J. B. Neilands, Microbial Iron Compounds, Annu Rev Biochem, vol.50, pp.715-731, 1981.

R. Brooijmans, B. Smit, F. Santos, J. Van-riel, W. M. De-vos et al., Heme 541 and menaquinone induced electron transport in lactic acid bacteria, Microb Cell Factories, vol.8, p.28, 2009.

A. Pandey, F. Bringel, and J. Meyer, Iron requirement and search for siderophores in 543 lactic acid bacteria, Appl Microbiol Biotechnol, vol.40, pp.735-739, 1994.

M. Zagorec and M. Champomier-vergès, Lactobacillus sakei: A Starter for Sausage 545, 2017.

, Protective Culture for Meat Products. Microorganisms, vol.5, p.56

S. Bredholt, T. Nesbakken, and A. Holck, Protective cultures inhibit growth of Listeria 547 monocytogenes and Escherichia coli O157:H7 in cooked, sliced, vacuum-and gas-packaged 548 meat, Int J Food Microbiol, vol.53, pp.43-52, 1999.

F. Leroy, K. Lievens, D. Vuyst, and L. , Modeling Bacteriocin Resistance and 550, 2005.

, Inactivation of Listeria innocua LMG 13568 by Lactobacillus sakei CTC 494 under Sausage 551

, Fermentation Conditions. Appl Environ Microbiol, vol.71, pp.7567-7570

L. Vermeiren, F. Devlieghere, and J. Debevere, Evaluation of meat born lactic acid 553 bacteria as protective cultures for the biopreservation of cooked meat products, Int J Food 554 Microbiol, vol.96, pp.149-164, 2004.

S. Chaillou, S. Christieans, M. Rivollier, I. Lucquin, M. C. Champomier-vergès et al.,

M. , Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective 557 cultures in ground beef, Meat Sci, vol.97, pp.332-338, 2014.

F. Devlieghere, K. Francois, K. M. Vereecken, A. H. Geeraerd, J. F. Van-impe et al., Effect of chemicals on the microbial evolution in foods, J Food Prot, vol.559, p.561, 2002.

, heme Iron in Raw and Cooked Meats, J Food Sci, vol.67, pp.1738-1741

C. Hertel, G. Schmidt, M. Fischer, K. Oellers, and W. P. Hammes, Oxygen-Dependent 563 on, at SWETS SUBSCRIPTION SERVICE, 1998.

, Regulation of the Expression of the Catalase Gene katA of Lactobacillus sakei LTH677, Appl, vol.564

, Environ Microbiol, vol.64, pp.1359-1365

P. Duhutrel, C. Bordat, T. Wu, M. Zagorec, and J. Guerquin-kern,

M. , Iron Sources Used by the Nonpathogenic Lactic Acid Bacterium Lactobacillus 567 sakei as Revealed by Electron Energy Loss Spectroscopy and Secondary-Ion Mass 568, 2010.

. Spectrometry, Appl Environ Microbiol, vol.76, pp.560-565

S. Chaillou, M. Champomier-vergès, M. Cornet, C. Coq, A. Dudez et al., , vol.570

V. Martin, S. Beaufils, E. Darbon-rongère, R. Bossy, V. Loux et al., The complete 571 genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K, Nat 572 Biotechnol, vol.23, pp.1527-1533, 2005.

W. Huang and A. Wilks, Extracellular Heme Uptake and the Challenge of Bacterial 574, 2017.

, Cell Membranes. Annu Rev Biochem, vol.86, pp.799-823

A. Gruss, E. Borezée-durant, and D. Lechardeur, Chapter Three -Environmental Heme 576, 2012.

, Utilization by Heme-Auxotrophic Bacteria, Advances in, p.577

, Microbial Physiology

J. E. Choby and E. P. Skaar, Heme Synthesis and Acquisition in Bacterial Pathogens, J, vol.579, 2016.

, Mol Biol, vol.428, pp.3408-3428

L. L. Anzaldi and E. P. Skaar, Overcoming the Heme Paradox: Heme Toxicity and 581, 2010.

, Tolerance in Bacterial Pathogens, Infect Immun, vol.78, pp.4977-4989

M. L. Reniere, V. J. Torres, and E. P. Skaar, Intracellular metalloporphyrin metabolism in 583 Staphylococcus aureus, BioMetals, vol.20, pp.333-345, 2007.

E. S. Honsa, A. W. Maresso, and S. K. Highlander, Molecular and Evolutionary Analysis of 585, 2014.

, NEAr-Iron Transporter (NEAT) Domains. PLoS ONE, vol.9, p.104794

C. S. Bates, G. E. Montanez, C. R. Woods, R. M. Vincent, and Z. Eichenbaum, Identification 587 and Characterization of a Streptococcus pyogenes Operon Involved in Binding of 588 on, at SWETS SUBSCRIPTION SERVICE, 2003.

, Hemoproteins and Acquisition of Iron, Infect Immun, vol.71, pp.1042-1055

M. Meehan, F. M. Burke, S. Macken, and P. Owen, Characterization of the haem-uptake 590 system of the equine pathogen Streptococcus equi subsp. equi, Microbiology, vol.156, p.22, 2010.

B. Lei, L. M. Smoot, H. M. Menning, J. M. Voyich, S. V. Kala et al.,

J. M. , Identification and Characterization of a Novel Heme-Associated Cell Surface 593, 2002.

, Protein Made by Streptococcus pyogenes, Infect Immun, vol.70, pp.4494-4500

M. Ouattara, B. Cunha, E. Li, X. Huang, Y. Dixon et al., Shr of 595 group A Streptococcus is a new type of composite NEAT protein involved in sequestering 596 haem from methaemoglobin: Haem uptake and reduction by Shr, Mol Microbiol, vol.78, p.24, 2010.

D. Lechardeur, B. Cesselin, U. Liebl, M. H. Vos, A. Fernandez et al., Discovery of Intracellular Heme-binding Protein HrtR, Which Controls Heme Efflux by 599 the Conserved HrtB-HrtA Transporter in Lactococcus lactis, J Biol Chem, vol.598, p.25, 2012.

L. Joubert, A. Derré-bobillot, P. Gaudu, A. Gruss, and D. Lechardeur, HrtBA and 601 menaquinones control haem homeostasis in Lactococcus lactis: Membrane and intracellular 602 haem control in Lactococcus lactis, Mol Microbiol, vol.93, pp.823-833, 2014.

S. Rempel, W. K. Stanek, and D. J. Slotboom, ECF-Type ATP-Binding Cassette, 2019.

, Transporters. Annu Rev Biochem, vol.88, pp.551-576

F. Finkenwirth and T. Eitinger, ECF-type ABC transporters for uptake of vitamins and 606 transition metal ions into prokaryotic cells, Res Microbiol, vol.607, p.28, 2019.

T. Wang, G. Fu, X. Pan, J. Wu, X. Gong et al., Structure of a bacterial 608 energy-coupling factor transporter, Nature, vol.497, pp.272-276, 2013.

Z. Bao, X. Qi, S. Hong, K. Xu, F. He et al., , p.610

P. Zhang, Structure and mechanism of a group-I cobalt energy coupling factor transporter, 2017.

, Cell Res, vol.27, pp.675-687

M. Zhang, Z. Bao, Q. Zhao, H. Guo, K. Xu et al., Structure of a 613 on July 20, 2020 at SWETS SUBSCRIPTION SERVICE, 2014.

, pantothenate transporter and implications for ECF module sharing and energy coupling of 614 group II ECF transporters, Proc Natl Acad Sci U S A, vol.111, pp.18560-18565

K. Xu, M. Zhang, Q. Zhao, F. Yu, H. Guo et al., Crystal 616 structure of a folate energy-coupling factor transporter from Lactobacillus brevis, Nature, vol.617, pp.268-271, 2013.

D. A. Rodionov, P. Hebbeln, A. Eudes, J. Ter-beek, I. A. Rodionova et al., , p.619

G. Dj, . Ms, A. L. Osterman, A. D. Hanson, and T. Eitinger, A novel class of modular 620 transporters for vitamins in prokaryotes, J Bacteriol, vol.191, pp.42-51, 2009.

G. B. Henderson, E. M. Zevely, and F. M. Huennekens, Mechanism of folate transport in 622, 1979.

, Lactobacillus casei: evidence for a component shared with the thiamine and biotin transport 623 systems, J Bacteriol, vol.137, pp.1308-1314

C. M. Burgess, D. J. Slotboom, E. R. Geertsma, R. H. Duurkens, B. Poolman et al., The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene 626 expression and the transport mechanism, J Bacteriol, vol.625, pp.2752-2760, 2006.

M. S. Turner, Y. P. Tan, and P. M. Giffard, Inactivation of an Iron Transporter in 628, 2007.

, Lactococcus lactis Results in Resistance to Tellurite and Oxidative Stress, Appl Environ 629 Microbiol, vol.73, pp.6144-6149

L. Li, O. S. Chen, D. M. Ward, and J. Kaplan, CCC1 Is a Transporter That Mediates 631, 2001.

, Vacuolar Iron Storage in Yeast, J Biol Chem, vol.276, pp.29515-29519

A. Fernandez, D. Lechardeur, A. Derré-bobillot, E. Couvé, P. Gaudu et al., , p.633, 2010.

, Coregulated Efflux Transporters Modulate Intracellular Heme and Protoporphyrin IX 634

, PLoS Pathog 6:e1000860. 635 38. von Heijne G. 1992. Membrane protein structure prediction. Hydrophobicity analysis 636 and the positive-inside rule, J Mol Biol, vol.225, pp.487-494

B. Jin, S. Newton, Y. Shao, X. Jiang, A. Charbit et al., ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes, SWETS SUBSCRIPTION SERVICE, vol.59, pp.1185-1198, 2006.

E. Abi-khalil, D. Segond, T. Terpstra, G. Andre-leroux, M. Kallassy et al., , p.641

F. Abdallah and C. Nielsen-leroux, Heme interplay between IlsA and IsdC: Two structurally 642 different surface proteins from Bacillus cereus, Biochim Biophys Acta, vol.1850, p.41, 2015.

A. W. Maresso, T. J. Chapa, and O. Schneewind, Surface Protein IsdC and Sortase B Are 644, 2006.

, Required for Heme-Iron Scavenging of Bacillus anthracis, J Bacteriol, vol.188, p.42

S. K. Mazmanian, E. P. Skaar, A. H. Gaspar, M. Humayun, P. Gornicki et al., Joachmiak, vol.646

A. Missiakas, D. M. Schneewind, and O. , Passage of heme-iron across the envelope of 647 Staphylococcus aureus, Science, vol.299, pp.906-909, 2003.

S. K. Mazmanian, H. Ton-that, K. Su, and O. Schneewind, An iron-regulated sortase 649 anchors a class of surface protein during Staphylococcus aureus pathogenesis, Proc Natl Acad, p.650, 2002.

, Sci, vol.99, pp.2293-2298

J. Söding, A. Biegert, and A. N. Lupas, The HHpred interactive server for protein 652 homology detection and structure prediction, Nucleic Acids Res, vol.33, pp.244-248, 2005.

D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder et al., , p.654

N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, C. Mering et al., STRING v11: protein-655 protein association networks with increased coverage, supporting functional discovery in 656 genome-wide experimental datasets, Nucleic Acids Res, vol.47, pp.607-613, 2019.

J. N. Roberts, R. Singh, J. C. Grigg, M. Murphy, T. Bugg et al., , 2011.

, Characterization of Dye-Decolorizing Peroxidases from Rhodococcus jostii RHA1, Biochemistry, vol.659, pp.5108-5119

R. Singh, J. C. Grigg, Z. Armstrong, M. Murphy, and L. D. Eltis, Distal Heme Pocket, p.661, 2012.

, Residues of B-type Dye-decolorizing Peroxidase: arginine but not aspartate is essential for 662 peroxidase activity, J Biol Chem, vol.287, pp.10623-10630

, SWETS SUBSCRIPTION SERVICE, 2020.

R. Lauret, F. Morel-deville, F. Berthier, M. Champomier-verges, P. Postma et al., , p.664

M. Zagorec, Carbohydrate utilization in Lactobacillus sake, Appl Environ Microbiol, vol.665, pp.1922-1927, 1996.

P. Gaudu, K. Vido, B. Cesselin, S. Kulakauskas, J. Tremblay et al., , p.667

S. Sourice, P. Duwat, and A. Gruss, Respiration capacity and consequences in Lactococcus 668 lactis, Antonie Van Leeuwenhoek, vol.82, pp.263-269, 2002.

D. Lechardeur, B. Cesselin, A. Fernandez, G. Lamberet, C. Garrigues et al.,

P. , G. A. Bloch, J. S. Ruetz, M. Kräutler, B. Locher et al., Structure of the human 673 transcobalamin beta domain in four distinct states, Curr Opin Biotechnol, vol.671, p.52, 2011.

E. Furger, D. C. Frei, R. Schibli, E. Fischer, and A. E. Prota, Structural Basis for Universal 675, 2013.

, Corrinoid Recognition by the Cobalamin Transport Protein Haptocorrin, J Biol Chem, vol.676, pp.25466-25476

F. S. Mathews, M. M. Gordon, Z. Chen, K. R. Rajashankar, S. E. Ealick et al.,

N. , Crystal structure of human intrinsic factor: Cobalamin complex at 2.6-A resolution, 2007.

, Proc Natl Acad Sci, vol.104, pp.17311-17316

J. Wuerges, G. Garau, S. Geremia, S. N. Fedosov, T. E. Petersen et al., , 2006.

, Structural basis for mammalian vitamin B12 transport by transcobalamin, Proc Natl Acad Sci, vol.682, pp.4386-4391

B. Webb and A. Sali, Comparative Protein Structure Modeling Using MODELLER, 2016.

, Curr Protoc Bioinforma, vol.54, p.56

G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart et al., , 1998.

, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy 687 function, J Comput Chem, vol.19, pp.1639-1662

, SWETS SUBSCRIPTION SERVICE, 2020.

, The PyMOL Molecular Graphics System,Version 2.0. Schrödinger, LLC, vol.689, p.58

D. Vallenet, E. Belda, A. Calteau, S. Cruveiller, S. Engelen et al., Longin, vol.690

C. , M. D. Roche, D. Rouy, Z. Salvignol, G. Scarpelli et al., , p.691

C. Médigue, MicroScope-an integrated microbial resource for the curation and 692 comparative analysis of genomic and metabolic data, Nucleic Acids Res, vol.41, p.59, 2013.

F. Berthier, M. Zagorec, M. Champomier-verges, S. D. Ehrlich, and F. Morel-deville, , 1996.

, Efficient transformation of Lactobacillus sake by electroporation, Microbiology, vol.142, pp.1273-695

R. Stentz, C. Loizel, C. Malleret, and M. Zagorec, Development of Genetic Tools for 697, 2000.

, Lactobacillus sakei: Disruption of the ?-Galactosidase Gene and Use of lacZ as a Reporter 698

, Gene To Study Regulation of the Putative Copper ATPase, AtkB. Appl Environ Microbiol, vol.699, pp.4272-4278

L. Leloup, S. D. Ehrlich, M. Zagorec, and F. Morel-deville, Single-crossover integration 701 in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes, 1997.

, Appl Environ Microbiol, vol.63, pp.2117-2123

C. Alpert, C. Coq, A. Malleret, C. Zagorec, and M. , , p.704, 2003.

, Theta-Type Plasmid from Lactobacillus sakei: a Potential Basis for Low-Copy-Number 705

, Vectors in Lactobacilli. Appl Environ Microbiol, vol.69, pp.5574-5584

, SWETS SUBSCRIPTION SERVICE, 2020.