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A Multi-Representational Fusion of
Time Series for Pixelwise Classification

Danielle Dias, Allan Pinto, Member, IEEE, Ulisses Dias, Rubens Lamparelli, Guerric Le Maire, and Ricardo da
S. Torres, Member, IEEE

Abstract—This paper addresses the pixelwise classification
problem based on temporal profiles, which are encoded in two-
dimensional representations based on Recurrence Plots, Gramian
Angular/Difference Fields, and Markov Transition Field. We
propose a multi-representational fusion scheme that exploits
the complementary view provided by those time series rep-
resentations, and different data-driven feature extractors and
classifiers. We validate our ensemble scheme in the problem
related to the classification of eucalyptus plantations in remote
sensing images. Achieved results demonstrate that our proposal
overcomes recently proposed baselines, and now represents the
new state-of-the-art classification solution for the target dataset.

Index Terms—Pixelwise classification, classifier fusion, time
series representation, eucalyptus

I. INTRODUCTION

P IXELWISE remote sensing image classification has been
established as an active research area. Proposed solutions

have been validated in relevant applications, including among
others ecological studies [1], [2], phenology analysis [3]–[7],
land-cover change monitoring [8], and crop identification [9].
A promising research venue relies on the development of
classification systems based on time series associated with
pixels (e.g., time series associated with vegetation indices,
such as normalized difference vegetation index – NDVI –
or enhanced vegetation index – EVI). Often, such methods
assume that pixels can be categorized into different classes
based on time series patterns, also refereed to as temporal
profiles.

Danielle Dias is with Institute of Computing, University of Campinas
(Unicamp), Campinas, Brazil. Email: danielle.dias@ic.unicamp.br.
Allan Pinto is with Institute of Computing and School of Physical Ed-
ucation, University of Campinas (Unicamp), Campinas, Brazil. Email: al-
lan.pinto@ic.unicamp.br.
Ulisses Dias is with School of Technology, University of Campinas (Uni-
camp), Limeira, Brazil. Email: ulisses@ft.unicamp.br.
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Fig. 1. Example of the NDVI time profile for a coordinate selected as a
region of interest in satellite images.

Fig. 1 shows an example of the temporal profile of the
NDVI of a region in Botucatu, São Paulo, Brazil.1 The figure
indicates a region of interest where a pixel is selected to
compute the NDVI values in relation to time. The time series
in the bottom is obtained from NDVI values.

The construction of pixelwise classification systems usually
demands the definition of suitable extractors to encode tempo-
ral profiles into feature vectors; and effective classifiers, which
learn from extracted features how to assign samples (pixels) to
the correct category. Several approaches have been proposed
to address both problems separately, and altogether.

One promising approach recently employed in the literature
refers to the use of intermediary representations to encode time
series properties [10], [11]. In particular, a promising family
of methods relies on the use of two-dimensional representa-
tions [7], [12], [13], which can be transformed into images.
The goal of such approaches is to benefit from successful
computer vision methods proposed for image classification,
to more effectively classify time series [4], [7], [14]–[16].

Examples of successful two-dimensional representations in-
clude Recurrence Plot (RP) [13], Gramian Angular/Difference
Fields (GASF/GADF) [12], and Markov Transition Field
(MTF) [12]. RP has been extensively used to represent
nonlinear patterns of dynamic systems, through the compu-
tation of the autocorrelation for different time scales [13].
GASF/GADF [12] representations encode in polar coordinates
time series properties preserving temporal relations, while the
MFT [12] captures the transition probabilities among different
time series states.

1Source: SATVeg system, Embrapa, Brazil – https://www.satveg.cnptia.
embrapa.br/satveg/login.html (As of March 2020).
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RP, GASF/GADF, and MTF have been successfully vali-
dated in pixelwise classification and search tasks through the
characterization of pixel-related time series (e.g., vegetation
indices) associated with sequences of images [14]–[17]. In
part, the success of those initiatives is due to the use of
effective state-of-the-art data-driven feature extractors [18]–
[24]. In [14], [15], for example, ten different deep-learning
feature extractors were investigated in combination with RP,
GASF/GADF, and MTF representations. Remarkable results
were achieved in pixelwise classification problems.

Would the combination of multiple representations, data-
driven feature extractors, and classifiers lead to even better
pixelwise classification results? This is the question that guides
the research described in this paper. We introduce a multi-
representational fusion approach for exploiting the comple-
mentary view of multiple classification systems constructed
using different representations and feature extractors.

In our fusion scheme, the importance of different classifiers
are assessed based on the Gini index [25], a metric computed
on the training of a random forest classifier, and on the bal-
anced accuracy scores [26] of different predictors. Classifiers
are ranked, and the top-k ones are used to define lists with
complementary classifiers, defined in terms of the Kappa’s
coefficient [27]. Classifiers found in multiple lists are used
to train an SVM-based meta classifier, producing the final
prediction model. To the best of our knowledge, this is the first
work dedicated to the investigation of the fusion of classifiers
based on multiple time series representations.

We validate the proposed approach in the problem related to
the identification of eucalyptus plantations in remote sensing
images. Achieved results are consistently better than recently
proposed approaches validated on the same dataset, as well as
traditional ensemble approaches proposed in the literature.

This article is organized as follow. Section II introduces
background concepts related to the employed time series
representations. Section III provides an overview of related
work. Section IV describes the proposed fusion scheme. The
adopted experimental protocol is presented in Section V.
Achieved results are presented and discussed in Section VI.
Finally, Section VII summarizes our findings, as well as points
out some possible research directions for future work.

II. BACKGROUND CONCEPTS ON IMAGE
REPRESENTATIONS

In this work, we encode the temporal profile of pixels ex-
tracted from remote sensing images representing the temporal
characteristics as 2D images. The values of the vegetation
indices of the pixels are grouped together as time series
and undergo transformations in such a way that the one-
dimensional series is represented as a two-dimensional matrix.
That said, we can use this matrix as an input image for feature
extractors. This is the rationale of our work. To achieve this
goal, we investigate three approaches that encode time series
as image representation.

1) Recurrence Plot: Recurrence Plot – RP [13] is a tool
for visualizing the recurrent behavior of a trajectory in the
phase space in dynamic systems. Let T = (t1, t2, . . . , tn)

be a time series with n observations, the recurrence plot
representation encodes every time the trajectory of T visits
approximately the same area in the phase space. A graphical
representation of recurrence plot is an image formed by a
matrix of dimension n × n. The generated image is a direct
representation of the distance matrix, that is, the information
contained in the recurrence plot is the proximity value of each
pair of subsequences in the trajectory of the time series [28].

The two-dimensional representation of T is the matrix M ,
where each cell Mi,j is computed by the distance function
f(Ti, Tj)|∀i, j ∈ {1, 2, . . . , n}. The function f encodes how
recurring are the time series states. In this paper, the construc-
tion of the recurrence plots is based on three implementations
of the function f [14], [16]: difference (DIF), division (DIV),
and multiplication (MULT).

f(Ti, Tj)DIF = |Ti − Tj | (1)

f(Ti, Tj)DIV =
Ti
Tj

(2)

f(Ti, Tj)MULT = Ti × Tj (3)

Fig. 2 is an example of recurrence plots. In this example,
two NDVI time series are provided. The dark green time series
is associated with a pixel from an eucalyptus region, while the
orange time series is from a noneucalyptus region. First, the n
time series observations are used to construct the matrices DIF,
DIV, and MULT, following Equations 1, 2, and 3, respectively.
Then, a normalization step is performed so that the resulting
values range from 0 to 255, which enables the creation of
images in gray level.

We also create an additional representation using the three
grayscale images as channels of an RGB image. In this
representation, the MULT, DIV, and DIF matrices, in this
order, are used to form the channels of the red, green, and
blue bands, respectively. In the end, the representations are
the recurrence plots DIF, DIV, MULT, and RGB, for each
time series provided.

2) Representations GAF: Gramian Angular Field (GAF)
is another approach to encode time series as images. It was
proposed by Wang & Oats [12], and it is inspired by the notion
of Gramian matrices from the linear algebra field.

Let us assume we have a real vector space of finite di-
mension with inner product. The Grammar matrix of a set of
vectors is computed by the inner product of pairs of vectors.
The inner product between two vectors can be calculated by
the norm of the vectors (also called modulus, magnitude or
intensity) and the angle between them. From a geometric point
of view, the module corresponds to the length of the vector.
Let u and v be two vectors, the internal product between them
is given by:

〈u, v〉 = ‖u‖ · ‖v‖ · cos(φ). (4)

If u and v have norms equal to 1, then the equation can be
simplified:

〈u, v〉 = cos(φ). (5)
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Fig. 2. Example illustrating the creation of recurrence plot matrices for
distance functions DIF, DIV, and MULT.

Let {v1, v2, . . . , vn} be a set of n vectors, the G Gramian
matrix is a square n × n matrix such that every cell gi,j =
〈vi, vj〉:

G =


〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vn〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vn〉

...
...

. . .
...

〈vn, v1〉 〈vn, v2〉 . . . 〈vn, vn〉

 . (6)

Considering that all n vectors have norm 1, then the inner
product is given by the cosines of the angle between the
vectors (Equation 5). Therefore, the Gramian matrix is formed
by:

G =


cos(φ1,1) cos(φ1,2) . . . cos(φ1,n)
cos(φ2,1) cos(φ2,2) . . . cos(φ2,n)

...
...

. . .
...

cos(φn,1) cos(φn,2) . . . cos(φn,n)

 (7)

where θi,j is the angle between vectors i and j.
GAF uses ideas of Gramian matrices to represent a series of

observations into a matrix that contains temporal correlation
between observations in different time intervals. Wang &
Oats [12] created two GAF representations: Gramian differ-
ence angular field (GADF) and Gramian summation angular
field (GASF). GADF is a Gramian matrix in which each
element is the trigonometric difference between each pair of

2000
2002

2004
2006

2008
2010

2012
2014

2016

Normalized Time Series

Time Series in 
Polar Coordinates

GADF

GASF

Fig. 3. Example illustrating the creation of the GADF and GASF represen-
tations.

time intervals, while the elements of the GASF matrix are
formed by the trigonometric sum.

Let T = (t1, t2, . . . , tn) be a time series. We need to
perform trigonometric operations, that is, the n observations
need to be transformed into angles. To achieve this, first the
time series T is normalized in the interval [−1, 1], resulting
in T̃ = (t̃1, t̃2, . . . , t̃n). After that, the time series coordinate
system (Cartesian coordinates) is transformed into polar coor-
dinates system computing the angular cosine of each T̃ value:

φi = arccos(t̃i), t̃i ∈ T̃ . (8)

After obtaining the angles and inspired by the idea
of Gramian matrices, the trigonometric difference and the
trigonometric sum between each point is considered for the
creation of the GADF and GASF matrices, respectively:

GADFi,j = sin (φi − φj) (9)

GASFi,j = cos (φi + φj) (10)

Fig. 3 illustrates the creation of the GADF and GASF
representations. In this example, we consider a time series
with NDVI values associated with a pixel from an eucalyptus
region. First, the n observations from the time series are
normalized and the time series is transformed into a polar
coordinate system (Equation 8). After that, we created the
GADF and GASF matrices, according to Equations 9 and 10,
respectively. Then, we normalized the values between 0 and
255 to allow the creation of gray level images.

GADF and GASF representations preserve temporal depen-
dencies. An observation in the time period i is compared with
an observation in the time period j and the time increases
when traversing the matrix from the upper left corner to the
lower right corner. This creates patterns in the matrix, which
also reflects in the image representation created.
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3) Representation MTF: Markov Transition Field (MTF)
is another representation proposed by Wang & Oats [12] to
encode time series as images. MTF captures state transition
statistics and encodes these statistics as an image.

Let T = (t1, t2, . . . , tn) be a time series with n observa-
tions. First, the set of all possible values of the time series are
divided into a fixed number of states. This is accomplished
by compartmentalizing the time series in Q quantile bins and
assuming that each compartment is a state. Thus, we create
T̂ = (t̂1, t̂2, . . . , t̂n) that is, t̂i is the quantile to which ti is
associated.

We create the intermediate matrix WQ×Q, where wi,j is
the number of times that transitions from the state i to the
state j occur. Then, we perform a normalization so that each
row of the W matrix has sum equal to 1. Thus, W stores the
probabilities of state transitions and it is considered the first
order Markov transition matrix, in which the lines indicate the
probability of state transitions, the columns indicate the time
dependency, and the main diagonal captures the probability of
staying in a given state.

Finally, we created the MTF matrix (Markov Transition
Field) considering the time position of T , with dimensions
n × n, where the each cell in the MTF matrix indicates the
probability of undergoing transition from the state associated
with Ti to the state associated with Tj . The MTF matrix is
constructed as follows:

MTF =


Wt̂1,t̂1

Wt̂1,t̂2
. . . Wt̂1,t̂n

Wt̂2,t̂1
Wt̂2,t̂2

. . . Wt̂2,t̂n
...

...
. . .

...
Wt̂n,t̂1

Wt̂n,t̂2
. . . Wt̂n,t̂n

 . (11)

Fig. 4 shows an example of creating the MTF representation.
In this example, we receive a time series with NDVI values
associated with a pixel from an eucalyptus region. First, the
n observations in the time series are divided into quantiles
or states. In this example, we define Q = 5 to create five
states represented by colors in the time series. Then, we count
how many transitions occur between states and create the
preliminary W matrix. We then normalize W to make it the
first order Markov transition matrix.

We build the MTF matrix according to Equation 11, then
we normalize the values between 0 and 255 and finally convert
the MTF matrix into an image.

An important characteristic of MTF matrices is that the
transition probabilities are coded in several stages in a single
representation. For example, MTFi,j such that |i − j| = 1
represents the transition process along the time axis with a
unit of difference. If we make |i − j| = 2, then we have the
transition process within two units of time, and so on. The
main diagonal represents the probability of staying in a given
state.

III. RELATED WORK

Existing literature in the area of remote sensing image
classification is vast. Most of those initiatives include the
the investigation of machine learning algorithms in problems
related to the classification and recognition of objects. For an

2000
2002

2004
2006

2008
2010

2012
2014

2016

Fig. 4. Example of creating the MTF representation.

in-depth overview of recent initiatives, the reader may refer
to [29]. In this section, we focus on describing studies related
to the use of time series in classification problems.

Almeida & Torres [2] used NDVI time series obtained from
MODIS sensors. The authors proposed a genetic program-
ming (GP) approach for discovering near-optimum combina-
tions of time series similarity functions. Those functions were
then used for classifying eucalyptus plantations. Menini et
al. [16] also addressed the same problem. Again, a GP ap-
proach was used, now for combining similarity scores defined
in terms of texture descriptors extracted from recurrence plot
representations. The methods proposed in [2] and [16] are
considered as baselines, which do not take into account data-
driven features in the time series classification task, in our
work.

Hu et al. [30] utilized data from MODIS sensors and time
series associated with five different vegetation indices. Their
work proposed a method to select automatically spatiotem-
poral features named Phenology-based Spectral and Temporal
Feature Selection – PSTFS. PSTFS features are then submitted
to a multiclass SVM classifier, used to determine to which crop
a particular sample belongs. Different from our approach, that
work did not exploit time series representations.

Liu et al. [31] exploited Landsat-8 images and the Uni-
versal Normalized Vegetation Index – UNVI [32], an index
that encodes information from all observed bands. In their
study, UNVI is compared with other vegetation indices and
effective results are reported. The use of UNVI time series in
combination with a random forest classifier was effective in a
five-class classification problem. No time series representation
was employed as well.

Another research venue concerns the proposal of approaches
for combining patterns found in time series associated with
vegetation indices with spectral information, as in [33]. In
that study, classifiers, such as random forest and SVM, were
explored in problems related to the classification of multiple
crops. Special time series representations were not investigated
in that work.

Several studies have been proposed aiming at comparing
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pixelwise- and object-based classification methods. One rel-
evant representative is the work of Belgiu et al. [8]. In their
work, NDVI time series were categorized based on the use of a
random forest classifier and the Time-Weighted Dynamic Time
Warping (TWDTW) [8]. Even the combination of pixelwise-
and object-based approaches have already been investigated,
as in the work of Rahimizadeh et al. [34]. In their work, the
forest classification problem was addressed by the combination
of a time series classifier – using SVM and vegetation indices
– and an object-based classification approach based on forest
structural patterns. These studies suggest that the investigation
of pixelwise classification approaches are an active research
area, which can even be exploited in combination of object-
based approaches. We plan to address that, in the context of
the use of time series representations, in future work.

Another family of methods has focused on the classification
of time series associated with vegetation indices extracted
from images obtained from near-surface sensors [35], [36].
The work of Almeida et al. [5], for example, investigated
the use of a multiscale classifier based on AdaBoost. In that
work, time series were used as input feature vectors of the
considered classifiers. In [37], the authors also addressed a
fusion problem, in that case based on the combination of time
series associated with multiple vegetation indices. A GP-based
approach was exploited and the focus was on the retrieval of
time series, instead of their classification. In another work [3],
time series associated with pixels were classified though the
use of an SVM meta classifier [38]. Almeida et al. [6] also
investigated the use of unsupervised fusion schemes but in the
context of retrieval tasks. In none of those works, time series
representations were explored.

Two-dimensional representations were investigated in time
series classification and retrieval problems in [4], [7]. In [7],
the phenological visual rhythm was introduced to encode veg-
etation phenology changes into images. Traditional color de-
scriptors are employed in the characterization of such images.
In [4], both recurrence plot and visual rhythm representations
were explored in the context of a pixelwise classification
fusion problem. Different from our approach, however, no
data-driven features were used.

IV. PROPOSED APPROACH

A. Predictors
Before discussing our fusion scheme, we describe in this

section the strategy used to construct multiple representations
from data. This involves some steps: (i) transformation of time
series into representations of images; (ii) use of automatic
feature extraction techniques, and (iii) creation of predictors.

First, the time series are encoded in representations of
recurrence plot, GADF, GASF and MTF, as described in
Section II. We work with individual representations and we
also combine matrices in RGB channels. Therefore, we create
two RGB representations: (i) an RGB representation composed
of MULT, DIF and DIV; and (ii) an RGB representation
composed of GADF, GASF, and MTF. These are the orders
of the red, green and blue channels, respectively.

Next, we extract features from these image repre-
sentations using ten deep convolutional neural networks:

DenseNet121 [18], DenseNet169 [18], DenseNet201 [18], In-
ceptionResNetV2 [19], InceptionV3 [20], MobileNetV1 [21],
ResNet50 [22], VGG16 [23], VGG19 [23] e XceptionV1 [24].
We use the well-known transfer learning mechanism, in which
the last layer of the neural network is removed and the result
obtained corresponds to the feature vectors produced by the
previous layers.

In addition to the feature vectors extracted from the images,
and from the two RGB representations, we also analyze
some vector concatenations, such as: DIF DIV, DIF MULT,
DIV MULT, DIF DIV MULT (called 3RP), GADF GASF
(called COMB2), and GADF GASF MTF (called COMB3).

Finally, we trained four classifiers with the feature vectors:
logistic regression, multilayer perceptron (MLP), Naı̈ve Bayes,
and support vector machine (SVM). In this way, we create
predictors in multi-representational way, where each predictor
comes from three elements: the image representation, the deep
neural network, and the classifier where it was trained on.

B. Fusion Approach

This section describes our methodology for pixelwise re-
mote sensing image classification. Our methodology takes
advantage of complementary information among image rep-
resentations described in Section II, which were extracted
from time series and designed for the remote sensing image
classification purpose [14], [15].

To achieve our goal, we adopted the use of a fusion method
able to find complementary information among the classifiers
investigated in this work. We believe that a fusion approach
can lead to gains in terms of balanced accuracy since we have
several representations of time series which explore different
temporal characteristics of NDVI extracted from eucalyptus
pixels. Taking into account that (i) the representations of
recurrence plot encode the recurrence in the time series; (ii) the
GADF and GASF representations encode static information
[12]; and (iii) the MTF representation encodes dynamic infor-
mation [12]; we assessed that the classifiers that used these
representations can be potentially complementary. Therefore,
we hypothesize that the use of representations that explore
different characteristics of time series induces a complemen-
tarity at the level of classification. The investigation of this
hypothesis was conducted using a meta-fusion method, as
described in Fig. 5.

In our methodology, we adopted the use of a meta-fusion
approach originally proposed for the presentation attack detec-
tion problem in biometric systems [39]. Although this method
was proposed to fuse classifiers built for a different problem,
we believe that the main idea of this approach fits with our
problem since we also have multiple views, or representations,
from the input images. In the context of this paper, the fusion
method aims at building a model from classifiers built using
multiple representations. These multiple representations, in
turn, are devised from representations of intermediate images
that encode different properties of the time series, such as (i)
recurrence information; (ii) trigonometric difference between
each pair of time intervals; and (iii) probability of state
transition. Finally, these intermediate representations are used



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3012117, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 6

P1    P    P2    . . .    P    . . .    Pn

0     0    . . .    1
1     0    . . .    0
0     1    . . .    1

1     1    . . .    1

 . .
 .

 . .
 .

 . .
 .

Training Set Selection of Most 
Relevant Classifiers

(Gini Importance or 
Balanced Accuracy)

Top-k Most 
Relevant 
Classifiers

Selection of Most 
Complementary Classifiers

(Cohen’s Kappa)

1

2

3

k

. . .

K lists containing the 
most complementary 
classifiers to the most 
relevant Top-K

Metaclassifier 
Training
(SVM)

Inference
P1    P    P2    . . .    P    . . .    Pn

1     1    . . .    0
1     0    . . .    0

1     1    . . .    1

 . .
 .

 . .
 .

 . .
 .

Test Set

(a) (b)

(c)

(d)

Fig. 5. Overview of the fusion method.

to build classification methods based on extractors of deep
learning characteristics, which are used in the fusion process.

In summary, the proposed methodology investigated in this
work fuses the results of trained classifiers with different image
representations, which encode different properties of the time
series, consolidating the classification into a single prediction.
Fig. 5 presents a general scheme of the multi-representational
meta-fusion.

In Fig. 5(a) the method uses the training data of the four
predictors (logistic regression, MLP, Naı̈ve Bayes, and SVM),
with the views of all the image representations investigated
in this work, whose extraction of characteristics were carried
out with ten different deep convolutional neural networks.
We consider all predictors, since while some may provide
complementary views, others can be highly correlated.

To find the most important classifiers, in Fig. 5(b) we
used two indices as criteria to estimate the importance of
the classifiers: (i) the Gini [25] index, which describes the
average reduction in forest impurity and is directly related to
decision that random forest uses to select the best available
split; and (ii) balanced accuracy of predictors. The Gini index
is a measure used by the Random Forest algorithm to infer the
importance of variables or nodes (in our case, the classifier).
During the training of a Random Forest classifier, the decision
trees that composes the Random Forest try to form nodes with
a high proportion of data points form a single class, which
is achieved by finding the variables that cleanly divide the

training data into classes. For this, the Random Forest can use
the Gini index as metric to evaluate the level of impurity for a
given node. This value is then used to decide if a node should
be split, or not.

In the selection with the Gini index, the training predictors
are sent to the random forest algorithm, which randomly
generates multiple decision trees from different subsets of
the provided predictors. At the end of the random forest
training process, the method sorts the classifiers according
to their respective importance in the construction of the
meta-classification model. At the end of the most relevant
selection phase, the meta-classification model is discarded and
an ordered list with the top-k classifiers is used in the next step.

To find the most complementary classifiers, in Fig. 5(c) the
top-k most relevant classifiers are compared with the other
predicted classifiers using Kappa’s concordance coefficient as
suggested by Cohen [27]. Cohen’s Kappa is a statistical tool
to measure the inter-rate agreement between two raters. This
method has been applied in several works as toward inferring
a confident measure of concordance between two raters. In the
context of this work, the Cohen’s Kappa is used to measure
the concordance between pairs of classifiers, which can be
determined following the reliability reference values: 0.2 <
k ≤ 0.4 as fair; 0.4 < k ≤ 0.6 as moderate; 0.6 < k ≤ 0.8
as substantial; and k > 0.8 as almost perfect [40]. Thus, we
have k lists containing the classifiers most complementary to
the most relevant k classifiers. Finally, classifiers that appear
on two or more lists are selected as candidate classifiers, which
are used to build a meta-classifier.

To carry out the training of the meta-classification, in
Fig. 5(d) we use the SVM algorithm. With the result of the
meta-fusion, we make the inference with the test set. All
parameters of the fusion method are estimated during training
with grid search.

V. EXPERIMENTAL SETUP

This section described the evaluation protocol adopted.

A. Dataset of Areas with Eucalyptus

The eucalyptus dataset has the MODIS sensor as its
source of information, with a combination of the Aqua and
Terra satellites in order to reduce the temporal gap and
achieve high temporal resolution. We obtained 385 images
from Terra (MOD13Q1.005) and 330 images from Aqua
(MYD13Q1.005), from February 2000 to November 2016.
Both products already provide the computation of the NDVI.
MODIS products have 250m spatial resolution, and are pro-
duced with 16 days of composition. MODIS have daily
records, but only products with a best quality are selected
to represent the composition period. Another filtering is per-
formed to select only pixels with the same classification label.

We used a modified subset of the collection used in le
Maire et al. [9]. The selected pixels belong to the eucalyptus
and noneucalyptus classes. This dataset is composed of 250
eucalyptus pixels and 1000 noneucalyptus pixels randomly
selected. To investigate the impact of noneucalyptus sample
unbalancing, we divided the dataset into three sample sizes:
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250, 500 and 1000. These values correspond to the number of
pixels labeled as noneucalyptus. In each sample we add the
250 eucalyptus pixels.

B. Baselines

This section presents a brief description of the baseline
algorithms for fusing classifiers.

1) Majority Vote: The majority vote is the simplest strategy
for fusing information from different sources. This approach
assumes that all classifiers have equals importance, and the
final decision is determined by the most frequent class (or
label output) taking into consideration the classifiers’ output.
Given a (n× c) binary matrix L, as follow:

L =


d(1,1) d(1,2) . . . d(1,c)
d(2,1) d(2,2) . . . d(2,c)

...
...

. . .
...

d(n,1) d(n,2) . . . d(n,c)

 ∈ {0, 1} (12)

where n is the number of inputs, c is the number of classifiers,
and d(n,c) is the label output of the c-th classifier for the n-th
input. Thus, the ensemble decision Ψ = [ω1, · · · , ωn] for the
n input samples are determined as follow:

Ψ = max
j∈{0,1}

c∑
k=1

δ(d(n,k), j) (13)

where δ(i, j) is defined as 1 if i = j and 0 if i 6= j.
2) AdaBoost: Adaptive Boosting (AdaBoost) [41] aims to

combine multiple ‘bases’ classifiers to produce an ensemble
decision with a performance better than any of the bases
classifiers. Boosting approaches perform the training phase
of base classifiers in sequence and using a weighted scheme
of the data whose weighting coefficient of each data point
depends on the performance of the previous classifiers [42]. In
particular, the AdaBoost algorithm initially set an equal weight
for the data point as 1/n, where n is the size of the data, and
at each stage of the algorithm the weighting coefficients are
increased for those data points that was misclassified by the
previously trained classifier. After the bases classifiers have
been trained, they are combined to produce an ensemble de-
cision using coefficients that give different weight to different
base classifiers.

3) Gradient Boosting: Gradient Boosting is an extension
of AdaBoost to regression problem [43]. Different from Ad-
aBoost algorithm, the Gradient Boosting learns via residual
errors, instead of using the weighting coefficients computed for
each data point. While the AdaBoost algorithm mines the hard
data samples by updating the weighting coefficients according
to bases classifiers’ response, the Gradient Boosting algorithm
does the same thing by using gradients computed upon the loss
function. Thus, the loss function is used to infer how good
the model’s coefficients are at fitting the data. In this work,
we adopted the use of negative binomial log-likelihood loss
function, which provides probability estimates, and decision
trees as base classifiers.

4) Random Forest: Random forest is a machine learning
algorithm composed of multiple decision trees built on differ-
ent random subsets of the training data. The training strategy
adopted by this algorithm is known as boost strapping (or
bagging) which aims to reduce the variance of the bagged
model and to help avoiding over-fitting. Given a set of decision
tree classifiers (base classifiers), the bagging strategy splits the
data randomly, with replacement, which are used to fit the
base classifiers in an independent manner. After training, the
bagged model is computed by taking the majority vote of base
classifiers. To estimate the performance of the individual trees,
a subset of the training data, called out-of-bag (OOB) samples,
is separated from the training data and used to estimate the
generalization error of the bagged model. The OOB samples
is also used to compute the error rate of all variables infer the
feature importance.

5) Fusion of Classifiers via Support Vector Machine: Sup-
port Vector Machine (SVM) algorithm has been successfully
employed for fusing information for the different classification
problems due to strong generalization capability when its
parameter values were chosen accordingly. The training stage
of an SVM classifier in the context of fusion of classifiers is
given as follows. Given a (n× c) binary matrix L that gathers
the label outputs of c classifiers for the n input samples from
the training set, the ensemble decision of a set of classifiers c is
performed by feeding an SVM algorithm with L matrices to fit
a classification model or ensemble model. During the training
stage, we applied a grid search and k-fold cross-validation
protocol to estimate the parameters C and γ since we use the
radial basis function (RBF) as a kernel. After estimating an
SVM-based ensemble model, the testing phase is performed
by running c classifiers on the p testing samples, whose labels
outputs are gathered to build a (n×p) binary matrix H . Next,
the H matrix is used to feed the SVM-based ensemble model
that produces the final label output for each testing sample p.

C. Evaluation Protocol

We conducted the experiments and evaluation of the pro-
posed method using the MODIS sensor images with eu-
calyptus pixel samples (see Section V-A). We adopted the
same evaluation protocol as Menini et al. [16] to have a fair
comparison with our baseline methods. Thus, we divided the
dataset into two sets, training set (80%) to train and validate
the classification models and the testing set (20%) used only to
report the final results of our proposed methods and baselines.

We validate classification models by using the k-fold cross
validation protocol, with k = 5, and ten replications. The
replications is necessary to avoid a biased result since we
split the original dataset in a 80%–20% ratio. Finally, the
evaluation metric used to measure the performance results of
the classifiers was the average of balanced accuracy of ten
replications.

VI. EXPERIMENTAL RESULTS

This section presents and discusses obtained results.
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TABLE I
COMPARISON OF PERFORMANCE RESULTS, IN TERMS OF MEAN AND STANDARD DEVIATION OF BALANCED ACCURACY, BETWEEN THE BEST CLASSIFIER,

FOR EACH NUMBER OF NONEUCALYPTUS EXAMPLES, TRAINED WITH DEEP REPRESENTATIONS (FIRST THREE ROWS) AND BASELINE METHODS FOR
DETECTING EUCALYPTUS AREA (LAST TWO ROWS).

Noneucalyptus Sample Size

Deep Features 250 500 1000

SVM ResNet50COMB3 0.978± 0.013 0.958 ± 0.012 0.938 ± 0.021
SVM DenseNet201COMB3 0.974 ± 0.011 0.964± 0.014 0.939 ± 0.020
Naı̈ve Bayes InceptionV3COMB3 0.961 ± 0.020 0.960 ± 0.020 0.954± 0.012

Menini et al. [16] 0.952 ± 0.005 0.943 ± 0.007 0.921 ± 0.005
Almeida et al. [2] 0.936 ± 0.009 0.938 ± 0.010 0.916 ± 0.016

TABLE II
COMPARISON OF PERFORMANCE RESULTS, IN TERMS OF MEAN AND STANDARD DEVIATION OF BALANCED ACCURACY, BETWEEN THE BASELINE

METHODS (FIRST FOUR ROWS) AND OUR PROPOSED METHOD (LAST THREE ROWS).

Number of noneucalyptus examples
Methods 250 500 1000

Almeida et al. [2] 0.936± 0.009 0.938± 0.010 0.916± 0.016
Menini et al. [16] 0.952± 0.005 0.943± 0.007 0.921± 0.005
Dias et al. [14] 0.969± 0.016 0.961± 0.016 0.941± 0.017
Dias et al. [15] 0.978± 0.013 0.964± 0.014 0.954± 0.012

Meta-Fusion using RP representation 0.968± 0.018 0.947± 0.016 0.944± 0.026
Meta-Fusion using RP, GAF and MTF representations (Gini impurity index) 0.981± 0.006 0.976± 0.006 0.955± 0.009
Meta-Fusion using RP, GAF and MTF representations (accuracy) 0.982± 0.005 0.977± 0.007 0.958± 0.007

A. Evaluation of Individual Classifiers trained Using Deep
Representations

This section presents the preliminary results of the predic-
tors. Our approach to build predictors considers 4 classification
algorithms trained using several representations, which were
built by using 10 pre-trained deep learning methods as feature
extractors upon 14 two-dimensional representations used to
encode the time series (see Section IV). Thus, we came up with
560 classifiers (4 classifier × 10 feature extractors × 14 two-
dimensional representations). Since we are considering the
5-fold cross-validation evaluation protocol, the total number
of models produced during training phase reaches 28,000
classifiers (560 × 5 models × 10 runs). Due to the volume of
results, we show in Table I only the best results for the non-
eucalyptus samples with sizes 250, 500, and 1000, considering
all the predictors.

With the motivation that these predictors potentially provide
different views about the classified instances, we have ex-
tended previous work [14], [15] investigating a fusion method
for the 28,000 predictors.

B. Are the RP, GAF, and MTF Representations Complemen-
tary to each other?

This section presents the performance results of the method
used to ensemble multi-representational learning classifiers
designed to detect eucalyptus and non-eucalyptus areas. Ta-
ble II shows the obtained results considering the fusion of
classifiers described in Section IV-A. Furthermore, the values
correspond to average and standard deviation of balanced
accuracy, computed for ten rounds of experiments.

The first two rows in Table II presents the performance
results of the baseline methods that do not rely on the use

of deep neural networks for feature extraction. In turn, the
third and fourth rows present the baseline methods whose
approaches take advantage of deep learning methods for
extracting deep representations. Finally, the last three rows
show the performance results of the meta-fusion approach
investigated in this study, which consider: (i) recurrence plot
representation only; (ii) all representations of recurrence plot,
GAF and MTF; and using the Gini index as a criterion to
estimate the importance of classifiers; (iii) all representations
of recurrence plot, GAF and MTF; using the accuracy values
to estimate the importance of the classifiers.

From these experiments, we could observe that the fusion
approach improved the classification results, in terms of bal-
anced accuracy, in comparison to the baseline methods. These
results suggest that learned classifiers using the RP, GAF, and
MTF representations encode complementary features useful
to our problem. This was evidenced when we fuse the clas-
sifiers using only the RP representations. In this case, the
fusion approach could not bring significant improvements, in
comparison to method presented in [14] that also uses RP
representations. We believe that this modest results could be
explained by the fusion of a set of classifiers that did not share
to much complementary information. On the other hand, the
fusion of classifiers built with RP, GAF, and MTF methods
presented better results than all baseline methods. These
results suggest that multi-representational learning classifiers
built with the two-dimensional representations of time series
investigated in this work complement each other.

C. Comparison with other Fusion Approaches

This section presents a comparison of performance results
among different methods for fusing classifiers. In this work, we
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TABLE III
COMPARISON OF PERFORMANCE RESULTS, IN TERMS OF MEAN AND STANDARD DEVIATION OF BALANCED ACCURACY, AMONG THE BASELINE

METHODS FOR FUSING CLASSIFIERS (FIRST FOUR ROWS), THE TOP-1 CLASSIFIER THAT PRESENTED THE BEST RESULTS (PENULTIMATE ROW), AND THE
FUSION APPROACH ADOPTED FOR FUSING CLASSIFIERS (LAST ROW).

Number of non-eucalyptus examples
Methods 250 500 1000

AdaBoost 0.942± 0.011 0.935± 0.014 0.912± 0.019
Gradient Boosting 0.961± 0.012 0.950± 0.011 0.928± 0.017
Random Forest 0.959± 0.013 0.954± 0.008 0.943± 0.013
SVM 0.960± 0.009 0.951± 0.011 0.943± 0.014

Top-1 Classifier (Ref.) [15] 0.978± 0.013 0.964± 0.014 0.954± 0.012
Meta-Fusion using RP, GAF and MTF representations (accuracy) 0.982± 0.005 0.977± 0.007 0.958± 0.007

evaluated different approaches for fusion information available
in the literature such as Bagging, Boosting, and Meta-fusion
approaches: AdaBoost and Gradient Boosting are two fusion
strategies that can be classified as Boosting approaches, while
the Random Forest is a bagging approach by itself since
several decision tree classifiers are training using the bagging
approach. On the other, the Random Forest alongside with
SVM algorithm can also be considered as a meta-fusion
approach when they are used to have a second decision layer
upon base classifiers.

Table III shows the performance results for the fusion
methods investigated in this work. We could observe that
baseline methods for fusion could not surpass the best result
considering the individual performance of classifiers built
in this work. On the other hand, the meta-fusion approach
adopted in this work (see Section IV) achieved the best results,
in terms of balanced accuracy, in comparison with the baseline
methods for fusing classifiers.

Finally, it is important to notice that although our fusion
approach needs to handle a high number of classification
models in the training phase, the testing phase uses only the
60 classifiers selected during the training phase to produce the
final decision. Of course, this number could be limited depend-
ing on the efficiency aspects required by a target application.
Remote sensing image classification is an active research field,
and several real-time remote sensing applications have been
addressed recently (e.g., applications that aim to predict natural
disasters [44]). We believe that the investigation of the trade-
off between effectiveness and efficiency of fusion approaches
that handle a high number of pixelwise classification systems
is an interesting research venue and could benefit applications
that require fast decision-making with minimum latency.

VII. CONCLUSION

This paper addressed the pixelwise remote sensing im-
age classification problem based on patterns found in time
series associated with pixels. In particular, we investigated
the complementary view provided by different classification
systems created based on the combination of time series
representations, data-driven feature extractors, and classifiers.
Experiments were conducted aiming at addressing the problem
of classifying eucalyptus plantations in remote sensing im-
ages, based on vegetation index time series. Achieved results
demonstrated that proposed ensemble exploits properly the

complementarity of different classification systems. In fact,
state-of-the-art results were observed for the target dataset.

Future work focuses on improving our ensemble by exploit-
ing the effectiveness of end-to-end classifiers based on data-
driven learning approaches. We also plan to investigate the
use of the proposed ensemble in spatiotemporal classification
problems, and efficiency and yet effective strategies for build-
ing multi-representational learning approaches that require fast
decision-making with minimum latency.
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