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Abstract 25 

Leaf mass per area (𝐿𝑀𝐴) and leaf equivalent water thickness (𝐸𝑊𝑇) are key leaf functional traits 26 

providing information for many applications including ecosystem functioning modeling and fire risk 27 

management. In this paper, we investigate two common conclusions generally made for 𝐿𝑀𝐴 and 28 

𝐸𝑊𝑇 estimation based on leaf optical properties in the near-infrared (NIR) and shortwave infrared 29 

(SWIR) domains: (1) physically-based approaches estimate 𝐸𝑊𝑇 accurately and 𝐿𝑀𝐴 poorly, while 30 

(2) statistically-based and machine learning (ML) methods provide accurate estimates of both 𝐿𝑀𝐴 31 

and 𝐸𝑊𝑇. 32 

Using six experimental datasets including broadleaf species samples of more than 150 species 33 

collected over tropical, temperate and boreal ecosystems, we compared the performances of a 34 

physically-based method (PROSPECT model inversion) and a ML algorithm (support vector machine 35 

regressions, SVM) to infer 𝐸𝑊𝑇 and 𝐿𝑀𝐴 based on leaf reflectance and transmittance. We assessed 36 

several merit functions to invert PROSPECT based on iterative optimization and investigated the 37 

spectral domain to be used for optimal estimation of 𝐿𝑀𝐴 and 𝐸𝑊𝑇. We also tested several 38 

strategies to select the training samples used by the SVM, in order to investigate the generalization 39 

ability of the derived regression models. 40 

We evidenced that using spectral information from 1700 to 2400 nm leads to strong improvement in 41 

the estimation of 𝐸𝑊𝑇 and 𝐿𝑀𝐴 when performing a PROSPECT inversion, decreasing the 𝐿𝑀𝐴 and 42 

𝐸𝑊𝑇 estimation errors by 55% and 33%, respectively. 43 

The comparison of various sampling strategies for the training set used with SVM suggests that 44 

regression models show limited generalization ability, particularly when the regression model is 45 

applied on data fully independent from the training set. Finally, our results demonstrate that, when 46 

using an appropriate spectral domain, the PROSPECT inversion outperforms SVM trained with 47 

experimental data for the estimation of 𝐸𝑊𝑇 and 𝐿𝑀𝐴. Thus we recommend that estimation of 48 
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𝐿𝑀𝐴 and 𝐸𝑊𝑇 based on leaf optical properties should be physically-based using inversion of 49 

reflectance and transmittance measurements on the 1700 to 2400 nm spectral range. 50 

 51 

1. INTRODUCTION 52 

Global climate change and biodiversity loss strongly impact species and ecosystem functions, which 53 

directly influences processes at landscape and regional scales, and disrupts global biogeochemical 54 

cycles (Chapin, 2003). These ecosystem functions are tightly connected with species composition 55 

and can be partly described and explained using plant traits (Diaz and Cabido, 2001; Eviner and 56 

Chapin, 2003). By definition, plant traits correspond to morphological, physiological or phenological 57 

features measurable at the individual level, and functional traits are defined as these features 58 

impacting individual fitness via their effects on growth, reproduction and/or survival, the three 59 

components of individual performance (Violle et al., 2007). Therefore, our understanding of the 60 

interactions between climate, human activity and ecosystem functioning strongly depends on our 61 

capacity to monitor critical functional traits across space and time (Asner and Martin, 2016).  62 

Leaf mass per area (𝐿𝑀𝐴) is defined as the ratio of leaf dry mass (𝐷𝑊) to leaf area (𝐴): 63 

 64 

𝐿𝑀𝐴 =
𝐷𝑊

𝐴
 (𝑚𝑔. 𝑐𝑚−2) Eq. 1 

 65 

It is a plant functional trait widely used as an indicator of plant functioning and ecosystem processes. 66 

In the leaf economic spectrum theory, the biophysical constraints explain the high coordination 67 

between organs properties and available resources: for instance, plants that have high trunk water 68 

conductivity generally have high stomatal conductance, low 𝐿𝑀𝐴 and high photosynthetic 69 

capacities, developed root system and nutrient uptake, high turnover rate of resource acquisition 70 

organs, high growth rates. 𝐿𝑀𝐴 is therefore a very significant trait because it correlates with key 71 
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plant functional properties (de la Riva et al., 2016; Oren et al., 1986; Reich et al., 1997), therefore 72 

capturing a great proportion of the functional variation in the ecosystem. 73 

𝐿𝑀𝐴 is important for the description of plant strategies and photosynthetic capacity over various 74 

vegetation types and climates (Asner et al., 2011; Gratani and Varone, 2006; Osnas et al., 2013; 75 

Puglielli et al., 2015; Reich et al., 1997, 1998; Weng et al., 2017). It is also a predictor of relative 76 

growth rate (Antúnez et al., 2001; Rees et al., 2010) and is usually correlated with mass-based 77 

maximum photosynthetic rate (Wright et al. 2004). At broader scales, it is also identified as a critical 78 

plant trait for the global monitoring of functional diversity, and for the determination of species 79 

fitness in their environment, affecting various ecosystem processes (Poorter et al., 2009; Schimel et 80 

al., 2015). Measurement of 𝐿𝑀𝐴 is also relevant for many other applications, such as fire risk 81 

assessment (Cornelissen et al., 2017). Finally, 𝐿𝑀𝐴 allows the conversion of traits expressed on an 82 

area basis into mass basis and vice versa. This is important since physical models usually express leaf 83 

constituent content per surface unit, whereas ecologists and plant physiologists may use constituent 84 

content per surface unit or per mass unit (Osnas et al., 2013; Wright et al., 2004). 85 

The second important functional trait discussed in this study is the equivalent water thickness 86 

(𝐸𝑊𝑇), defined as: 87 

 88 

𝐸𝑊𝑇 =
𝐹𝑊 − 𝐷𝑊

𝐴
 (𝑚𝑔. 𝑐𝑚−2) 

Eq. 2 

 

 89 

with 𝐹𝑊 the leaf fresh mass. 𝐸𝑊𝑇 is the area-weighted moisture content. It is related to a range of 90 

physiological and ecosystem processes, including leaf-level tolerance to dehydration, and ecological 91 

strategy. Indeed, species with large 𝐸𝑊𝑇 tend to have lower construction costs, and are 92 

predominantly fast-growing and pioneer species (Wright et al., 2004).  93 
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The ability to accurately estimate both 𝐸𝑊𝑇 and 𝐿𝑀𝐴 is also critical for applications such as fire 94 

danger assessment: fuel moisture content (𝐹𝑀𝐶, Chuvieco et al., 2002), also referred to as 95 

gravimetric water content (𝐺𝑊𝐶, Datt, 1999), is a critical variable affecting fire interactions with fuel 96 

(Yebra et al., 2013). The accurate estimation of 𝐹𝑀𝐶 is usually limited by the uncertainty associated 97 

to the estimation of 𝐿𝑀𝐴 (Riano et al., 2005). Destructive measurements of 𝐿𝑀𝐴 and 𝐸𝑊𝑇 are 98 

time-consuming and logistically complex in remote environments. Alternative methods based on leaf 99 

spectroscopy have showed good performances for the estimation of various constituents (Asner et 100 

al., 2011, 2009; Ceccato et al., 2001; Colombo et al., 2008; Feilhauer et al., 2015; Féret et al., 2017; 101 

Fourty and Baret, 1998). Two main types of methods have been developed for the estimation of 102 

vegetation properties from their optical properties (including leaf chemistry but also canopy 103 

biophysical properties): physically-based methods and data-driven methods, also referred to as 104 

“radiometric data-driven approaches” and “biophysical variable driven approaches” respectively, by 105 

Baret and Buis (2008). In this study, we will only use the terms physically-based methods and data-106 

driven methods in order to avoid confusion.  107 

Physically-based methods are based on radiative transfer models (RTM) providing a mechanistic link 108 

between leaf traits and their optical properties. They aim at minimizing the residuals between 109 

measured and modeled radiometric data (hence the term “radiometric data-driven approach” by 110 

Baret and Buis, 2008). The PROSPECT model (Jacquemoud and Baret, 1990; Féret et al., 2017) is the 111 

most widespread model, due to its relative simplicity and computational efficiency combined with 112 

excellent modeling performances for a broad range of leaf types. Several retrieval algorithms have 113 

been developed to estimate leaf chemistry from their optical properties, taking advantage of 114 

physical modeling. These include look-up-table (LUT) methods (Ali et al., 2016) and iterative 115 

optimization based on minimization algorithms (Jacquemoud et al., 1996). Physically-based methods 116 

do not require calibration data, but they are computationally demanding.  117 
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Data-driven methods use a calibration dataset of measured leaf optical properties and traits in order 118 

to adjust regression models for the estimation of leaf chemistry (Verrelst et al., 2016). These include 119 

regression models derived from spectral indices, one of the most classic approaches (Gitelson et al., 120 

2006; Main et al., 2011). More complex multivariate methods such as partial least square regression 121 

(Asner et al., 2011), and machine learning algorithms (ML) are also extensively used in the domain of 122 

remote sensing. These include support vector machine (SVM, Cortes and Vapnik, 1995; Drucker et 123 

al., 1996), random forest (Breiman, 2001), and artificial neural networks (Hornik et al., 1989). ML 124 

algorithms have been extensively used for remote sensing applications during the past decades, 125 

most of them at the canopy level when it comes to the estimation of biochemical constituents 126 

(Brown et al., 2000; Gualtieri, 2009; Lardeux et al., 2009; le Maire et al., 2011; Schmitter et al., 2017; 127 

Stumpf and Kerle, 2011; Zhang et al., 2017) , and a limited number of studies focusing on the 128 

leaf/needle scale (Conejo et al., 2015; Dawson et al., 1998; le Maire et al., 2004). ML algorithms 129 

usually show good performances in terms of prediction ability and high computational efficiency. 130 

The capacity of data-driven approaches to accurately predict leaf chemistry from their optical 131 

properties is inherently dependent on the dataset used to train the algorithm and regression model. 132 

The experiments performed in this study aim at quantifying this assertion over an extensive 133 

experimental dataset. This implies that correct implementation of data-driven methods using 134 

experimental data for training requires substantial efforts for the measurement of leaf optical 135 

properties and chemical constituents with destructive methods, whereas physical modeling only 136 

requires leaf optical properties.  137 

Note that a third type of approach, namely, hybrid methods, could also be mentioned here (Verrelst 138 

et al., 2015). Such methods use data-driven algorithms trained with spectral properties simulated 139 

with physical models. These methods are particularly developed at the canopy scale, and combine 140 
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the advantages of physically-based and data-driven methods: they do not require destructive 141 

measurements to build an experimental training dataset, and they are computationally efficient.  142 

𝐿𝑀𝐴 and 𝐸𝑊𝑇 both influence leaf optical properties in the near-infrared (NIR) and shortwave 143 

infrared (SWIR) domains (Bowyer and Danson, 2004). However, physically-based methods have 144 

often been reported to perform poorly for the estimation of 𝐿𝑀𝐴 (Colombo et al., 2008; le Maire et 145 

al., 2008; Riano et al., 2005; Wang et al., 2011). Several reasons have been mentioned in the 146 

literature, including suboptimal modeling (Qiu et al., 2018), optical data collection (Merzlyak et al., 147 

2004) or inversion (Colombo et al., 2008; Qiu et al., 2018; Riano et al., 2005; Sun et al., 2018; Wang 148 

et al., 2011, 2015). 149 

A first reason related to modeling is that the influence of 𝐿𝑀𝐴 on the optical properties modeled by 150 

PROSPECT is defined by a single specific absorption coefficient (SAC), although various non-pigment 151 

organic materials (cellulose, hemicellulose, lignin, proteins, starch) influence leaf optics individually 152 

(Jacquemoud et al., 1996). Therefore, this single SAC assumes that the relative proportion of each of 153 

these single constituents is constant among leaves, which may not be the case. Another reason may 154 

be due to an imperfect modeling of light propagation within the leaf. From that perspective, Qiu et 155 

al. (2018) proposed a refined version of PROSPECT (named PROSPECT-g) including an anisotropic-156 

scattering factor in order to improve the estimation of 𝐿𝑀𝐴, and developed an iterative inversion 157 

procedure specifically dedicated to this model.  158 

Experimental uncertainty should also be considered when discrepancies between measurements 159 

and simulations are observed. Indeed, accurately measuring leaf optical properties remains 160 

challenging despite the high performances of field and lab spectroradiometers, leading to possible 161 

experimental bias which is usually unaccounted for. As an example, Merzlyak et al. (2004) reported 162 

the difficulty to accurately measure leaf optical properties in the NIR domain due to incomplete 163 

collection of the light leaving the highly scattering tissue. They proposed a correcting factor for 164 
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transmittance based on the hypothesis that leaf absorption in the NIR domain is negligible. For these 165 

reasons, the relevance of systematically using the full spectral domain (especially the NIR domain) 166 

can be questioned. 167 

Finally, several authors suggested that classical least-squares inversion based on the use of leaf 168 

reflectance and transmittance over the full spectral domain was suboptimal for physically-based 169 

estimation of 𝐿𝑀𝐴, especially due to the lower influence of 𝐿𝑀𝐴 on leaf optical properties in the 170 

SWIR domain as compared to 𝐸𝑊𝑇 (Colombo et al., 2008; Riano et al., 2005). More elaborated 171 

inversion procedures have thus been proposed to improve 𝐿𝑀𝐴 estimation. Some of them are 172 

based on complex iterative procedures consisting in successively estimating different PROSPECT 173 

parameters using unweighted merit functions computed over specific spectral domains (Qiu et al., 174 

2018 ; Li and Wang, 2011 ; Wang et al., 2015). When using the full spectral domain from 400 to 2500 175 

nm, Sun et al. (2018) showed that 𝐿𝑀𝐴 estimation based on PROSPECT inversion and an unweighted 176 

merit function was more accurate when using only reflectance or only transmittance instead of 177 

reflectance plus transmittance. When using bidirectional reflectance measurements, Li et al. (2018) 178 

developed an approach (PROCWT) coupling PROSPECT with continuous wavelet transform in order 179 

to suppress surface reflectance effects. PROCWT was shown to perform better than PROSPECT and a 180 

simplified version of PROCOSINE (Jay et al., 2016) for the estimation of 𝐿𝑀𝐴. 181 

All of these studies demonstrate the complexity of a direct estimation of 𝐿𝑀𝐴 from leaf optical 182 

properties using physically-based methods, and the difficulty to clearly identify the origin of current 183 

limitations. In the case of data-driven methods, the estimation of 𝐿𝑀𝐴 has seldom been investigated 184 

comprehensively: training and test data are usually collected following a unique protocol specific to 185 

a unique set of equipment and by the same team of operators. This means that possible 186 

experimental biases due to protocol, equipment and/or operators may be embedded into the 187 
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resulting regression model, leading to poor generalization ability when applied to independent 188 

datasets collected under different conditions or with different equipment. 189 

The objective of this study is to assess the relative performances of physically-based and data-driven 190 

approaches for the estimation of 𝐿𝑀𝐴 and 𝐸𝑊𝑇 based on leaf optical properties. Our working 191 

questions are (1) what are the limitations of PROSPECT for 𝐿𝑀𝐴 and 𝐸𝑊𝑇 estimation, and is there 192 

any solution to overcome these limitations, and (2) what is the generalization ability of data-driven 193 

approaches when independent datasets are used for training and validation? We gathered six 194 

datasets in temperate, tropical and boreal ecosystems, with joint measurements of broadleaf optical 195 

properties, 𝐿𝑀𝐴 and 𝐸𝑊𝑇 (Section 2). Then, we designed specific protocols to address questions (1) 196 

and (2), and to perform an objective comparison of their performances (Section 3). This includes the 197 

selection of specific spectral information for PROSPECT inversion, and different strategies for the 198 

sampling of the training dataset for ML algorithms. Section 4 presents the results obtained with the 199 

different approaches, including a comparison of the validation with the six experimental datasets. 200 

Finally, section 5 discusses the potential and current limitations of the approaches and section 6 201 

provides a conclusion. 202 

 203 

2. MATERIALS 204 

a. Global description of the datasets 205 

For this study, six datasets were collected over various ecoregions, ranging from tropical forests, to 206 

temperate and boreal ecosystems (Table 1). LOPEX and ANGERS are publicly available and used in 207 

many publications. HYYTIALA, ITATINGA, NOURAGUES and PARACOU are unpublished datasets. 208 

- The ANGERS1 dataset was collected in 2003 at INRA (Institut national de la recherche 209 

agronomique) in Angers (France). It encompasses physical measurements and biochemical 210 

                                                           
1
 http://opticleaf.ipgp.fr/index.php?page=database 

http://opticleaf.ipgp.fr/index.php?page=database
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analyses collected over 43 species and varieties of woody and herbaceous plants. ANGERS was 211 

used for the calibration of the SAC for chlorophylls, carotenoids and anthocyanins in the latest 212 

versions of PROSPECT (Féret et al., 2017, 2008). 213 

- The Leaf Optical Properties Experiment (LOPEX1,2) dataset was collected in 1993 in Italy during a 214 

campaign conducted at the Joint Research Centre (Ispra, Italy) (Hosgood et al., 1994). It 215 

encompasses physical measurements and biochemical analyses collected over more than 50 216 

species of woody and herbaceous plants, and has been widely used by the remote sensing 217 

community (Bowyer and Danson, 2004; Féret et al., 2008; Mobasheri and Fatemi, 2013; Romero 218 

et al., 2012). The full LOPEX dataset includes dry and fresh samples and was used for the 219 

calibration of the SAC of 𝐿𝑀𝐴 (Féret et al., 2008), as well as broadleaf and needleleaf samples. 220 

However, only broadleaf samples were used in the current study, all fresh leaves except for one 221 

set of five dry maize leaf samples.  222 

- The HYYTIALA dataset was collected in July 2017 at the Hyytiälä Forestry Field Station in 223 

Southern Finland in the frame of the Fluorescence Across Space and Time (FAST) campaign. This 224 

station is located in the boreal belt and is dominated by mixed forest of Scots pine, Norway 225 

spruce and silver birch. This dataset encompasses physical measurements and biochemical 226 

analyses collected over various native and non-native broadleaf species located in the field 227 

station. 228 

- The ITATINGA dataset was collected in October 2015 as part of the IPEF-Eucflux project and 229 

HYPERTROPIK project (TOSCA, CNES, France), from experimental Eucalyptus stands planted in 230 

November 2009 near the University of São Paulo forestry research station at Itatinga 231 

Municipality (São Paulo State, southeastern Brazil). ITATINGA includes sixteen genotypes and 232 

four species of Eucalyptus, eventually with hybrids, provided by different forestry companies in 233 

                                                           
2
 http://teledetection.ipgp.jussieu.fr/opticleaf/lopex.htm 
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different regions of Brazil. For each genotype, leaves corresponding to various developmental 234 

stages were collected, from juvenile to mature to senescent, and various locations within the 235 

crown (shaded leaves from the lower part of the crown, leaves from mid crown and sunlit leaves 236 

from the upper part of the crown). This dataset is the only genus-specific dataset. Hence, in spite 237 

of the large variability in terms of developmental stages, the ranges of 𝐿𝑀𝐴 and 𝐸𝑊𝑇 show 238 

significantly lower variability than those observed for the other datasets (Table 1). See Oliveira 239 

et al. (2017) for more details. 240 

- The NOURAGUES dataset was collected at the CNRS Nouragues experimental research station, 241 

French Guiana, in September 2015, in the frame of the HYPERTROPIK project. This site is a 242 

lowland Amazonian forest, protected since 1996 by a Natural Reserve status. This dataset 243 

includes four to ten leaf samples from 38 emerging tropical tree species, collected from both 244 

shaded and sunlit parts of the crown. The Nouragues station is also a pilot site for remote 245 

sensing studies of tropical ecosystems (Réjou-Méchain et al., 2015). 246 

- The PARACOU dataset was collected at the CIRAD-INRA Paracou experimental research station, 247 

French Guiana, in September 2015 (HYPERTROPIK project). This dataset includes four to ten leaf 248 

samples from 28 emerging tropical tree species, collected from both shaded and sunlit parts of 249 

the crown. Paracou is located in coastal lowland Amazonian forest. Various experiments are 250 

ongoing, including disturbance experiments, CO2 flux experiments, fertilization and long-term 251 

studies in forest dynamics and biodiversity.  252 

 253 

b. Measurements of leaf optical properties 254 

For all the samples, directional-hemispherical reflectance and transmittance (Schaepman-Strub et 255 

al., 2006) of the upper surface of the leaves were measured with a spectroradiometer and an 256 

integrating sphere in the visible (VIS), NIR and SWIR domains between 400 and 2500 nm. Here, we 257 
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used the infrared domain ranging from 900 to 2400 nm, due to the low influence of 𝐿𝑀𝐴 and 𝐸𝑊𝑇 258 

on leaf optical properties below 900 nm, and to the low signal-to-noise ratio (SNR) beyond 2400 nm. 259 

All datasets shared the same protocol for the measurement of leaf optical properties, and included 260 

spectral calibration for stray light in order to correct the imperfect collimation of the lamp beam as 261 

well as compensation for the optical properties of the coating of the integrating sphere when 262 

measuring leaf reflectance and transmittance (Asner et al., 2009; Carter and Knapp, 2001). The 263 

datasets were collected by different operators, and using different devices. Despite efforts to share a 264 

unique protocol for the acquisition of leaf optical properties, this diversity of operators, equipment 265 

and conditions of acquisition, is a possible source of bias that we discuss here. 266 

 267 

c. Measurements of 𝐿𝑀𝐴 and 𝐸𝑊𝑇 268 

The measurement of 𝐸𝑊𝑇 and 𝐿𝑀𝐴 shared the same protocol among experimental datasets. Leaf 269 

samples were collected in the field, stored in a cooler and measured in an experimental facility 270 

equipped with a precision scale and a drying oven. Minutes after measuring the leaf optical 271 

properties, disks of fresh leaf material were sampled using a cork borer, and immediately weighted 272 

using the precision scale to obtain 𝐹𝑊 (Eq. 2). The disks were then placed in a drying oven at 85°C 273 

for at least 48 hours until constant mass was attained, and immediately weighted when out of the 274 

oven in order to determine 𝐷𝑊 (Eq. 1 and Eq. 2) (Cornelissen et al., 2003; Pérez-Harguindeguy et al., 275 

2013). 𝐸𝑊𝑇 and 𝐿𝑀𝐴 were then computed based on Eq. 1 and Eq. 2.  276 

Table 1 summarizes basic statistics and information for each dataset. 𝐿𝑀𝐴 and 𝐸𝑊𝑇 were 277 

systematically measured for each sample in each dataset, except for the PARACOU dataset which 278 

only includes 𝐿𝑀𝐴 measurements. Similarly to optical properties, various sources of uncertainty may 279 

have affected 𝐸𝑊𝑇 and 𝐿𝑀𝐴 measurements, including errors in the area sampled on leaf material 280 

due to imperfect circular sampling disks, loss in water content between leaf optics measurements 281 
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and weighting of fresh mass, or rehydration between drying and weighting of dry mass. However, 282 

care was paid to standardize data collection, so as to minimize the influence of these possible biases. 283 

𝐸𝑊𝑇 and 𝐿𝑀𝐴 show no correlation for ITATINGA, weak correlation for LOPEX, moderate correlation 284 

for HYYTIALA and NOURAGUES, and strong correlation for ANGERS. A moderate correlation of 0.44 is 285 

measured when pooling all samples together. 286 

 287 

Table 1. Summary of the main properties of the experimental datasets. Basic statistics for each 288 

dataset (minimum and maximum value, mean and standard deviation) are given for 𝑬𝑾𝑻 and 𝑳𝑴𝑨, 289 

as well as their correlation r(𝑬𝑾𝑻, 𝑳𝑴𝑨). 290 

 ANGERS LOPEX HYYTIALA ITATINGA NOURAGUES PARACOU 

#Samples 308 330 96 415 262 272 

#Species/genotypes 43 sp. 46 sp. 10 sp. 4 sp. /16 gt.* 38 sp. 28 sp. 

𝑬𝑾𝑻 (mg.cm
-2

) 

Min – Max 4.40 – 34.00 0.29 –52.48 3.68 – 23.73 2.20 – 20.20 3.20 – 38.10 N/A 

Mean ± SD 11.47 ± 4.70 11.13 ± 6.97 9.16 ± 2.98 14.44 ± 2.09 11.73 ± 4.86 N/A 

𝑳𝑴𝑨 (mg.cm
-2

) 

Min – Max 1.66 – 33.10 1.71 – 15.73 2.76 – 15.77 6.90 – 14.70 3.10 – 21.10 5.28 – 25.56 

Mean ± SD 5.12 ± 3.53 5.29 ± 2.47 6.27 ± 3.04 10.24 ± 1.62 10.81 ± 3.89 12.32 ± 4.06 

r(𝑬𝑾𝑻, 𝑳𝑴𝑨 ) 0.72 0.28 0.40 0.03 0.51 N/A 

* Four species from Eucalyptus genus, corresponding to sixteen genotypes 291 

 292 

3. METHODS 293 

a. PROSPECT model: general presentation  294 

PROSPECT is based on the generalized plate model (Allen et al., 1969, 1970) and was initially 295 

developed by Jacquemoud and Baret (1990). This model simulates the leaf directional-hemispherical 296 
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reflectance and transmittance (Schaepman-Strub et al., 2006) with a limited number of input 297 

biophysical and biochemical variables, including various absorbing compounds and a unique leaf 298 

structure parameter, named 𝑁. Many versions have been developed since the first version, in order 299 

to include more absorbing compounds (Féret et al., 2017, 2008; Jacquemoud et al., 1996) or to 300 

adapt to specific conditions and leaf types, such as needle-shaped leaves (Malenovský et al., 2006). 301 

In this study, we used the latest version of PROSPECT, named PROSPECT-D (Féret et al., 2017). As we 302 

focused on leaf optical properties in the 900 – 2400 nm range, the capability of PROSPECT in terms 303 

of separation of pigments was not critical as no pigment absorbs in this spectral domain, but the 304 

refractive index differs from the one used on PROSPECT-5 (Féret et al., 2008). Brown pigments were 305 

not retrieved during the inversion, as including them showed no significant difference in the results 306 

obtained for any of the strategies tested here. 307 

The 𝑁 parameter corresponds to the number of uniform compact plates separated by 𝑁 − 1 air 308 

spaces. The value of 𝑁 represents the complexity of the leaf internal structure, with low 𝑁 values 309 

corresponding to moderate complexity such as in monocots, and higher 𝑁 values corresponding to 310 

higher complexity, a characteristic of dicots. To date, no protocol exists to experimentally estimate 311 

𝑁 from leaf samples, other than using leaf optical properties.  𝑁 influences leaf scattering and shows 312 

negligible impact on leaf absorption: increasing 𝑁 values increase reflectance and decrease 313 

transmittance, and 𝑁 shows particularly strong effects in domains with low absorption, such as the 314 

NIR domain. Recently, Qiu et al. (2018) found an extremely strong correlation between 𝑁 and the 315 

ratio between reflectance and transmittance on simulated data. 316 

PROSPECT can be run in forward or inverse mode. The forward mode aims at simulating leaf optical 317 

properties based on a full set of biophysical and biochemical properties (leaf chemistry and 𝑁). The 318 

inverse mode aims at identifying the optimal set of biophysical and biochemical properties that 319 

minimize a merit function (or goodness-of-fit criterion) based on a comparison between measured 320 
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and simulated leaf optics. A common inversion procedure is based on the numerical minimization of 321 

the sum of weighted square errors over all spectral bands available. The corresponding merit 322 

function 𝑀 is expressed as follows when using both reflectance and transmittance: 323 

 324 

𝑀(𝑁, { 𝐶𝑖}𝑖=1:𝑝) = ∑ [𝑊𝑅,𝜆 × (𝑅𝜆 − 𝑅̂𝜆)
2

+ 𝑊𝑇,𝜆 × (𝑇𝜆 − 𝑇̂𝜆)
2

]

𝜆𝑛

𝜆=𝜆1

 Eq. 3 

 325 

with 𝑁 the leaf structure parameter, 𝑝 the number of chemical constituents accounted for by 326 

PROSPECT and retrieved during the inversion, 𝐶𝑖 the biochemical content per leaf surface unit for 327 

constituent 𝑖, 𝜆1 and 𝜆𝑛 the first and last wavebands investigated for inversion, 𝑅𝜆 and 𝑇𝜆 the 328 

experimental reflectance and transmittance measured at waveband 𝜆, 𝑅̂𝜆 and 𝑇̂𝜆 the reflectance and 329 

transmittance simulated by PROSPECT with {𝑁, { 𝐶𝑖}𝑖=1:𝑝} as input variables, 𝑊𝑅,𝜆 the weight 330 

applied to the squared difference between experimental and simulated reflectances, and 𝑊𝑇,𝜆 its 331 

equivalent for transmittance. Eq. 3 can be used to estimate the full set of input variables, or a limited 332 

subset if prior information or arbitrary value is set for some variables. 333 

b. Estimation of 𝐸𝑊𝑇 and 𝐿𝑀𝐴 through iterative optimization 334 

The large majority of the studies focusing on leaf scale model inversions through iterative 335 

optimization used Eq. 3 with unweighted merit function over the full spectral domain available 336 

(𝑊𝑅,𝜆 = 𝑊𝑇,𝜆 = 1).This merit function provides accurate estimates of leaf pigments and 𝐸𝑊𝑇 (Féret 337 

et al., 2017; Jacquemoud et al., 1996; Newnham and Burt, 2001), but several studies reported poor 338 

results for 𝐿𝑀𝐴 estimation (Féret et al., 2008; Riano et al., 2005). Colombo et al. (2008) used an 339 

alternative weighting, with 𝑊𝑅,𝜆 = (𝑅𝜆)−2 and 𝑊𝑇,𝜆 = (𝑇𝜆)−2, which is otherwise unused in the 340 

literature when inverting leaf models, and not so common when inverting canopy models (Baret and 341 

Buis, 2008). In practice, implementing such a merit function requires precaution as high sensor noise 342 
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(in particular in the SWIR domain) may result in close-to-zero reflectance and transmittance, leading 343 

to exaggerated importance of the corresponding spectral bands. This merit function then needs to 344 

be adapted to exclude these spectral bands. Colombo et al. (2008) reported fair performances of this 345 

merit function for the estimation of 𝐸𝑊𝑇, but poor performances for 𝐿𝑀𝐴. However, the SWIR 346 

domain beyond 1600 nm was not measured for their study, in spite of its importance for the 347 

estimation of 𝐿𝑀𝐴 (Asner et al., 2011, 2009; le Maire et al., 2008). Therefore a fair comparison 348 

between this merit function and the unweighted merit function including the full spectral range is 349 

required.  350 

As mentioned in the introduction, 𝐿𝑀𝐴 estimation could also be improved by focusing on optimal 351 

spectral ranges (Li and Wang, 2011; Qiu et al., 2018; Wang et al., 2015). This amounts to choosing 352 

the weights such that 𝑊𝑅,𝜆 = 𝑊𝑇,𝜆 = 1 in the considered range, and 𝑊𝑅,𝜆 = 𝑊𝑇,𝜆 = 0 elsewhere. 353 

Note that such a procedure is relatively straightforward and could potentially be applied to the 354 

canopy scale in a similar way.  355 

In this study, three inversion procedures were applied to the six independent experimental datasets, 356 

and their relative performances were compared. These inversion procedures correspond to “one-357 

step” procedures, aiming at estimating 𝐸𝑊𝑇, 𝐿𝑀𝐴 and 𝑁 simultaneously from both reflectance and 358 

transmittance:  359 

- Iterative optimization 1 (IO1) uses an unweighted merit function (𝑊𝑅,𝜆 = 𝑊𝑇,𝜆 = 1) with 360 

reflectance and transmittance defined from 900 nm to 2400 nm. 361 

- Iterative optimization 2 (IO2) uses a weighted merit function as defined by Colombo et al. (2008) 362 

(𝑊𝑅,𝜆 = (𝑅𝜆)−2 and 𝑊𝑇,𝜆 = (𝑇𝜆)−2) with reflectance and transmittance defined from 900 nm to 363 

2400 nm. 364 

- Iterative optimization 3 (IO3) uses a weighted merit function defined by 𝑊𝑅,𝜆 = 𝑊𝑇,𝜆 = 1 over 365 

an optimal contiguous spectral domain [𝜆1, 𝜆𝑛] defined between 900 and 2400 nm, and 366 
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𝑊𝑅,𝜆 = 𝑊𝑇,𝜆 = 0 elsewhere. This optimal spectral domain is adjusted in the present study and is 367 

the same for both reflectance and transmittance, and for all experimental datasets.   368 

In the case of IO3, the exhaustive comparison of all combinations of spectral domains or spectral 369 

bands is computationally too demanding and extremely inefficient given the strong correlations 370 

between neighboring spectral domains. In order to reduce the computational cost, we focused on 371 

contiguous spectral domains defined by partitioning the initial spectral domain into 15 evenly-sized 372 

segments of 100 nm from 900 to 2399 nm. The choice of 100 nm segments is driven by constraints in 373 

terms of computation and by the ability to identify the main absorption features of 𝐸𝑊𝑇 and 𝐿𝑀𝐴 374 

individually. The performances of PROSPECT inversion for the estimation of 𝐿𝑀𝐴 and 𝐸𝑊𝑇 were 375 

tested with all continuous spectral domains that can be generated from these 15 spectral segments, 376 

leading to 120 continuous segments. Finally, the spectral domain leading to the minimum RMSE 377 

averaged for all experimental datasets and for the estimation of both 𝐿𝑀𝐴 and 𝐸𝑊𝑇 from 378 

PROSPECT inversion was selected and defined as the optimal spectral range used in IO3. 379 

For IO1, IO2 and IO3, 𝑁, 𝐸𝑊𝑇 and 𝐿𝑀𝐴 were simultaneously estimated using a constrained 380 

nonlinear optimization algorithm, i.e., the Sequential Quadratic Programming algorithm 381 

implemented within the Matlab function fmincon. The lower bounds selected for the three 382 

parameters to be optimized were defined to respect the condition of strict positivity and include 383 

minimum values observed for experimental data, whereas the upper bounds were set in order to 384 

include the maximum values observed for experimental data, with significant margins: 𝐸𝑊𝑇 values 385 

were investigated between 0.01 and 80 mg.cm-2; 𝐿𝑀𝐴 values were investigated between 0.01 and 386 

40 mg.cm-2; 𝑁 values were investigated between 0.5 and 4. No correlation constraints between 387 

𝐸𝑊𝑇 and 𝐿𝑀𝐴 were included in the inversion procedure, since such correlation was not systematic 388 

between datasets. 389 

 390 
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c. Data-driven estimation of 𝐸𝑊𝑇 and 𝐿𝑀𝐴 391 

The performances of data-driven methods inherently depend on the training data. In most cases, 392 

these performances are reported after splitting an experimental dataset into training and validation 393 

subsets, and the resulting regression models are not validated on fully independent datasets. In the 394 

perspective of operational applications, this raises the question of the possibility to share regression 395 

models adjusted with ML algorithms on public experimental datasets, and to use leaf spectroscopy 396 

operationally with no destructive measurements required to adjust dataset-specific regression 397 

models. With increasing use of machine learning, software packages including already trained 398 

regression models may be shared the same way statistical models derived from spectral indices have 399 

been proposed in the scientific literature (Féret et al., 2011). We want to answer the following 400 

questions related to data-driven methods: do regression models trained with one or several 401 

experimental datasets perform well when applied on independent datasets, or should training data 402 

systematically include samples from the validation dataset? To answer these questions, three 403 

strategies for the composition of a training dataset were tested, and the performances of data-404 

driven methods were compared with PROSPECT inversions: 405 

- Training sampling 1 (TS1): A single dataset was used as training data and the regression model 406 

was then applied on each of the remaining datasets. 407 

- Training sampling 2 (TS2): All but one experimental datasets were used as training data, and the 408 

regression model was then applied on the remaining dataset. 409 

- Training sampling 3 (TS3): All experimental datasets were pooled into a single one, and 300 410 

samples (comparable in size to individual datasets) were randomly selected for training. 411 

Validation was then performed on the remaining samples (1668 samples for 𝐿𝑀𝐴, and 1396 412 

samples for 𝐸𝑊𝑇), and performances (in terms of RMSE) were evaluated per individual dataset 413 

and globally. In each case, to account for possible sampling bias, random sampling of training 414 
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dataset was repeated 20 times and the distribution of RMSE values across all samplings was 415 

calculated.  416 

Here, these three strategies used to define the training dataset were used with support vector 417 

machine (SVM) regression algorithm corresponding to the Matlab implementation of the LibSVM 418 

library (Chang and Lin, 2011). Reflectance and transmittance measurements from 900 to 2400 nm 419 

were stacked in a unique vector, resulting in 𝑛𝜆 = 3002 predictor spectral variables for each sample. 420 

Reflectance and transmittance were scaled between 0 and 1 for each spectral band, as well as leaf 421 

chemical constituent of interest (𝐿𝑀𝐴 and 𝐸𝑊𝑇). The radial basis function (RBF) kernel was 422 

selected, which implies optimizing two free parameters, 𝐶 and 𝛾. 𝐶 is a cost parameter used to trade 423 

error penalty for stability and common to any SVM model. 𝛾 is specific to RBF kernels and it 424 

corresponds to the inverse of the radius of influence of samples selected by the model as support 425 

vectors. The 𝐶 and 𝛾 parameters were optimized using an exhaustive grid search 426 

(𝐶 ∈  [10−2; 10−1; … ; 10+2], 𝛾 ∈  [10−5; 10−4; … ; 10+1] in order to include the default values 427 

recommended by Chang and Lin (2011) and a five-fold cross validation over the training data for 428 

each combination of 𝐶 and 𝛾. The optimal 𝐶 and 𝛾 values were then used with the full training data 429 

to adjust a regression model. 430 

 431 

4. RESULTS 432 

This section is divided into three subsections. The first subsection aims at identifying the optimal 433 

spectral domain to be used with IO3. This first section is a prerequisite to the second section, which 434 

then focuses on the comparison between the three types of iterative optimization, and the two 435 

types of training samplings based on the integrality of experimental datasets, TS1 and TS2. Finally, 436 

the third section compares the performances of TS3, which is based on a random sampling among all 437 
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experimental datasets, with the performances of IO3 and TS2, when the validation samples are 438 

identical to those used in TS3. 439 

a. Influence of spectral domain used for the estimation of 𝐸𝑊𝑇 and 𝐿𝑀𝐴 with 440 

PROSPECT inversion (optimization of IO3 method) 441 

Figure 1 and Figure 2 show the results obtained for the estimation of 𝐸𝑊𝑇 and 𝐿𝑀𝐴, respectively, 442 

when inverting PROSPECT over each dataset and each of the 120 spectral domains defined in Section 443 

3.b with the IO3 method. For the sake of comparison, for each dataset, the RMSE was normalized by 444 

the RMSE obtained when using the spectral information from 900 to 2400 nm, and this normalized 445 

RMSE (NRMSE) was expressed as a percentage. In the case of 𝐸𝑊𝑇, the optimal spectral domain 446 

excluded the NIR domain under 1300 nm for all datasets, but no unique optimal spectral domain 447 

common to each dataset could be identified. The relative improvement induced by the reduction of 448 

the spectral domain was also strongly dataset-dependent: NRMSE was reduced by 23 % (LOPEX) to 449 

56 % (NOURAGUES). 450 
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Figure 1. Normalized 𝑅𝑀𝑆𝐸 (𝑁𝑅𝑀𝑆𝐸, in %) obtained for 𝐸𝑊𝑇 with PROSPECT inversion method IO3 

over each dataset and each reduced spectral domains bounded by a starting wavelength 𝜆1 (y-axis) 

and an ending wavelength 𝜆2 (x-axis). The normalization is specific to each dataset based on the 

performances of IO1 (NRMSE=100%, lower right corner). The green star indicates the spectral 

segment producing the best results. 

 451 

In the case of 𝐿𝑀𝐴, both optimal spectral domain and relative improvement or degradation showed 452 

stronger consistency among datasets than for 𝐸𝑊𝑇 (Figure 2). For all datasets, excluding 453 

information from 1500 nm and beyond led to strong degradations of the performances. In the case 454 
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of LOPEX and HYYTIALA, estimation of 𝐿𝑀𝐴 could be improved only when using spectral domains 455 

with ending wavelength between 2100 and 2400 nm, except when using a narrow spectral domain 456 

from 1600 to 1800 nm. For the four other datasets, extended spectral combinations led to improved 457 

𝐿𝑀𝐴, as most of the combinations excluding the domain from 900 to 1200 nm led to improved 458 

estimation of 𝐿𝑀𝐴, except when using a reduced spectral domain ranging from 1800 to 2100 nm 459 

only, which corresponds to one of the main absorption features of water. Overall, the optimal 460 

spectral range excluded the NIR domain and included spectral information until 2400 nm for all 461 

datasets. The relative improvement induced by the selection of an optimal specific for each dataset 462 

ranged from 60 (ITATINGA) to 67 % (NOURAGUES). 463 

 464 
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Figure 2. Normalized 𝑅𝑀𝑆𝐸 (NRMSE, in %) obtained for 𝐿𝑀𝐴 estimation with PROSPECT inversion 

method IO3, over each dataset and each reduced spectral domains bounded by a starting 

wavelength 𝜆1 (y-axis) and an ending wavelength 𝜆2 (x-axis). The normalization is specific to each 

dataset based on the performances of IO1 (NRMSE=100%, lower right corner). The green star 

indicates the spectral segment producing the best results. 

 465 

These figures provide a visual representation of the spectral domains leading to improved or 466 

decreased performances compared to full spectral information. They confirm that selecting the 467 

appropriate spectral information during inversion strongly influences for the estimation of leaf 468 

constituents.  469 
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Figure 3 provides NRMSE for the estimation of 𝐸𝑊𝑇 and 𝐿𝑀𝐴 averaged over all datasets, and 470 

confirms suboptimal performances obtained when using NIR information only. Overall, the spectral 471 

domain ranging from 1700 to 2400 nm was found to be optimal when estimating 𝐸𝑊𝑇 and 𝐿𝑀𝐴 472 

simultaneously (mean NRMSE was reduced by 33% for 𝐸𝑊𝑇 and by 55 % for 𝐿𝑀𝐴), and was used 473 

hereafter within the IO3 method. 474 

 475 

 

 

Figure 3. Mean normalized RMSE values (NRMSE, in %) obtained for the estimation of 𝐸𝑊𝑇 (left), 

𝐿𝑀𝐴 (center), and both constituents (right), after PROSPECT inversion over all experimental datasets 

pooled and each of the 120 spectral domains defined in Section 3.b. The green star indicates the 

spectral segment producing the best results. 

 476 

b. Comparison of PROSPECT inversion methods and ML algorithms for the estimation 477 

of 𝐿𝑀𝐴 and 𝐸𝑊𝑇: training ML with independent datasets 478 

The performances obtained for the estimation of 𝐸𝑊𝑇 when using TS1 and TS2 for ML regression, 479 

and IO1, IO2 or IO3 (with the 1700 – 2400 nm spectral range) for PROSPECT inversion are reported in 480 

Table 2. Overall, IO2 and IO3 produced the most consistent results, systematically outperforming the 481 
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other methods. ML regressions performed particularly poorly compared to IO2 and IO3, and TS2 led 482 

to the better results than TS1 (except form HYYTIALA). TS1 led to very inconsistent results, with 483 

175% increase compared to IO2 and IO3 on average, and up to 500% increase in RMSE compared to 484 

PROSPECT inversion IO2 when estimating 𝐸𝑊𝑇 from ITATINGA after training with LOPEX. 485 

 486 

Table 2. RMSE values (in mg.cm-2) obtained for the estimation of 𝐸𝑊𝑇 with SVM and training 487 

strategies TS1 and TS2, and with IO1, IO2 and IO3. For each column (validation dataset), the 488 

minimum RMSE is indicated in bold, and colors correspond to the level of performances, from green 489 

color for minimum RMSE to red color for maximum RMSE. 490 

Method 

Valid  

 

Train 

ANGERS  LOPEX  HYYTIALA ITATINGA NOURAGUES PARACOU 

TS1 

ANGERS - 4.82 1.90 3.31 2.49 - 

LOPEX 3.14 - 3.23 6.73 2.32 - 

HYYTIALA 3.79 5.40 - 2.84 3.92 - 

ITATINGA 3.38 5.82 3.03 - 3.43 - 

NOURAGUES 2.54 5.04 3.15 2.47 - - 

PARACOU - - - - - - 

TS2 All but 1 2.47 4.54 2.68 2.08 2.10 - 

IO1  PROSPECT 2.07 2.03 1.72 1.93 3.44 - 

IO2  PROSPECT 1.48 1.68 1.44 1.13 1.21 - 

IO3  PROSPECT 1.41 1.70 1.21 1.20 1.66 - 

 491 
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Figure 4 provides scatterplots for the results showed in Table 2 and corresponding to IO1, IO2, IO3 492 

and SVM regression with sampling strategy TS2. Overall, IO2 showed the best performances for the 493 

estimation of 𝐸𝑊𝑇, and SVM regression produced the lowest performances, mainly because of the 494 

strong error obtained for extreme values on LOPEX. 495 

 496 

 

Figure 4. 𝐸𝑊𝑇 estimation results obtained using PROSPECT inversion (IO1, IO2, IO3) and ML 

regression (training sampling TS2). 

 497 

The performances obtained for the estimation of 𝐿𝑀𝐴 when using training samplings TS1 and TS2 498 

for ML regression, and IO1, IO2 or IO3 for PROSPECT inversion are reported in Table 3. IO3 499 

outperformed the other methods for all datasets except HYYTIALA and ITATINGA: IO2 slightly 500 

outperformed IO3 for ITATINGA only and TS2 outperformed IO3 for HYYTIALA and ITATINGA. 501 

However, the difference in RMSE between IO3 and the optimal method remained less than 20% for 502 

these two datasets. The relative performances obtained with IO1 and IO2 differed among datasets: 503 
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while using IO2 led to significantly improved estimation of 𝐿𝑀𝐴 compared to IO1 for five datasets 504 

(from a 26% decrease in RMSE for LOPEX to more than 50% for ITATINGA, NOURAGUES and 505 

PARACOU), and slightly degraded estimation compared to IO3 for four datasets, the performances 506 

obtained for HYYTIALA were degraded by more than 75% compared to IO1, with systematic strong 507 

overestimation (Figure 5). On the other hand, the RMSE corresponding to estimation of 𝐿𝑀𝐴 using 508 

IO3 decreased by 60% compared to IO1. ML regression trained with TS2 performed better than IO1 509 

overall but was outperformed by IO2 and IO3. As for 𝐸𝑊𝑇, ML trained with TS1 led to very 510 

inconsistent results, and was strongly outperformed by IO2, IO3 and ML regressions trained with 511 

strategy TS2 in most cases. 512 

 513 

Table 3. RMSE values (in mg.cm-2) obtained for the estimation of 𝐿𝑀𝐴 with SVM and training 514 

samplings TS1 and TS2, and with IO1, IO2 and IO3. For each column (validation dataset), the 515 

minimum RMSE is indicated in bold, and colors correspond to the level of performances, from green 516 

color for minimum RMSE to red color for maximum RMSE. 517 

Method 

Valid 

 

Train 

ANGERS  LOPEX  HYYTIALA ITATINGA NOURAGUES PARACOU 

TS1 

ANGERS - 4.91 2.49 3.73 2.76 2.70 

LOPEX 2.92 - 2.18 4.33 4.85 5.86 

HYYTIALA 2.51 2.47 - 3.19 3.32 4.00 

ITATINGA 6.27 5.57 5.08 - 3.86 4.50 

NOURAGUES 4.04 4.82 3.74 1.40 - 2.21 

PARACOU 2.96 3.96 2.30 1.25 2.11 - 

TS2 All but 1 2.31 4.06 1.33 1.23 2.14 2.41 
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IO1  PROSPECT 2.48 3.36 3.49 2.60 3.95 4.75 

IO2  PROSPECT 1.24 2.48 6.12 1.20 1.71 2.25 

IO3  PROSPECT 0.93 1.99 1.52 1.44 1.59 1.73 

 518 

Figure 5 provides scatterplots for the results showed in Table 3 and corresponding to IO1, IO2, IO3 519 

and SVM regression with training sampling TS2. Overall, IO3 produced the most accurate estimation 520 

of 𝐿𝑀𝐴. IO2, IO3 and TS2 respectively resulted in 33%, 55% and 27% decreases in RMSE for the 521 

estimation of 𝐿𝑀𝐴 when compared to IO1. 522 

 523 

 

Figure 5. 𝐿𝑀𝐴 estimation results obtained using PROSPECT inversion (IO1, IO2, IO3) and SVM 

regression (training sampling TS2). 

 524 
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c. Comparison of PROSPECT inversion methods and ML algorithms for the estimation 525 

of 𝐿𝑀𝐴 and 𝐸𝑊𝑇: training ML with pooled datasets 526 

Table 4 and Table 5 summarize the performances of SVM regression for the estimation of 𝐸𝑊𝑇 and 527 

𝐿𝑀𝐴 when TS3 is selected as training strategy (i.e. all dataset are pooled together and 300 528 

calibration samples are randomly selected). The performances corresponding to IO3 and TS2 were 529 

computed for the same validation samples as with TS3 for each of the 20 repetitions in order to 530 

ensure fair comparison.  531 

The mean performances reported in Table 4 and Table 5 were very similar to those reported in Table 532 

2 and Table 3 for both IO3 and TS2, which means that IO3 systematically outperformed TS2 on 533 

individual datasets, except for the estimation of 𝐿𝑀𝐴 for HYYTIALA and ITATINGA. TS3 534 

outperformed TS2 in most cases for the estimation of both 𝐸𝑊𝑇 and 𝐿𝑀𝐴. Still, TS3 was 535 

outperformed by IO3 when estimating 𝐸𝑊𝑇, the overall RMSE increasing by 44% (and by 99% when 536 

using TS2). When estimating 𝐿𝑀𝐴, TS3 and IO3 showed very similar overall performances, with less 537 

than 6% increase of RMSE for TS3 when compared to IO3. IO3 and TS3 showed very similar average 538 

RMSE for LOPEX, HYTTIALA and NOURAGUES, TS3 showed higher RMSE for ANGERS and PARACOU, 539 

and lower RMSE for ITATINGA. However, the standard deviations associated with these 540 

performances highlight the strong effect of training and validation samplings on the performances of 541 

the ML algorithm: the standard deviation computed over 20 repetitions was 5 to 20 times higher for 542 

TS3 than IO3 when estimating 𝐸𝑊𝑇, while it was 2.5 to 10 times higher when estimating 𝐿𝑀𝐴. The 543 

standard deviations related to the performances of TS2 were generally similar to those obtained for 544 

IO3, suggesting that the strong differences in performance between regression models were induced 545 

by the selection of the training samples. 546 

 547 
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Table 4. Mean RMSE and standard deviation of RMSE (both in mg.cm-2) of the estimation of 𝐸𝑊𝑇 548 

using SVM regression (TS2 and TS3) and PROSPECT inversion (IO3) on the validation samples used for 549 

TS3. Best mean performances are indicated in bold. 550 

 ANGERS LOPEX HYYTIALA ITATINGA NOURAGUES PARACOU Total 

TS3 1.76±0.24 2.77±0.47 2.08±0.37 1.64±0.33 2.18±0.37 - 2.12±0.26 

TS2 2.47±0.04 4.55±0.28 2.66±0.07 2.08±0.04 2.1±0.05 - 2.97±0.10 

IO3 1.43±0.04 1.70±0.07 1.21±0.04 1.21±0.02 1.65±0.05 - 1.47±0.02 

 551 

Table 5. Mean RMSE and standard deviation of RMSE (both in mg.cm-2) of the estimation of 𝑳𝑴𝑨 552 

using SVM regression (TS2 and TS3) and PROSPECT inversion (IO3) on the validation samples used for 553 

TS3. Best mean performances are indicated in bold (differences in mean RMSE < 1% are considered 554 

equivalent). 555 

 ANGERS LOPEX HYYTIALA ITATINGA NOURAGUES PARACOU Total 

TS3 1.70±0.28 1.98±0.56 1.56±0.22 1.12±0.29 1.59±0.19 2.01±0.18 1.64±0.18 

TS2 2.24±0.21 4.05±0.06 1.33±0.04 1.23±0.02 2.13±0.03 2.43±0.05 2.31±0.05 

IO3 0.92±0.03 2.00±0.07 1.54±0.08 1.45±0.04 1.58±0.06 1.77±0.07 1.54±0.03 

  556 

5. DISCUSSION 557 

a. Differences in performances among merit functions 558 

Our study shows that IO1, the most commonly used merit function, is actually outperformed by a 559 

less common merit function (IO2) when estimating 𝐸𝑊𝑇 and 𝐿𝑀𝐴 from PROSPECT inversion using 560 

reflectance and transmittance in the NIR/SWIR domain (900-2400 nm). These results are in 561 

agreement with the results obtained when investigating the optimal spectral domain to be used with 562 
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IO3: Figure 3 shows that, in most cases, selecting a spectral domain including NIR information leads 563 

to suboptimal estimation of both 𝐸𝑊𝑇 and 𝐿𝑀𝐴. Therefore, the application of a weight inversely 564 

proportional to the square of the reflectance and transmittance (IO2) reduce the importance of 565 

spectral domains showing higher reflectance and transmittance values such as the NIR domain. The 566 

improvement is particularly strong for the estimation of 𝐿𝑀𝐴, as reported in Figure 3. The 567 

particularly low performances obtained for the estimation of 𝐿𝑀𝐴 on HYYTIAA were also 568 

investigated. The leaf optical properties measured for this dataset showed low SNR, particularly in 569 

the SWIR domain for wavelengths of 2300 nm and beyond. The estimation of 𝐿𝑀𝐴 with IO2 was 570 

strongly improved on this dataset when applying a Savitzky-Golay smoothing filter and restricting 571 

the spectral domain from 1700 to 2300 nm. The exclusion of the spectral domain beyond 2300 nm 572 

was responsible for the strongest improvement. Finally, the RMSE obtained for HYYTIAA when using 573 

the merit function used in IO2 and these preprocessing reached 1.97 mg.cm-2, which is still 30% 574 

higher than the RMSE obtained with IO3. Therefore using IO2 is strongly discouraged when the 575 

signal to noise ratio of leaf optical properties is not sufficient, while IO3 based on the 1700-2400 nm 576 

spectral range appears to be reliable even with low SNR.  577 

 578 

b. Physical interpretation of the performances obtained with PROSPECT inversion 579 

As highlighted in the previous section, the SNR of leaf optical properties can become a strong 580 

limitation when estimating leaf constituents using PROSPECT inversion if the spectral domain and 581 

merit functions are not carefully chosen. However, this SNR is not the main limiting factor explaining 582 

the poor performances of IO1 for the estimation of 𝐿𝑀𝐴 and its suboptimal performances for the 583 

estimation of 𝐸𝑊𝑇. Indeed, the NIR domain is theoretically characterized by a higher signal to noise 584 

ratio for leaf material but still appears to be the main limitation for an accurate estimation of these 585 
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leaf constituents. Therefore, we attempt here to list possible explanations for such poor 586 

performances. 587 

i. Predominant water absorption 588 

The main reason cited to explain the poor retrieval of 𝐿𝑀𝐴 is the predominant water absorption in 589 

the SWIR domain. Indeed, Figure 3 Erreur ! Source du renvoi introuvable.shows that 𝐿𝑀𝐴 is poorly 590 

estimated when the spectral domains used for inversion mainly include domains with strong water 591 

absorption, such as the domain from 1800 to 2100 nm. However Figure 3 also shows that 𝐿𝑀𝐴 can 592 

still be estimated accurately even if most of the spectral information corresponds to domains with 593 

predominant water absorption. Our results show that the main limitation with IO1 is actually caused 594 

by the NIR domain between 900 and 1300 nm: most of the spectral domains excluding such 595 

wavebands resulted in improved estimation of 𝐿𝑀𝐴. The 900-1300 nm range does not show 596 

predominant water or dry matter absorption, so the poor retrieval of 𝐿𝑀𝐴 cannot be explained by 597 

absorption features hidden by water absorption or any other constituent. 598 

ii. Approximations of PROSPECT 599 

As any model, PROSPECT is based on a number of approximations. Although some of these 600 

approximations are possible sources of inaccuracy in specific situations, they guarantee good overall 601 

performances given a minimum number of descriptors of leaf biophysical properties. Model 602 

discrepancies in the simulation of leaf optical properties may be explained by inaccurate physical 603 

description at three levels: surface effects, volume scattering and volume absorption.  604 

Surface effects strongly depend on the presence of waxes or trichomes, and Barry and Newnham 605 

(2012) reported how epicuticular waxes affect PROSPECT inversion. Surface effects mostly influence 606 

leaf reflectance in the domains characterized by strong absorption where the leaf reflectance is 607 

minimum (Bousquet et al., 2005; Jay et al., 2016). In the NIR/SWIR spectral range, these domains 608 

mainly depend on water absorption. The sensitivity analysis performed by Jay et al. (2016) with 609 
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similar 𝐸𝑊𝑇 values showed that surface effects have the largest influence beyond 1800 nm, this 610 

domain being close to the one leading to optimal PROSPECT inversion results with IO3 (1700-2400 611 

nm). Such a result thus tends to indicate that surface effects had a limited detrimental influence on 612 

estimation performance. 613 

Volume scattering is modeled by multiple factors in PROSPECT, including leaf structure with the 𝑁 614 

parameter, and the refractive index. The unique value of the refractive index is a well-identified 615 

simplification of PROSPECT, as it does not agree with the Kramers-Kronig relations stating that the 616 

real (refractive index) and imaginary (absorption coefficient) parts of the complex refractive index of 617 

a medium are physically linked (Lucarini et al., 2005). Qiu et al. (2018) developed PROSPECT-g, a 618 

modified version of PROSPECT including an additional wavelength-independent factor specific to 619 

each leaf and aiming at representing first-order effects of anisotropic scattering, which are not 620 

included through the N structural parameter of the original PROSPECT model. They also proposed a 621 

multistage inversion to be used with PROSPECT-g. This inversion procedure may strongly increase 622 

computing time, and the applicability of PROSPECT-g inversion at the canopy scale does not seem 623 

straightforward as additional parameters may increase the ill-posedness of canopy models such as 624 

PROSAIL (Jacquemoud et al., 2009). However, they reported promising results, including improved 625 

estimation of 𝐿𝑀𝐴 and improved simulation of both reflectance and transmittance in the NIR 626 

domain when compared to PROSPECT-5. 627 

Volume absorption is defined by the SACs which are adjusted based on experimental data during the 628 

calibration of PROSPECT (Féret et al., 2008, 2017). We attempted a recalibration of the SAC for 𝐿𝑀𝐴 629 

in order to reduce the inaccuracies observed between experimental and simulated data, and 630 

improve the estimation of 𝐿𝑀𝐴. This did not lead to any improvement when including the NIR 631 

domain. Moreover, the incorrect definition of the SAC corresponding to 𝐿𝑀𝐴 would lead to 632 

systematic underestimation or overestimation of absorption when running PROSPECT in direct 633 
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mode. However, the analysis of the residuals between measured leaf optical properties and their 634 

simulated counterparts obtained with PROSPECT in direct mode did not result in systematic errors 635 

(results not shown). The SAC corresponding to 𝐿𝑀𝐴 in PROSPECT integrates the optical influences of 636 

various organic constituents, which may also lead to inaccuracies if leaf samples include strong 637 

variations in stoichiometry. However, the data required to test this possible source of inaccuracy 638 

was not available. 639 

iii. Bias in the leaf optical measurements 640 

As highlighted in the introduction, the uncertainty associated to leaf optical measurements in the 641 

NIR domain may be increased because of the incomplete collection of the light leaving the highly 642 

scattering tissue (Merzlyak et al., 2002). Merzlyak et al. (2004) proposed a correcting factor for 643 

transmittance based on the hypothesis that leaf absorption in the NIR domain from 780 to 900 nm is 644 

negligible for healthy leaves. However this correcting factor is not adopted as a standard correction 645 

by the community. In order to detect possible uncertainty in the optical measurements in the NIR 646 

domain with our data, we tested our ML approach with TS1 (training with a unique dataset) and 647 

spectral information either from 1700 to 2400 nm or from 1400 to 2400 nm (results not showed). 648 

For both 𝐿𝑀𝐴 and 𝐸𝑊𝑇, the regression models applied on independent datasets performed 649 

similarly for the two spectral domains considered, but systematically performed better than the 650 

regression models trained with the spectral information from 900 to 2400 nm. However, they were 651 

still outperformed by PROSPECT inversion. Such a result thus tends to confirm that leaf optical 652 

measurements in the NIR domain might be affected by some experimental uncertainty. 653 

The poor performances reported for the estimation of 𝐿𝑀𝐴 with PROSPECT inversion using IO1 are 654 

therefore mainly explained by the use of the NIR domain, which is subject to inaccuracies, from a 655 

modeling and/or from an experimental point of view. Based on our study, we cannot conclude on 656 

the relative importance of one or the other factor. These two possibilities should then be considered 657 
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and tested using the methods proposed in the literature (Merzlyak et al., 2004; Qiu et al., 2018). 658 

Finally, the difference between directional hemispherical measurements and bidirectional 659 

measurements should be systematically accounted for and appropriate physical models should be 660 

used with the type of data they are expected to simulate.  661 

 662 

c. Influence of the sampling of the training dataset on machine learning algorithms 663 

Our results highlight the strong influence of the training dataset on the performances of ML 664 

methods, which is not an original result per se. However, the different training strategies tested here 665 

show that regression models should be used with extreme care when they are applied on data which 666 

were not collected in the exact same conditions as training data. Finally, the optimal training 667 

strategy in our case, TS3, requires that each campaign aiming at collecting leaf optical properties in 668 

order to estimate constituent content based on statistical/ML methods should include destructive 669 

measurements to be used during the training step. This means that publicly available datasets such 670 

as ANGERS and LOPEX should not be used as the only training datasets for the estimation of leaf 671 

chemistry based on spectroscopy from independent datasets. The origin of the suboptimal 672 

performances obtained in particular with TS2 and TS3 should also be investigated. ML algorithms are 673 

currently mainly used for their predictive capacity. However, they can also as part of a descriptive 674 

framework. Feilhauer et al. (2015) proposed an interesting illustration as they suggested combining 675 

multiple methods in order to identify the most relevant spectral bands related to leaf chemistry, 676 

based on both experimental and simulated data. Following the same method, the identification of 677 

the spectral bands maximizing the generalization ability of ML algorithms by discarding spectral 678 

domains prompt to experimental uncertainty or model approximations could be considered. Finally, 679 

hybrid methods using simulated data during the training stage of a ML algorithm appear as an 680 

interesting alternative to data-driven methods purely based on experimental data, and further 681 
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investigation is needed in order to define the proper strategy to generate such training dataset and 682 

combine the generalization ability of physically-based approaches with the computational efficiency 683 

of data-driven approaches. 684 

 685 

d. Relevance of these results for leaf trait monitoring 686 

The results obtained in this study contribute to a better understanding of the optimal remotely-687 

sensed monitoring of 𝐿𝑀𝐴 and 𝐸𝑊𝑇, two key vegetation traits that convey multiple information 688 

about the spatial and temporal variation in ecological and functional diversity of terrestrial 689 

ecosystems.  This can possibly contribute to facilitating the study of plant functions and their 690 

interactions with and responses to the environment. As an example, Feilhauer et al. (2018) provide a 691 

good illustration of the interest of remotely-sensed 𝐿𝑀𝐴 for ecological analysis of wetland 692 

vegetation, in particular for the better understanding of the effect of long-term drought on 693 

ecosystem functions. They focused on 𝐿𝑀𝐴 because of its plasticity in response to variable 694 

environmental conditions, and its relationship with potential growth rate.  695 

The estimation of these traits at the leaf scale now needs to be further investigated at the canopy 696 

scale. In order to test the applicability of our approach at the canopy scale, the first step will consist 697 

in working with a simulated dataset obtained with canopy reflectance models such as SAIL 698 

(Jacquemoud et al., 2009; Verhoef, 1984) and DART (Gastellu-Etchegorry et al., 1996, 2015). The 699 

direct application of model inversion based on iterative optimization restricts the complexity of the 700 

canopy model, hence the type of vegetation to be investigated: the adaptation of our method 701 

should be relatively straightforward when using PROSAIL on homogeneous canopy covers, but 702 

hybrid methods should be considered when using DART simulations and working on heterogeneous 703 

canopy covers.  704 
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An important challenge for the applicability of our results at the canopy scale is the low intensity of 705 

the solar radiation in the optimal SWIR domain identified in this study, which usually leads to low 706 

signal to noise ratio. Currently, hyperspectral information is mainly available from airborne imaging 707 

spectroscopy (Asner et al., 2012; Schaepman et al., 2015). Asner et al. (2015) obtained accurate 708 

estimation of 𝐿𝑀𝐴 based on multivariate statistical methods applied on imaging spectroscopy for 709 

heterogeneous canopies in tropical ecosystems, and they also concluded on the importance of the 710 

spectral domain from 2000 nm to 2500 nm for a proper calibration of the regression models. 711 

Recently, Feilhauer et al. (2018) reported good suitability of airborne imaging spectroscopy analyzed 712 

with a hybrid method (Random forest trained with PROSAIL simulations) for 𝐿𝑀𝐴 mapping in natural 713 

ecosystems. Hyperion is the only spaceborne sensor, but the signal to noise ratio is known to be 714 

relatively low (le Maire et al., 2008). The contribution of modeling through sensitivity studies 715 

performed at canopy scale may therefore provide insightful information for the instrumental 716 

specifications of future satellites dedicated to the monitoring of vegetation and environment such as 717 

EnMAP, and for the development of algorithms (Jetz et al., 2016; Lee et al., 2015; Leitão et al., 2015). 718 

 719 

6. CONCLUSIONS 720 

In this paper, we compared the performances of various methods for the estimation of 𝐸𝑊𝑇 and 721 

𝐿𝑀𝐴 based on leaf reflectance and transmittance in the spectral domain ranging from 900 to 2400 722 

nm. These methods included PROSPECT inversion based on iterative optimization with various merit 723 

functions and machine learning (ML) algorithms with different training strategies. Six independent 724 

datasets acquired from various vegetation types, including temperate, boreal and tropical 725 

ecosystems were used in order to validate our results.  726 

Our results showed that the poor performances of PROSPECT inversion reported in many studies for 727 

the estimation of 𝐿𝑀𝐴 could be dramatically improved when excluding spectral information in the 728 
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NIR domain from 900 to 1300 nm. We investigated the performances of PROSPECT inversion for the 729 

estimation of 𝐸𝑊𝑇 and 𝐿𝑀𝐴 using multiple spectral subdomains, and identified an optimal spectral 730 

domain ranging from 1700 to 2400 nm. Overall, PROSPECT inversion performed on this spectral 731 

domain provided more accurate 𝐿𝑀𝐴 and 𝐸𝑊𝑇 estimates than ML algorithms trained on 732 

experimental datasets. Unlike ML algorithms, PROSPECT inversion showed strong generalization 733 

ability. Despite numerous studies showing the poor performances of PROSPECT for the estimation of 734 

𝐿𝑀𝐴, our study shows that model inversion using iterative optimization can outperform other 735 

methods with an appropriate merit function, with no need for recalibration or training stage. By this 736 

study, we therefore confirm the strong potential and accuracy of PROSPECT on critical spectral 737 

domains. We also identified weaknesses which can be attributed either to physical modeling and 738 

experimental acquisition of leaf optical properties in the NIR domain.  739 

These results motivate further investigation involving hybrid methods for the estimation of 𝐿𝑀𝐴 and 740 

𝐸𝑊𝑇, in order to take advantage of the computational efficiency of data-driven algorithms and 741 

overcome limitations inherent to suboptimal experimental sampling of training data. Implications of 742 

these results for the optimal estimation of 𝐿𝑀𝐴 and 𝐸𝑊𝑇 at the canopy scale will also be 743 

investigated, as 𝐿𝑀𝐴 and 𝐸𝑊𝑇 are both key traits when monitoring ecosystem functions. 744 
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9. LIST OF FIGURE CAPTIONS 1056 

Figure 1. Normalized 𝑅𝑀𝑆𝐸 (𝑁𝑅𝑀𝑆𝐸, in %) obtained for 𝐸𝑊𝑇 with PROSPECT inversion method IO3 1057 

over each dataset and each reduced spectral domains bounded by a starting wavelength 𝜆1 (y-axis) 1058 

and an ending wavelength 𝜆2 (x-axis). The normalization is specific to each dataset based on the 1059 

performances of IO1 (NRMSE=100%, lower right corner). The green star indicates the spectral 1060 

segment producing the best results. 1061 

Figure 2. Normalized 𝑅𝑀𝑆𝐸 (NRMSE, in %) obtained for 𝐿𝑀𝐴 estimation with PROSPECT inversion 1062 

method IO3, over each dataset and each reduced spectral domains bounded by a starting 1063 

wavelength 𝜆1 (y-axis) and an ending wavelength 𝜆2 (x-axis). The normalization is specific to each 1064 

dataset based on the performances of IO1 (NRMSE=100%, lower right corner). The green star 1065 

indicates the spectral segment producing the best results. 1066 

Figure 3. Mean normalized RMSE values (NRMSE, in %) obtained for the estimation of 𝐸𝑊𝑇 (left), 1067 

𝐿𝑀𝐴 (center), and both constituents (right), after PROSPECT inversion over all experimental datasets 1068 

pooled and each of the 120 spectral domains defined in Section 3.b. The green star indicates the 1069 

spectral segment producing the best results. 1070 

Figure 4. 𝐸𝑊𝑇 estimation results obtained using PROSPECT inversion (IO1, IO2, IO3) and ML 1071 

regression (training sampling TS2). 1072 

Figure 5. 𝐿𝑀𝐴 estimation results obtained using PROSPECT inversion (IO1, IO2, IO3) and SVM 1073 

regression (training sampling TS2). 1074 
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