ν , φhmmµ,ν ) = (Ahmm
µ′ ,ν′

, φhmm
µ′ ,ν′

)900

implies (µ, ν) = (µ
′
, ν
′
).901

In the HMM representation of a MHMM-DF, the emission matrix φhmm902

is deterministic and is independent of µ, ν. Therefore, we need to show that903

Ahmmµ,ν = Ahmm
µ′ ,ν′

implies (µ, ν) = (µ
′
, ν
′
). We recall that Ahmmµ,ν (hn, hn−1) =904

P(hn|hn−1, ν, µ). The HMM’s transition probability is:905
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P(hn|hn−1, ν, µ) = P(xCn , y
C
n+1|xCn−1, y

C
n )

= P(yCn+1|xCn )P(xCn |xCn−1, y
C
n )

=
C∏
c=1

P(yc,n+1|xc,n)P(xc,n|xc,n−1, y
C
n )

=
C∏
c=1

(
|ΩY | − 1
yc,n+1

)
×
[

1
1+exp(−(µ0+µ1

xc,n
|ΩX |

))

]|ΩY |−1 [
exp(−(µ0 + µ1

xc,n
|ΩX |

))
]|ΩY |−yc,n+1−1

×
(
|ΩX | − 1
xc,n

) 1

1+exp(−(ν0+ν1
xc,n−1
|ΩX |

+ν2
yc,n
|ΩY |

+ν3(
fmean(y

C\c
n )

|fmean(ΩC−1
Y

)|
)))

|ΩX |−1

×
[
exp(−(ν0 + ν1

xc,n−1

|ΩX |
+ ν2

yc,n
|ΩY |

+ ν3( fmean(y
C\c
n )

|fmean(ΩC−1)|))
]|ΩX |−xc,n−1

Theorem 3. The hyperparameter (µ, ν) = (µ0, µ1, ν0, ν1, ν2, ν3) of a MHMM-906

DF with the mean colonisation process is generically identifiable from seven907

consecutive observations if the following conditions hold: if |ΩX | ≤ |ΩY |,908

|ΩY | > 1 and C > 2.909

Proof.910

As explained above, we need to find conditions under which P(hn|hn−1, ν, µ) =911

P(hn|hn−1, ν
′, µ′) implies (µ, ν) = (µ

′
, ν
′
). Let us show one-by-one the equal-912

ity for each hyperparameter. We start with µ0. Let us define L1 as the913

transition probability from (xCn−1, y
C
n ) = (

 0
...
0

 ,

 0
...
0

) to (xCn , y
C
n+1) =914

(

 0
...
0

 ,

 0
...
0

).915

L1(µ0, ν0) =

(
|ΩY | − 1

0

)C [
1

1 + exp(−µ0)

](|ΩY |−1)C

[exp(−µ0)](|ΩY |−1)C

×
(
|ΩX | − 1

0

)C [
1

1 + exp(−ν0)

](|ΩX |−1)C

[exp(−ν0)](|ΩX |−1)C .
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We now define L2 as the transition probability from (xCn−1, y
C
n ) = (

 0
...
0

 ,

 0
...
0

)916

to (xCn , y
C
n+1) = (

 0
...
0

 ,


|ΩY | − 1

0
...
0

):917

L2(µ0, ν0) =

(
|ΩY | − 1

0

)C−1(|ΩY | − 1
|ΩY | − 1

)[
1

1 + exp(−µ0)

](|ΩY |−1)C

[exp(−µ0)](|ΩY |−1)(C−1)

×
(
|ΩX | − 1

0

)C [
1

1 + exp(−ν0)

](|ΩX |−1)C

[exp(−ν0)](|ΩX |−1)C .

If L1(µ0, ν0) = L1(µ
′
0, ν

′
0) and L2(µ0, ν0) = L2(µ

′
0, ν

′
0) then L1(µ0, ν0)/L2(µ0, ν0) =918

L1(µ
′
0, ν

′
0)/L2(µ

′
0, ν

′
0), which implies e−(|ΩY |−1)µ0 = e−(|ΩY |−1)µ

′
0 Thus µ

′
0 = µ0.919

Since µ
′
0 = µ0, we can now identify ν0 using L1:920

L1(µ0, ν0) = L1(µ0, ν
′
0)

<=>((
1

1+exp(−ν0)

)
exp(−ν0)

)(|ΩX |−1)C

=
((

1

1+exp(−ν′0)

)
exp(−ν ′0)

)(|ΩX |−1)C

<=>
(1 + exp(−ν0)) exp(ν0) =

(
1 + exp(−ν ′0)

)
exp(ν

′
0)

<=>
ν0 = ν

′
0.

Let us now show the identifiability of µ1. We consider L3, the expression921

defined by the transition probability from (xCn−1, y
C
n ) = (

 0
...
0

 ,

 0
...
0

) to922

(xCn , y
C
n+1) = (

|ΩX | − 1
...
0

 ,

 0
...
0

). Note that from now on, in the expres-923

sions used to derive identifiability, we omit the terms that are known to be924

equal for two distinct values of the current hyperparameter considered for925

identifiability. Therefore926
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L3(ν0, µ0, µ1) ∝
[

1

1 + exp(−µ0)

](|ΩY |−1)(C−1)

[exp(−µ0)](|ΩY |−1)(C−1)

×

[
1

1 + exp(−(µ0 + (|ΩX |−1)
|ΩX |

µ1))

](|ΩY |−1)

×
[
exp(−(µ0 +

(|ΩX | − 1)

|ΩX |
µ1))

](|ΩY |−1)

×
[

1

1 + exp(−ν0)

](|ΩX |−1)C

[exp(−(ν0))](|ΩX |−1)(C−1) .

Thus927

L3(ν0, µ0, ν
′
1) = L3(ν0, µ0, ν1)

<=>[
1

1+exp(−(µ0+
(|ΩX |−1)

|ΩX |
µ
′
1))

] [
exp(− (|ΩX |−1)

|ΩX |
µ
′
1)
]

=

[
1

1+exp(−(µ0+
(|ΩX |−1)

|ΩX |
µ1))

] [
exp(− (|ΩX |−1)

|ΩX |
µ1)
]

<=>

exp(− (|ΩX |−1)
|ΩX |

µ1)+

exp(−µ0 − (|ΩX |−1)
|ΩX |

µ1 − (|ΩX |−1)
|ΩX |

µ
′
1)

=
exp(− (|ΩX |−1)

|ΩX |
µ
′
1)+

exp(−µ0 − (|ΩX |−1)
|ΩX |

µ1 − (|ΩX |−1)
|ΩX |

µ
′
1)

<=>
µ1 = µ

′
1.

We establish the identifiability of ν1 by using L4, the transition probabil-928

ity from (xCn−1, y
C
n ) = (

|ΩX | − 1
...

|ΩX | − 1

 ,

 0
...
0

) to (xCn , y
C
n+1) = (

 0
...
0

 ,

 0
...
0

).929

L4(µ0, ν0, ν1) ∝
[

1

1 + exp(−µ0)

](|ΩY |−1)C

[exp(−µ0)](|ΩY |−1)C

×

[
1

1 + exp(−(ν0 + ν1
(|ΩX |−1)
|ΩX |

))

](|ΩX |−1)C

×
[
exp(−(ν0 + ν1

(|ΩX | − 1)

|ΩX |
))

](|ΩX |−1)C

.
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Thus :930

L4(µ0, ν0, ν
′
1) = L4(µ0, ν0, ν1)

<=>[
1

1+exp(−(ν0+ν
′
1

(|ΩX |−1)

|ΩX |
))

] [
exp(−ν ′1

(|ΩX |−1)
|ΩX |

)
]

=

[
1

1+exp(−(ν0+ν1
(|ΩX |−1)

|ΩX |
))

] [
exp(−ν1

(|ΩX |−1)
|ΩX |

)
]

<=>
ν1 = ν

′
1.

We have established identifiability for all hyperparameters except ν2 and931

ν3. When C = 2 it can be seen that fmean(Y
C\c
n ) = Yc′ ,n with c 6= c

′
. By using932

the following states defined below one can not show identifiability of ν2 and933

ν3. Let us assume C > 2. For these two hyperparameters, we consider the934

following twotransition probabilities: L5 from (xCn−1, y
C
n ) = (

 0
...
0

 ,


1
0
...
0

)935

to (xCn , y
C
n+1) = (

 0
...
0

 ,

 0
...
0

) and L6 from (xCn−1, y
C
n ) = (

 0
...
0

 ,

 1
...
1

) to936

(xCn , y
C
n+1) = (

 0
...
0

 ,

 0
...
0

).937

L5(ν0, ν2) ∝

[
1

1 + exp(−(ν0 + 1
|ΩY |

ν2))

](|ΩX |−1) [
1

1 + exp(−ν0)

](|ΩX |−1)(C−1)

×
[
exp(−(ν0 +

1

|ΩY |
ν2))

](|ΩX |−1)

[exp(−ν0)](|ΩX |−1)(C−1) .

Therefore:938

L5(ν0, ν
′
2) = L5(ν0, ν2)

<=>
exp( 1

|ΩY |
ν
′
2) = exp( 1

|ΩY |
ν2)

<=>
ν
′
2 = ν2.
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L6(ν0, ν2, ν3) ∝

[
1

1 + exp(−(ν0 + 1
|ΩY |

ν2 + 1
|ΩY |

ν3))

](|ΩX |−1)C

×
[
exp(−(ν0 +

1

|ΩY |
ν2 +

1

|ΩY |
ν3))

](|ΩX |−1)C

.

Therefore939

L6(ν0, ν2, ν
′
3) = L6(ν0, ν2, ν3)

<=>
exp( 1

|ΩY |
ν
′
3) = exp( 1

|ΩY |
ν3)

<=>
ν
′
3 = ν3.

The MHMM-DF with mean colonisation is identifiable with at least two940

hidden states and at least two observable states with at least three patches941

and with the number of hidden states smaller or equal to the number of942

observable states.943

�944

C. Expression of E step for MHMM-DF945

We derive the recursive expression of the forward-backward algorithm for946

a chain c used in the E-step of EM for MHMM-DF. First, we show how947

the function Q can be expressed in terms of the probabilities ρc,n(xc,n) and948

ξc,n(xc,n−1, xc,n) defined as949

ξc,n(xn−1, xn) = P(Xc,n = xn, Xc,n−1 = xn−1|Y C,N = yC,N , λt),
ρc,n(xn) = P(Xc,n = xn|Y C,N = yC,N , λt)

where λt = (πt, φt, At) is the current estimator. We describe here how these950

probabilities can be computed from auxiliary quantities defined recursively951

and independently for each chain.952
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Q(λ | λt) = E[ln(P(Y C,N , XC,N |λ))|yC,N , λt]

= E[ln(
C∏
c=1

P(Xc,0|λ)
N∏
n=1

P(Xc,n|Xc,n−1, Y
C
n , λ)P(Yc,n|Xc,n−1, λ))|yC,N , λt]

=
C∑
c=1

∑
x∈ΩX

ln(π(x))P(Xc,0 = x|Y C,N = yC,N , λt)

+
C∑
c=1

N∑
n=1

∑
(xn,xn−1)∈Ω2

X

ln(A(xn−1, xn, y
C
n ))P(xn, xn−1|yC,N , λt)

+
C∑
c=1

N∑
n=1

∑
xn−1∈ΩX

ln(φ(xn−1, yc,n))P(Xc,n−1 = xn−1|Y C,N = yC,N , λt)

=
C∑
c=1

∑
x∈ΩX

ln(π(x))ρc,0(x)

+
C∑
c=1

N∑
n=1

∑
(xn,xn−1)∈Ω2

X

ln(A(xn−1, xn, y
C
n ))ξc,n(xn−1, xn)

+
C∑
c=1

N∑
n=1

∑
xn−1∈ΩX

ln(φ(xn−1, yc,n))ρc,n−1(xn−1).

Let us define αc,n(xc,n) = P(yC,n, xc,n|λt) and βc,n(xc,n) = P(yCn+1, ..., y
C
N |yC,n, xc,n, λt).953

For a given chain c, the αc,n can be computed recursively from αc,n−1 (inde-954

pendently of αc′,n for c′ 6= c):955

αc,n(xc,n) = P(yC,n, Xc,n = xc,n|λt)
=

∑
xc,n−1∈ΩX

P(yC,n, Xc,n = xc,n, Xc,n−1 = xc,n−1|λt)

=
∑

xc,n−1∈ΩX

P(yC,n−1, Xc,n−1 = xc,n−1|λt)

×P(yCn , Xc,n = xc,n|yC,n−1, xc,n−1, λt)
=

∑
xc,n−1∈ΩX

αc,n−1(xc,n−1)P(yCn |yC,n−1, xc,n−1, λt)At(xc,n−1, xc,n, y
C
n )

=
∑

xc,n−1∈ΩX

αc,n−1(xc,n−1)φt(xc,n−1, yc,n)At(xc,n−1, xc,n, y
C
n )

×P(y
C\c
n |yC,n−1, yc,n, xc,n−1, λt).
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Since Y
C\c
n is independent of Xc,n−1 and Yc,n, conditional on yC,n−1 , we956

have P(y
C\c
n |yC,n−1, yc,n, xc,n−1) = P(y

C\c
n |yC,n−1) = Kc,n, where Kc,n is a con-957

stant in xc,n−1 and xc,n. Therefore,958

αc,n(xc,n) ∝
∑

xc,n−1∈ΩX

αc,n−1(xc,n−1)φt(xc,n−1, yc,n)At(xc,n−1, xc,n, y
C
n ).

In practice, instead of computing αc,n(xc,n), we can compute α̃c,n(xc,n)959

defined as:960

α̃c,n(xc,n) =
∑

xc,n−1∈ΩX

α̃c,n−1(xc,n−1)φ(xc,n−1, yc,n)At(xc,n−1, xc,n, y
C
n )

with α̃c,0(xc,0) = αc,0(xc,0).961

Similarly, there is a recursive expression of βc,n involving βc,n−1:962

βc,n(xc,n) = P(yCn+1, ..., y
C
N |yC,n, xc,n, λt)

=
∑

xc,n+1∈ΩX

P(yCn+1, ..., y
C
N , xc,n+1|yC,n, xc,n, λt)

=
∑

xc,n+1∈ΩX

P(yCn+2, ..., y
C
N , xc,n+1|yC,n+1, xc,n, λt)P(yCn+1|yC,n, xc,n, λt)

=
∑

xc,n+1∈ΩX

P(yCn+2, ..., y
C
N |yC,n+1, xc,n, xc,n+1, λt)At(xc,n, xc,n+1, y

C
n+1)

×φt(xc,n, yc,n+1)P(y
C\c
n+1|yC,n, yc,n+1, xc,n, λt)

= Kc,n+1

∑
xc,n+1∈ΩX

P(yCn+2, ..., Y
C
N |yC,n+1, xc,n, xc,n+1, λt)

×At(xc,n, xc,n+1, y
C
n+1)φ(xc,n, yc,n+1).

Since the vector (Y C
n+2, ..., Y

C
N ) is independent of Xc,n given yC,n+1, xc,n+1,963

we have:964

βc,n(xc,n) ∝
∑

xc,n+1∈ΩX

βc,n+1(xc,n+1)At(xc,n, xc,n+1, Y
C
n+1)φt(xc,n, yc,n+1).

Similarly to the forward part of the algorithm, we compute the backward965

part with β̃c,n defined as:966

β̃c,n(xc,n) =
∑

xc,n+1∈ΩX

β̃c,n+1(xc,n+1)At(xc,n, xc,n+1, y
C
n+1)φt(xc,n, yc,n+1)

with β̃c,N(xc,N) = βc,N(xc,N).967
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The two probabilities ρc,n(xc,n) = P(Xc,n = xc,n|yC,N , λt) and ξc,n(xc,n−1, xc,n) =968

P(Xc,n = xc,n, Xc,n−1 = xc,n−1|yC,N , λt) necessary to compute Q are obtained969

from α̃c,n and β̃c,n as follows:970

ρc,n(xc,n) =
P(Xc,n = xc,n, y

C,N |λt)
P(yC,N |λt)

=
βc,n(xc,n)αc,n(xc,n)∑
x∈ΩX

βc,n(x)αc,n(x)
=
β̃c,n(xc,n)α̃c,n(xc,n)∑
x∈ΩX

β̃c,n(x)α̃c,n(x)
,

ξc,n(xc,n−1, xc,n) =
P(Xc,n = xc,n, Xc,n−1 = xc,n−1, y

C,N |λt)
P(yC,N |λt)

.

It is possible to express the numerator in terms of α̃c,n and β̃c,n:971

P(xc,n, xc,n−1, y
C,N) = P(Xc,n = xc,n, Xc,n−1 = xc,n−1, y

C
n |λt)

×P({yCl }l 6=n|xc,n, xc,n−1, y
C
n , λt)

= At(xc,n−1, xc,n, y
C
n )P(Xc,n−1 = xc,n−1, y

C
n |λt)

×P(yC,n−1|xc,n, xc,n−1, y
C
n , λt)

×P(yCn+1, ..., y
C
N |xc,n, xc,n−1, y

C,n, λt)

= At(xc,n−1, xc,n, y
C
n )P(Xc,n−1 = xc,n−1, y

C
n |λt)

×P(yC,n−1|xc,n−1, y
C
n , λt)βc,n(xc,n)

= At(xc,n−1, xc,n, y
C
n )βc,n(xc,n)P(Xc,n−1 = xc,n−1, y

C,n|λt)
= At(xc,n−1, xc,n, y

C
n )βc,n(xc,n)P(Xc,n−1 = xc,n−1, y

C,n−1|λt)
×P(yCn |xc,n−1, y

C,n−1, λt)

= At(xc,n−1, xc,n, y
C
n )βc,n(xc,n)αc,n−1(xc,n−1)φt(xc,n−1, yc,n)Kc,n

∝ At(xc,n−1, xc,n, Y
C
n )β̃c,n(xc,n)α̃c,n−1(xc,n−1)φt(xc,n−1, yc,n).

This leads to972

ξc,n(xc,n−1, xc,n) =
At(xc,n−1, xc,n, y

C
n )β̃c,n(xc,n)α̃c,n−1(xc,n−1)φt(xc,n−1, yc,n)∑

(x,x′ )∈Ω2
X

At(x
′ , x, yCn )β̃c,n(x)α̃c,n−1(x′)φt(x

′ , yc,n)
.

D. Expression of the likelihood of a MHMM-DF973

Since the forward-backward algorithm only requires quantity proportional974

to the likelihood, we never compute the likelihood of the data during EM.975
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However, there are situations where we are interested in computing the like-976

lihood, such as for model selection. We derive here the likelihood expression977

in terms of α̃c,n and β̃c,n.978

P(yC,N) =
∑

xc,n∈ΩX

P(Xc,n = xc,n, y
C,N)

=
∑

xc,n∈ΩX

αc,n(xc,n)βc,n(xc,n)

=
∑

xc,n∈ΩX

[
∏n

j=1Kc,j]α̃c,n(xc,n)[
∏N

j′=n+1Kc,j′ ]β̃c,n(xc,n)

= [
∏N

j=1Kc,j]
∑

xc,n∈ΩX

α̃c,n(xc,n)β̃c,n(xc,n).

One must calculate
∏N

j=1Kc,j in order to calculate the likelihood. First,979

let us show that: α̃c,n(xc,n)∑
x∈ΩX

α̃c,n(x)
= P(Xc,n = xc,n|yC,n). We know that αc,n(x) ∝980

α̃c,n(x) and that αc,n(x) = P(Xc,n = xc,n, y
C,n) = P(Xc,n = xc,n|yC,n)P(yC,n).981

Therefore, α̃c,n(x) ∝ P(Xc,n = xc,n|yC,n). Hence, if we normalise we obtain982

α̃c,n(xc,n)∑
x∈ΩX

α̃c,n(x)
= P(Xc,n = xc,n|yC,n). We are left with computing

∏N
j=1Kc,j.983

∏N
j=1Kc,j =

∏N
j=1 P(y

C\c
j |yC,j−1)

=
∏N

j=1

∑
x
C\c
j−1∈ΩC−1

X

P(y
C\c
j , X

C\c
j−1 = x

C\c
j−1|yC,j−1)

=
∏N

j=1

∑
x
C\c
j−1∈ΩC−1

X

P(y
C\c
j |X

C\c
j−1 = x

C\c
j−1, y

C,j−1)P(X
C\c
j−1 = x

C\c
j−1|yC,j−1)

=
∏N

j=1

∑
x
C\c
j−1∈ΩC−1

X

∏
l∈{1,...,C}\{c}

P(yl,j|Xl,j−1 = xl,j−1)P(Xl,j−1 = xl,j−1|yC,j−1)

=
∏N

j=1

∑
x
C\c
j−1∈ΩC−1

X

∏
l∈{1,...,C}\{c}

φ(xl,j−1, yl,j)
α̃l,j−1(xl,j−1)∑
x∈ΩX

α̃l,j−1(x)
.

One can notice that each term in the product over l involves only xl,j−1 and984

not all the elements in x
C\c
j−1. We can therefore rewrite the last equality as:985 ∏N

j=1 Kc,j =
∏N

j=1

∏
l∈{1,...,C}\{c}

∑
xl,j−1∈ΩX

φ(xl,j−1, yl,j)
α̃l,j−1(xl,j−1)∑
x∈ΩX

α̃l,j−1(x)
.

Finally986

P(yC,N) =

 N∏
j=1

∏
l∈{1,...,C}\{c}

∑
xl,j−1∈ΩX

φ(xl,j−1, yl,j)
α̃l,j−1(xl,j−1)∑
x∈ΩX

α̃l,j−1(x)


 ∑
xc,n∈ΩX

α̃c,n(xc,n)β̃c,n(xc,n)

 .
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E. The Viterbi algorithm for MHMM-DF987

In this section, we show how to compute the most likely sequences of988

hidden states of all of the patches, independently for each patch. We want to989

maximise P(XC,N = xC,N |Y C,N = yC,N) which is equivalent to maximising990

P(XC,N = xC,N , Y C,N = yC,N). The latter can be factored over the C chains991

as follows:992

P(XC,N = xC,N , Y C,N = yC,N) = P(XC,N = xC,N |Y C,N = yC,N)× P(Y C,N = yC,N)

= P(Y C,N = yC,N)
C

Π
c=1
p(XN

c = xNc |Y C,N = yC,N)

= P(Y C,N = yC,N)
C

Π
c=1

p(XN
c =xNc ,Y

C,N=yC,N )
P(Y C,N=yC,N )

= 1
(P(Y C,N=yC,N ))C−1

C

Π
c=1
p(XN

c = xNc , Y
C,N = yC,N)

∝
C

Π
c=1

P(XN
c = xNc , Y

C,N = yC,N).

This implies that:993

max
xC,N∈ΩC×N

X

P(XC,N = xC,N , Y C,N = yC,N) = max
xC,N∈ΩC×N

X

C

Π
c=1

P(XN
c = xNc , Y

C,N = yC,N)

=
C

Π
c=1

max
xNc ∈ΩN

X

P(XN
c = xNc , Y

C,N = yC,N).

Thus we can perform recovery separately per patch. Let us note δc,n(xc,n) =994

max
xn−1
c ∈Ωn−1

X

P(Xn
c = xnc , Y

C,n = yC,n). Here is the recursive definition of δc,n in995

terms of δc,n−1:996

δc,n(xc,n) = max
xn−1
c ∈Ωn−1

X

P(xn−1
c , yC,n−1)P(xc,n, y

C
n |xn−1

c , yC,n−1)

= max
xc,n−1∈ΩX

δc,n−1(xc,n−1)P(xc,n, y
C
n |xc,n−1, y

C,n−1)

= max
xc,n−1∈ΩX

δc,n−1(xc,n−1)P(yCn |xc,n−1, y
C,n−1)A(xc,n−1, xc,n, y

C
n )

= max
xc,n−1∈ΩX

δc,n−1(xc,n−1)φ(xc,n−1, yc,n)P(y
C\c
n |xc,n−1, y

C,n−1)A(xc,n−1, xc,n, y
C
n )

= max
xc,n−1∈ΩX

δc,n−1(xc,n−1)φ(xc,n−1, yc,n)Kc,nA(xc,n−1, xc,n, y
C
n ).
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F. Prediction of the next non-dormant population state for MHMM-997

DF998

The prediction of a species population state in patch c at time N + 1,999

given the sequences of observations of the non-dormant states in all patches1000

up to time N , is defined as:1001

ŷc,N+1 = argmax
yc,N+1∈ΩY

P(Yc,N+1 = yc,N+1|Y C,N = yC,N)

= argmax
yc,N+1∈ΩY

∑
xc,N∈ΩX

P(Yc,N+1 = yc,N+1, Xc,N = xc,N |Y C,N = yC,N)

= argmax
yc,N+1∈ΩY

∑
xc,N∈ΩX

P(xc,N |yC,N)P(yc,N+1|xc,N , yC,N)

= argmax
yc,N+1∈ΩY

∑
xc,N∈ΩX

ρc,N(xc,N)φ(xc,N , yc,N+1).
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G. Variance and Bias1002

Figure G.13: Evolution of the variance of the hyperparameters estimators when the true
values are (τ, µ0, µ1, ν0, ν2, ν3) = (−1,−3.7, 6.5,−3, 4, 2) and ν1 varies from 0 to 6.5 with
a 0.5 step. See Table 2 for definitions of parameters.
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Figure G.14: Evolution of the bias of the hyperparameters estimators when the true values
are (τ, µ0, µ1, ν0, ν2, ν3) = (−1,−3.7, 6.5,−3, 4, 2) and ν1 varies from 0 to 6.5 with a 0.5
step.See Table 2 for definitions of parameters.

H. Confidence Interval computation1003

The confidence interval of a hyperparameter is calculated using the Fisher1004

information matrix I(λ). In our case, I(λ) is the Fisher information matrix1005

of the transition probability and it can be calculated with Q the expectation1006

of the log likelihood of the model used in the EM algorithm (Oakes, 1999).1007

According to Oakes (1999):1008

I(λ) = −∂Q(λ|λ̂)

∂λ2
|λ=λ̂

The partial derivative according to one group of hyperparameters (τ , ν1009

and µ) does not involve the two other groups. Thus, I(ν),I(µ), I(τ) can be1010
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Figure G.15: Evolution of the variance of the hyperparameters estimators when the true
values are (τ, µ0, µ1, ν0, ν1, ν2) = (−1,−3.7, 6.5,−3, 4, 4) and ν3 varies from 0 to 6.5 with
a 0.5 step. See Table 2 for definitions of parameters.

calculated separately. Consequently:1011

I(ν) = −∂Q(ν|ν̂)

∂ν2
|ν=ν̂

Once the Fisher information matrix is calculated, we can calculate a (100(1−1012

ε)) confidence interval for any hyperparameter. The confidence interval for1013

ν1 is1014

[ν̂1 − Zε/2(
1√
I(ν)

)ν1 , ν̂1 + Zε/2(
1√
I(ν)

)ν1 ]

where ( 1√
I(ν)

)ν1 corresponds to the (ν1, ν1)th entry of the root of the inverse of1015

the Fisher information. Additionally, Zε/2 corresponds to Zε/2 = −ϕ−1(ε/2)1016

where ϕ is the cumulative distribution function of the Normal distribution.1017
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Figs. H.16 and H.17 show the confidence intervals for ν1 and ν3 when ν31018

is varying. The red dots correspond to the lower bounds of the confidence1019

interval and the blue dots correspond to the upper bound of the confidence1020

intervals. The black lines correspond to the real value of the hyper parameter.1021

Figure H.16: Evolution of the confidence interval of the hyperparameter ν1 when the true
values are (τ, µ0, µ1, ν0, ν1, ν2) = (−1,−3.7, 6.5,−3, 4, 4) and ν3 varies from 0 to 6.5 with
a 0.5 step. See Table 2 for definitions of parameters.

I. Alphabetic colonisation1022

I.1. Definition1023

We propose here a colonisation process, referred to as alphabetic coloni-
sation, which assumes that the impact of colonisation in field c depends only
on the number of neighbours in each state of ΩY . In other words it depends
only on the distribution of the non-dormant population states in y

C\c
n . For

a given patch c, if mi is the number of patches among the neighbours in
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Figure H.17: Evolution of the confidence interval of the hyperparameter ν3 when the true
values are (τ, µ0, µ1, ν0, ν1, ν2) = (−1,−3.7, 6.5,−3, 4, 4) and ν3 varies from 0 to 6.5 with
a 0.5 step. See Table 2 for definitions of parameters.

state i, then the impact of colonisation in field c is determined by the vector
(m0, . . . ,m|ΩY |−1). Each possible vector is associated, through alphabetic (or
lexicographic) order, with a unique rank. This rank is then used to define
the probability of success pxc,n,yCn in the binomial distribution. If we denote

the rank associated with y
C\c
n by falpha(y

C\c
n ), then we have:

pxc,n,yCn =
1

1 + exp(−(ν0 + ν1 × xc,n−1

|ΩX |
+ ν2 × yc,n

|ΩY |
+ ν3 × falpha(y

C\c
n )

|falpha(ΩC−1
Y )|))

.

where(ν0, ν1, ν2, ν3) are hyper parameters and where |falpha(ΩC−1
Y )| is the1024

number of possible outputs of the function fmean.1025

1026

In order to derive the expression of falpha, we first define g a function,1027
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from |ΩY |C−1 to |ΩY |C , which sorts the elements of y
C\c
n in descending order1028

and adds a zero at the last component of the vector. For example, if C =1029

4 and ΩY = 5, g((1, 4, 1)) = (4, 1, 1, 0). Multiple total orders for vectors1030

exist; thus, multiple ways of associating a number with a vector of ordered1031

observations exist. We chose alphabetical order. For example, thisimplies1032

(3, 3, 3, 0) < (3, 3, 4, 0) < (4, 1, 1, 0). Let us assume c = C, without loss of1033

generality, then the expression of falpha is:1034

falpha(y
C−1
n ) =

1∑
c′=C−1

1{gc′ (y
C−1
n )>gc′+1(yC−1

n )}

gc′ (y
C−1
n )∑

j=gc′+1(yC−1
n )+1

(
|ΩY | − j + c′ − 1

c′ − 1

)
,

where gl is lth element of g, and the
(|ΩY |−j+l−1

l−1

)
is the number of unordered1035

samplings with replacement of l − 1 elements among |ΩY | − j + 1. The1036

alphabetic colonisation considers more states that the mean colonisation:1037

the function falpha has

(
C + |ΩY | − 2

C − 1

)
different states, whereas fmean has1038

only ΩY states. However, the computational complexity of calculating the1039

state associated with y
C\c
n with the alphabetic colonisation is O(NC((C −1040

1)log(C − 1) + |ΩY |2(C − 1))).1041

I.2. Identifiability1042

We establish the following identifiability theorem for the alphabetic coloni-1043

sation process.1044

Theorem 4. The hyperparameter (µ, ν) = (µ0, µ1, ν0, ν1, ν2, ν3) of a MHMM-1045

DF with the alphabetic colonisation process is generically identifiable from1046

seven consecutive observations if the following conditions hold: |ΩX | ≤ |ΩY |,1047

|ΩY | > 2, C > 2.1048

Proof.1049

Identifiability of (µ0, µ1, ν0, ν1) can be proven in the same manner as1050

for the model with the mean colonisation process. To prove identifiabil-1051

ity ν2 and ν3, we consider the following two transition probabilities: L7 from1052

(xCn−1, y
C
n ) = (

 0
...
0

 ,

 1
...
1

) to (xCn , y
C
n+1) = (

 0
...
0

 ,

 0
...
0

) and L8 from1053

(xCn−1, y
C
n ) = (

 0
...
0

 ,

 2
...
2

) to (xCn , y
C
n+1) = (

 0
...
0

 ,

 0
...
0

):1054
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L7(ν0, ν2, ν3) ∝

 1

1 + exp(−(ν0 + 1
|ΩY |

ν2 +
falpha(1,...,1)

|falpha(ΩC−1
Y )|ν3))

(|ΩX |−1)C

×
[
exp(−(ν0 +

1

|ΩY |
ν2 +

falpha(1, ..., 1)

|falpha(ΩC−1
Y )|

ν3))

](|ΩX |−1)C

.

Therefore:1055

L7(ν0, ν
′
2, ν

′
3) = L7(ν0, ν2, ν3)

<=>

exp( 1
|ΩY |

ν
′
2 +

falpha(1,...,1)

|falpha(ΩC−1
Y )|ν

′
3) = exp( 1

|ΩY |
ν2 +

falpha(1,...,1)

|falpha(ΩC−1
Y )|ν3)

<=>
1
|ΩY |

ν
′
2 +

falpha(1,...,1)

|falpha(ΩC−1
Y )|ν

′
3 = 1

|ΩY |
ν2 +

falpha(1,...,1)

|falpha(ΩC−1
Y )|ν3.

Similarly:1056

L8(ν0, ν
′
2, ν

′
3) = L8(ν0, ν2, ν3)

<=>
2
|ΩY |

ν
′
2 +

falpha(2,...,2)

|falpha(ΩC−1
Y )|ν

′
3 = 2

|ΩY |
ν2 +

falpha(2,...,2)

|falpha(ΩC−1
Y )|ν3.

By subtracting L8− 2L7, we obtain:1057

L8(ν0, ν2, ν3)− 2L7(ν0, ν2, ν3) = L8(ν0, ν
′
2, ν

′
3)− 2L7(ν0, ν

′
2, ν

′
3)

<=>

(
falpha(2,...,2)

|falpha(ΩC−1
Y )| −

2falpha(1,...,1)

|falpha(ΩC−1
Y )|)ν3 = (

falpha(2,...,2)

|falpha(ΩC−1
Y )| −

2falpha(1,...,1)

|falpha(ΩC−1
Y )|)ν

′
3.

Thus if falpha(2, ..., 2) − 2falpha(1, ..., 1) 6= 0, identifiability of ν3 is estab-1058

lished. From the definition of falpha we have:1059

falpha(1, ..., 1) =

(
|ΩY |+ C − 3

C − 2

)
,

1060

falpha(2, ..., 2) =
2∑
j=1

(
|ΩY | − j + C − 2

C − 2

)
.
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Thus:1061

falpha(2, ..., 2)− 2falpha(1, ..., 1) = −2
(|ΩY |+C−3

C−2

)
+

2∑
j=1

(|ΩY |−j+C−2
C−2

)
=

(|ΩY |+C−4
C−2

)
−
(|ΩY |+C−3

C−2

)
= (|ΩY |+C−4)!

(|ΩY |−2)!(C−2)!
− (|ΩY |+C−3)!

(|ΩY |−1)!(C−2)!

= (|ΩY |+C−4)!
(|ΩY |−2)!(C−2)!

(1− |ΩY |+C−3
|ΩY |−1

).

Let us show that falpha(2, ..., 2) − 2falpha(1, ..., 1) = 0 implies C = 2. As1062

(|ΩY |+C−4)!
(|ΩY |−2)!(C−2)!

> 0, if falpha(2, ..., 2)−2falpha(1, ..., 1) = 0 then 1− |ΩY |+C−3
|ΩY |−1

= 0.1063

Thus:1064

1 = |ΩY |+C−3
|ΩY |−1

|ΩY | − 1 = |ΩY |+ C − 3
C = 2.

Since falpha(2, ..., 2)−2falpha(1, ..., 1) = 0 only when C = 2, then when 3 ≤ C,1065

we have ν3 = ν
′
3. Finally, by using L8 or L7, we easily obtain that if ν3 = ν

′
3,1066

then ν2 = ν
′
2.1067

Thus, we were able to establish that if 3 ≤ C, then P(hn|hn−1, ν, µ) =1068

P(hn|hn−1, ν
′, µ′) implies (µ, ν) = (µ

′
, ν
′
). To establish generic identifiability,1069

conditions from Theorem 2 are required: |ΩX | ≤ |ΩY |, and C > 2. Addition-1070

ally, the number of observable states |ΩY | must be greater than 2 since three1071

states were used to prove generic identifiability. The MHMM-DF with alpha-1072

betic colonisation is generically identifiable with at least two hidden states1073

and at least three observable states with at least three patches and with the1074

number of hidden states smaller or equal to the number of observable states.1075

�1076
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