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Abstract: 20 

Submerged macrophyte monitoring is a major concern for hydrosystem management, 21 

particularly for understanding and preventing the potential impacts of global change on 22 

ecological functions and services. Macrophyte distribution assessments in rivers are still 23 

primarily realized using field monitoring or manual photo-interpretation of aerial images. 24 

Considering the lack of applications in fluvial environments, developing operational, low-cost 25 

and less time-consuming tools able to automatically map and monitor submerged macrophyte 26 

distribution is therefore crucial to support effective management programs. In this study, the 27 

suitability of very fine-scale resolution (50 cm) multispectral Pléiades satellite imagery to 28 

estimate submerged macrophyte cover, at the scale of a 1 km river section, was investigated. 29 

The performance of nonparametric regression methods (based on two reliable and well-known 30 

machine learning algorithms for remote sensing applications, Random Forest and Support 31 

Vector Regression) were compared for several spectral datasets, testing the relevance of 4 32 

spectral bands (red, green, blue and near-infrared) and two vegetation indices (the Normalized 33 

Difference Vegetation Index, NDVI, and the Green-Red Vegetation Index, GRVI), and for 34 

several field sampling configurations. Both machine learning algorithms applied to a Pléiades 35 

image were able to reasonably well predict macrophyte cover in river ecosystems with 36 

promising performance metrics (R² above 0.7 and RMSE around 20 %). The Random Forest 37 

algorithm combined to the 4 spectral bands from Pléiades image was the most efficient, 38 

particularly for extreme cover values (0 % and 100 %). Our study also demonstrated that a 39 

larger number of fine-scale field sampling entities clearly involved better cover predictions than 40 

a smaller number of larger sampling entities.  41 

 42 

Keywords: Aquatic vegetation; Remote sensing; Machine learning; Fluvial ecosystem; 43 

Random Forest; Support Vector Regression 44 
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1. Introduction  45 

The essential role of macrophytes in freshwater ecosystems has been well demonstrated. They 46 

influence the physical, chemical and biological structures of hydrosystems and provide multiple 47 

ecosystem functions and services, such as water quality improvement, stabilization of 48 

streambeds and habitat provision (Carpenter and Lodge, 1986; Dennison et al., 1993; Jeppesen 49 

et al., 1998; Bornette and Puijalon, 2011; Choi et al., 2014). However, their excessive 50 

development can have negative impacts on hydrosystem functioning, for instance, light 51 

attenuation, anoxia, reduction of flow velocity and increase of sedimentation (e.g. Caraco and 52 

Cole, 2002; Hussner et al., 2017; Kagami et al., 2019), modifying biotic interactions and 53 

disrupting community assembly (Santos et al., 2011). Submerged species, especially, can also 54 

cause recurring problems for users and managers, e.g. inconvenience to water activities, 55 

olfactory nuisances and clogging of water intakes in power plants in case of uprooting (Jadhav 56 

and Buchberger, 1995; Bunn et al., 1998; Sand‐Jensen and Pedersen, 1999; Stephan and 57 

Gutknecht, 2002; Martin, 2017) which are still difficult to fully anticipate on large rivers. 58 

Although it is relatively well known that the patterns of spatial and temporal distribution of 59 

aquatic macrophytes result from the interactions between many environmental factors 60 

(hydrology, water temperature, light, nutrients, substrate, grazing), using these factors in 61 

statistical models remains insufficient to predict their distribution within large geographic areas 62 

as fluvial environments. Data on the current distribution of submerged macrophytes in the field 63 

are therefore pivotal, either for direct monitoring, as required by the EU Water Framework 64 

Directive to improve the ecological quality assessment of inland waters (WFD European 65 

Commission, 2000), but also for developing new distribution models.  66 

Mapping and monitoring vegetation distribution are important technical tasks in sustainable 67 

management. Accordingly, numerous monitoring programs have focused on acquiring spatial 68 

information about species composition, maximum depth colonization, density, cover (i.e. 69 
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percentage of the horizontal surface occupied by vegetation), biomass and plant height (Johnson 70 

and Newman, 2011). Those programs have been reviewed in Stocks et al. (2019).  71 

In fluvial environment, collecting data on submerged aquatic vegetation (SAV) that will 72 

sufficiently represent spatial variation along river reach is difficult, and requires labour-73 

intensive, time-consuming and sometimes destructive fieldwork. Thus, SAV sampling will be 74 

more and more replaced by indirect mapping methods, especially thanks to remote sensing 75 

tools. Nowadays airborne or satellite sensors provide many observation opportunities at large 76 

scales at a given time, with relatively high spatial and temporal resolutions which are constantly 77 

improving. Actually, multispectral satellite data have been widely used to map the distribution 78 

of macrophytes over large areas (Gullström et al., 2006; Nelson et al., 2006; Dogan et al., 2009; 79 

Tian et al., 2010) and assess the spatio-temporal dynamics of aquatic vegetation (MacAlister 80 

and Mahaxay, 2009; Zhao et al., 2012, 2013). However, many of these studies have focused on 81 

emergent or floating aquatic vegetation due to easier distinction of macrophyte spectral signal 82 

from water. Hyperspectral data have been less considered due to their limitations in terms of 83 

cost, availability, processing and high dimensionality of spectral data (Plaza et al., 2009; Adam 84 

et al., 2010; Mutanga et al., 2012).  85 

Recently, significant progress has been made in image processing for repetitive and automatic 86 

submerged macrophyte mapping over large areas combining punctual field data and various 87 

modelling methods. Some researchers have clearly demonstrated the feasibility of submerged 88 

macrophyte mapping using powerful machine learning algorithms (e.g. Artificial Neural 89 

Networks, Random Forest, Support Vector Machines or K-Nearest Neighbors) (e.g. Dogan et 90 

al., 2009; Kotta et al., 2013). The main characteristic of these supervised algorithms is to train 91 

a model on a part of the data and test the fitted model on the other part. Compared with other 92 

nonparametric methods, they also have no limitation for the number of independent variables 93 

(i.e. adapted to high dimensional data) and do not require normally-distributed 94 
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variables. Most of these works have been conducted in marine environments, or were limited 95 

to large river basins, wetlands or lakes with the best satellite resolution limited to 2.41 m and 96 

various attempts have been made to resolve issues regarding submerged vegetation (Hedley et 97 

al., 2012). However, the insufficient spatial resolution of image data, the spatial variability of 98 

depth and the strong attenuation of light in water are still limitations for remotely mapping SAV 99 

in fluvial environments (Marcus and Fonstad, 2008). To our knowledge, only one study has 100 

focused on submerged macrophytes in rivers combining ultra-light aircraft images to machine 101 

learning algorithms but the obtained map was limited to the presence/absence of canopy 102 

meadows (Durand et al., 2016). Finally, a scientific issue is to develop machine learning models 103 

on high resolution satellite images with high potential in rivers to extend satellite remote 104 

sensing. 105 

Additionally, human and financial resources allocated to acquire in situ aquatic vegetation data 106 

are generally limited. There is no standard sampling protocol while the quality of macrophyte 107 

cover prediction depends on the sampling strategy adopted. However, to our knowledge, there 108 

is no study in fluvial environments allowing the optimization of SAV monitoring methods, both 109 

in terms of sampling protocol (i.e. determining the spatial scale and the minimal number of 110 

sampling plots required) and prediction model choice to generate accurate and continuous map 111 

of riverine submerged macrophytes. 112 

In that respect, a new mapping method was here investigated to monitor the distribution of 113 

submerged vegetation in fluvial environments at a very fine-scale resolution (50 cm) while 114 

limiting logistical, financial and human costs. The main objective of this study was to develop 115 

a cover prediction model combining machine learning algorithm, imagery spectral features and 116 

punctual field samples. In that respect, we investigated the performance of two machine 117 

learning regression models (Random Forest and Support Vector Regression) applied to high-118 

resolution multispectral Pléiades satellite imagery, for automatically mapping macrophyte 119 
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cover at the scale of a 1 km river section. Both algorithms are reliable and well-known in remote 120 

sensing; they proved to achieve satisfactory results for various and numerous remote sensing 121 

applications in ecology (e.g. Cutler et al., 2007; Hunter et al., 2010; Husson et al., 2017; 122 

Traganos et al., 2018; Villa et al., 2018; Zafari et al., 2019; Sabat-Tomala et al., 2020). Support 123 

Vector Regression is more robust than Random Forest for a lower sample size but the latter is 124 

faster to compute (Mountrakis et al., 2011; Belgiu and Drăguţ, 2016; Gholami and Fakhari, 125 

2017).  126 

In addition, we discussed several SAV cover sampling strategies involving various numbers of 127 

sampling entities with different sizes in order to guide managers optimizing their monitoring 128 

method. We assessed whether, for a given sampling effort, it is better to use a larger number of 129 

smaller sampling entities or a smaller number of larger entities for SAV cover estimation.  130 

2. Materials and methods 131 

2.1. Study area 132 

The study was carried out during September 2017 in the Garonne River, a southwest French 133 

shallow river, approximately 15 km north of Toulouse (43°41'51"N, 1°22'09"E), next to the 134 

city of Seilh (Figure 1a).  135 

The study area was about 1 km long and 110 m wide and it is a typical example of the mid-136 

Garonne ecosystems with abundant macrophyte meadows which develop at low water depth, 137 

from the end of March to early October, and which are mainly constituted of submerged species, 138 

including two dominant species, such as Myriophyllum spicatum (Eurasian Water Milfoil, L. 139 

1753) and Ranunculus fluitans (River Water-crowfoot, Lam. 1779). A dozen of aquatic 140 

macrophyte species occur at this site and are observed between 0.15 and 2 m depth.  141 

The study area is composed of a shallow backwater downstream on the right bank and it is 142 

bordered by a pebble bed on its left bank. A natural weir marks the upstream limit of the site. 143 

Bedrocks, gravels and pebbles are the main substrates and different mixed sediments can be 144 
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found on half of the study area. Previous in situ topography measurements during separate 145 

fieldwork campaigns (combining bathymetric data collected with a single beam echosounder 146 

and elevation measurements of the riverbed, banks and overflow areas) and 2D hydrodynamics 147 

simulations were used to determine water levels at the whole-site scale during the macrophyte 148 

sampling period (§2.2.). Water levels were relatively low, with average depths varying between 149 

0.05 and 1.30 m over more than half of the site during this period. The downstream zone was 150 

deeper varying mainly between 1.30 and 3.50 m, and with a maximum depth of 4.05 m on the 151 

right side of the central channel. 152 

2.2. Field data collection 153 

Field survey of submerged macrophytes was conducted during the second half of September 154 

2017 to get observed data of macrophyte covers at a period with available Pléiades images and 155 

a non-turbid water column. Numerical simulations based on a SAV model indicated that the 156 

biomass of macrophytes on this site and at that date was still very close to the peak biomass 157 

that occurred during the second half of August (unpublished results). A total of 55 sampling 158 

plots of 9 m² (i.e. 3 m side PVC square frames) were distributed all over the study site (Figure 159 

2a). The sampling protocol focused on homogeneous areas of macrophyte meadows and was 160 

oriented in order to sample several combinations of substrate, depth and meadow abundance 161 

classes; it also included numerous open water plots (Table 1). Each plot (P) was divided into 162 

16 quadrats (Q) of 0.75 m side (Figure 2b). Then the total cover (i.e. referring to the cover of 163 

all species) of SAV within each quadrat was estimated by two subaquatic observers. A total of 164 

880 quadrats were thus sampled individually. Finally, we averaged the total cover from the 16 165 

quadrats of each plot to get the total cover at the plot scale. The purpose here was to compare 166 

two field sampling levels: the plot level (i.e. 55 plots) versus the quadrat level (i.e. 880 167 

quadrats). 168 
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The centre of each sampling plot was geolocated using a portable real time kinematic global 169 

positioning system (RTK-GPS) receiver (EMLID Reach RS™) with +/- 3 cm accuracy. The 170 

RTK-GPS reference receiver was located on field, close to the right river bank of the study area 171 

(i.e. <1 km from all sampling plots) and free of obstacles to ensure maximum exposure to 172 

radiometric signals. Both RTK-GPS receivers used GNSS signals from GPS and GLONASS 173 

satellites. All plots were North oriented. The geographical information system QGIS 2.18 was 174 

used to digitize the field data. 175 

2.3. Remote sensing data acquisition into the Garonne River 176 

Two types of optical measuring instruments were used to acquire remote sensing data: 177 

unmanned aerial vehicles (UAV) and satellite with high spatial resolutions. UAV imagery 178 

provided an overview of the distribution of submerged macrophytes meadows at the site scale 179 

whereas satellite image was used for the development of the automatic mapping method.  180 

2.3.1. UAV imagery 181 

Aerial photos were taken mid-September 2017 with a Phantom 4 Pro, a drone developed by 182 

DJITM (DJITM, Shenzhen, China). We used a flying height of 30 m. The along‐ and across‐track 183 

image covers were set to 70-80 %. The study site was surveyed in three flight blocks of 10-15 184 

min (Figure 3a). Flight missions were programmed with the Litchi application software 185 

available for Android devices. Flight weather conditions were sunny with light wind at ground 186 

level. The camera used in this work was a three-band (red, green and blue) DJITM digital camera, 187 

equipped with a 1” CMOS / 20-megapixel sensor camera, with a focal length of 24 mm, and a 188 

F‐number of 2.8, providing an image size of 5472 × 3648 (columns × rows) (Figure 3b). 189 

Mosaicking was processed using the commercial software Agisoft© Metashape Professional 190 

Edition (Saint Petersburg, Russia) with a spatial resolution of 1 cm (Figure 3c). Georeferencing 191 

was performed on QGIS 2.18 using seven ground control points which were taken in situ with 192 

the RTK-GPS with a linear transformation and nearest neighbors resampling. Then a map of 193 



9 
 

the total cover of submerged macrophytes was created on QGIS 2.18 by visual interpretation 194 

of the orthomosaic at each 3×3 m cell of an overlaid grid. This photo-interpreted cover map 195 

provided a field reference of the study site.  196 

2.3.2. Satellite imagery 197 

One Pléiades pan-sharpened image of 100 km² surrounding our study site (Figure 1b) was 198 

acquired on September 27, 2017, thanks to the “Initiative for Space Innovative Standards” 199 

(ISIS) program that results from a cooperation between Airbus Defence and Space and the 200 

French “Centre National d’Etudes Spatiales” (CNES). Pan-sharpening, resulting from a fusion 201 

process, corresponds to a multispectral image including 4 spectral bands from the visible (Red: 202 

0.59-0.71 µm, Green: 0.50-0.62 µm, Blue: 0.43-0.55 µm or RGB) through the near-infrared 203 

(NIR: 0.74-0.94 µm) with the spatial resolution of panchromatic images (i.e. 50 cm) obtained 204 

by the Pléiades-1A satellites. The ortho-image was cloud free with minimal glint and corrected 205 

from acquisition and terrain off-nadir effects by the providers. 206 

The raw Pléiades image was already ortho-rectified before delivery (with 2.5 m accuracy 207 

according to Grazzini et al. (2013). Its georeferencing has been improved using a linear 208 

transformation and nearest neighbors resampling. This process required 17 ground control 209 

points for which 3 cm accuracy GPS positions were determined with the RTK-GPS. This 210 

process allowed a new planimetric accuracy of the Pléiades image of ca. 0.35 m. 211 

Then, radiometric corrections have included conversion of pixel digital number values 212 

(encoded on 16 bits) to Top of Atmosphere (TOA) reflectance for each spectral band (i.e. RGB 213 

and NIR) in order to normalize each spectral band in a a continuous range between 0 and 1. 214 

This process was made using the “Geosud TOA Reflectance” plugin available on QGIS 2.18. 215 

Finally, a vector mask of the riparian area and dewatered banks was used to produce a minor 216 

riverbed-only image. 217 

 218 
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2.4. Modelling macrophyte cover using satellite imagery  219 

Modelling the relationship between SAV cover and its spectral reflectance is essential for 220 

automatically mapping macrophytes. We used machine learning regression algorithms to 221 

predict macrophyte cover from high-resolution reflectance data based on Pléiades image. 222 

Figure 4 summarizes the main steps of our approach. 223 

The predictive model was developed using free geomatics and statistics tools, such as QGIS 224 

2.18 spatial analysis technologies to pre-process the remote sensing data and several R libraries, 225 

such as “rgdal”, “randomForest” and “e1071”, to develop the regression models and to generate 226 

the predicted distribution maps at the spatial resolution of the Pléiades images (i.e. 0.5 m of 227 

resolution). Finally, their resolution had been degraded to 3 m resolution for comparison with 228 

the photo-interpreted cover map (i.e. 3 m). 229 

2.4.1. Defining predictive variables among spectral data 230 

The use of red and especially of NIR band for submerged macrophyte detection is still debated 231 

because of their relatively fast absorption in water (Fyfe, 2003; Heege et al., 2004; Dogan et 232 

al., 2009; Chen et al., 2018b). However, many submerged macrophytes reach the surface during 233 

low water period by creating a canopy having stronger contribution to the signal, potentially 234 

making these two bands suitable for the detection of aquatic vegetation. In addition, the use of 235 

normalized spectral indices could improve prediction models (Bradley and Fleishman, 2008). 236 

Different datasets, derived from the pre-processed satellite image, were therefore used to assess 237 

the potential of multispectral bands and vegetation indices to detect submerged macrophytes, 238 

and to examine the effect of spectral features on the quality of cover prediction. The four 239 

spectral reflectance datasets were the following: 240 

(i) The first dataset was obtained from the Pléiades concatenated spectral data from the 241 

visible bands (red, green and blue bands (RGB)). This dataset was referred to as 242 

“dataset 0” (3 variables); 243 



11 
 

(ii) The second dataset (“dataset 1”) combined RGB and near-infrared (NIR) bands (4 244 

variables); 245 

(iii) The third dataset (“dataset 2”) included two widely-used vegetation indices 246 

reflecting the characteristic spectral signature of active vegetation: the Normalized 247 

Difference Vegetation Index, NDVI=(NIR-R)/(NIR+R), and the Green-Red 248 

Vegetation Index, GRVI=(G-R)/(G+R) (2 variables). According to Cho et al., 249 

(2008) NDVI could only be useful in shallow clear waters (<0.5 m depth) because 250 

of fast absorption of the NIR band while GRVI, using red and green bands, decrease 251 

less rapidly depending on the depth and could perform better in detecting changes 252 

in canopy vegetation (Motohka et al., 2010; Chen et al., 2018a); 253 

(iv) The last dataset (“dataset 3”) included the RGB and NIR bands and the two GRVI 254 

and NDVI indices (6 variables). 255 

2.4.2. Extraction of reflectance data based on sampling entities 256 

Our field database was composed of 55 plots or 880 quadrats (each of them being characterized 257 

by a value of total macrophyte cover expressed in percentage). Each sampling entity (plot or 258 

quadrat) was composed of a given number n of pixels from the Pléiades image, each pixel being 259 

associated with a reflectance value in several spectral bands (or vegetation indices). The n 260 

values of reflectance of each spectral band are extracted using the extract() function from the 261 

R raster package. Then an area-weighted average reflectance of the n pixels belonging to each 262 

sampling entity was computed.  263 

2.4.3. Machine learning regression models and SAV mapping 264 

We tested the performance of two reliable machine learning algorithms to build a regression 265 

model that predicts SAV cover at the scale of the site: the Random Forest (RF) and Support 266 

Vector Regression (SVR) algorithms. For each model, the remote sensing variables (including 267 
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vegetation indices for “dataset 2” and “dataset 3”) were treated as independent variables and 268 

the total cover was treated as a dependent or response variable. Detailed reviews of SVR and 269 

RF in remote sensing can be found in Mountrakis et al. (2011) and Belgiu and Drăguţ (2016), 270 

respectively. 271 

Regression analysis was carried out on the four datasets and at the two sampling levels (plots 272 

and quadrats). This procedure allows us to assess the effect of the spectral dataset and the 273 

relevance of the two field sampling levels.  274 

We then explored the effects of the number and size of the sampling entities on prediction 275 

quality. Firstly, the effect of the sampling scale on cover prediction was addressed by comparing 276 

the results obtained using datasets with 55 entities but of different size: 0.75 m, 1.5 m 277 

(corresponding to a group of 4 quadrats per plot) and 3 m side. Secondly, the number of quadrats 278 

was gradually decreased from the initial dataset (880 quadrats) by randomly selecting 1, 2, 4 or 279 

8 quadrat(s) per plot. This random selection of quadrats generated configurations with 55, 110, 280 

220 or 440 quadrats. In addition, a subset of the plots was used to get a configuration with 15 281 

and 30 quadrats. Thanks to an oriented random selection function, we ensured that the quadrat 282 

selection maintain a similar distribution of macrophyte abundance classes, as that of the initial 283 

880 quadrats dataset (Table 1). The purpose here was to define the minimal number of sampling 284 

entities that allowed a satisfactory result. This was achieved by a learning curve analysis.  285 

In total 72 models (combining 2 algorithms, 4 spectral datasets and 9 field sampling 286 

configurations) of cover prediction were run and compared with each other in order to 287 

determine the best one. The key steps of the method are detailed below. 288 

• Tuning, training and testing the models  289 

In the case of a limited number of samples, the k-fold cross-validation technique is recognized 290 

as a valuable approach to split samples into k subsets of roughly equal size (Hastie et al., 2009). 291 
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For a given combination of hyperparameters, k-1 partitions are used iteratively (k times) to train 292 

the model and to test it on the remaining partition. Thus, it potentially allows each sample to be 293 

used k times for multiple training or testing, with the purposes of (i) improving the learning 294 

process (fine tuning), (ii) using independent datasets for training and testing, and (iii) limiting 295 

overfitting (Anguita et al., 2012; Ramezan et al., 2019). The final model performance is 296 

calculated by averaging the k computed errors for the selected hyperparameters. Finally, the 297 

best prediction model corresponds to the model built with hyperparameters which generate the 298 

highest validation score (i.e. the lowest generalization error or test error). Additionally, a 299 

commonly-used method to reduce the variability in chosen parameters and the standard 300 

deviation of performance estimates of the tuned model, is to run a repeated k-fold cross-301 

validation, named J-k-fold cross-validation (Moss et al., 2018). We therefore used in this study 302 

a repeated k-fold cross-validation, i.e. with k fixed to 10, as is commonly chosen in the literature 303 

(Jung, 2017) and we set J to 10. Thus, in each round, a number of sampling entities was 304 

randomly selected, with 90 % used as training data and 10 % as test data. 305 

During the learning step, the different combinations of hyperparameter values are examined 306 

and tuned for the calibration of the model. The combination of values that generate the lowest 307 

error on the test set is assumed to be optimal (Brenning, 2012; Cracknell and Reading, 2014; 308 

Sharma et al., 2017). For the RF algorithm, the number of regression trees ntree ranged from 309 

25 to 1000 (with a step of 25) to test the sensitivity of this parameter. The ntree values that 310 

yielded the lowest error were selected for each dataset. Due to conflicting reports in the 311 

literature concerning the potential influence of the mtry parameter (i.e. the number of predictive 312 

variables) on prediction performance (Cutler et al., 2007; Strobl et al., 2008), the mtry value 313 

was tested from 1 to the maximum number of spectral bands for each dataset (e.g. maximum of 314 

6 for “dataset 3”). Concerning the SVR algorithm, the commonly used gaussian radial basis 315 

kernel function (RBF) was applied, given its traditional superior performance compared to other 316 
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kernels (i.e. linear or polynomial) (Kavzoglu and Colkesen, 2009). The different parameters 317 

ranges were as follows: the regularization parameter C (i.e. cost) ranged from 0.1 to 1000 (by 318 

a factor of 10), ɛ was fixed to 0.1 and the width of the RBF kernel function γ ranged from 2-5 319 

to 25 (by a factor of 2). Predictive variables were standardized.  320 

• Model evaluation 321 

Two statistics were employed to evaluate the quality of the model predictions: 322 

- The coefficient of determination (R²) which varies between 0 and 1, to account for the 323 

goodness-of-fit between observations and predictions, and to define how much variance is 324 

explained by the model. 325 

- The root-mean squared error (RMSE) to assess the predictive power of the model.  326 

These statistics were computed at the scale of the field entities, as well as the scale of the site, 327 

using punctual visually-estimated covers for the former (depending on the configuration 328 

tested, for instance 55 plots or 880 quadrats), and the cover map obtained from drone imagery 329 

photointerpretation for the latter. However, only the metrics computed at the site scale will be 330 

discussed here to address the predictive quality of our models.  331 

Difference maps between predicted and observed covers were also computed to pinpoint local 332 

prediction errors (expressed as cover percentages; a difference below or above 0 indicating an 333 

underprediction or an overprediction, respectively).  334 

3. Results  335 

3.1. Observed macrophyte distribution on the Garonne River 336 

Monospecific and plurispecific meadows were observed in the field. Sampling entities with 337 

high cover values generally included the two dominant species (see §2.1) while the remaining 338 

species were observed at lower densities, except for Potamogeton nodosus and the Elodea 339 

species which were locally abundant, notably in the backwater. Species were distributed 340 
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according to their ecological requirements (flow, turbidity). Table 1 summarizes the distribution 341 

of densities according to the adopted field sampling strategy. Table S1 (see supporting 342 

information) provides the database from field sampling.  343 

The photointerpretation of the drone mosaic (i.e. the orthomosaic) (Figure 5a) highlighted the 344 

spatial distribution of macrophytes and revealed variability in the distribution of macrophyte 345 

meadows. These were found mainly upstream and halfway along riverbanks, but also at the 346 

backwater on the right bank. Overall, higher covers were found along the left bank, in areas of 347 

shallow depths (0.1-1 m) especially on mixed substrates. Lower densities were observed in 348 

deeper areas and/or on rock bed. Downstream meadows seemed to be patchier along the left 349 

bank. Rare meadows were present in the centre of the channel. Bare areas (i.e. with 0 % cover) 350 

were the most represented on the site, followed by areas with covers between 1 % and 10 %, 351 

especially present along the right bank, while areas with covers between 11-25 % and above 75 352 

% were mostly located along the left bank. Based on this cover distribution and on point 353 

biomass measurements at given sampling plots (data not shown), the total biomass on the site 354 

was estimated to be 2.6 t of dry matter for a surface of ca. 10 ha. 355 

3.2. Predicted cover of submerged macrophytes 356 

All the machine learning results were analysed in terms of statistical performance and 357 

prediction quality (difference between predicted and observed covers). For each regression 358 

model, the R² and RMSE statistical results, as well as the range of the predicted cover values, 359 

are provided in the supporting information– Table S2. Figures S1 to S4 also group together the 360 

whole map results in the supporting information. Here we focus on the most relevant results. 361 

3.2.1. Effect of the spectral features 362 

Analysing the effect of spectral bands on macrophyte cover prediction has shown meaningful 363 

differences between the statistical metrics (R² and RMSE) of the different datasets tested, 364 

regardless of the sampling level (i.e. plot or quadrat) considered.  365 
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Prediction models built on “dataset 2” (i.e. NDVI and GRVI) obtained the least satisfactory 366 

mapping and statistical results, regardless of the algorithm or the sampling level. The 367 

determination coefficients (R²) (i.e. similarity levels between predicted and photo-interpreted 368 

covers) were of 0.4-0.5 and the prediction errors (RMSE) ranged between 25 % and 27 % (Table 369 

S2). Overall, the bare areas (i.e. open water) were poorly predicted with important over-370 

prediction, particularly with the Support Vector Regression (SVR) algorithm. Cover maps were 371 

improved to some extent with the Random Forest (RF) algorithm: boundaries of macrophyte 372 

patches were more clearly distinguished (Figures S1-S2). Moreover, the difference cover maps 373 

showed under-predicted areas, particularly for the meadows located along the left and right 374 

banks (Figures S3-S4). 375 

In contrast, no meaningful difference with respect to the evaluation metrics, were found for the 376 

models based on the three remaining datasets and using either RF or SVR. All of them usually 377 

indicated high goodness-of-fit at the study scale (R²), between 0.62 and 0.75, as well as a good 378 

prediction power with a RMSE of 21 % on average (maximum of 24 %) (Table S2). 379 

However, regarding RF, a poorer prediction of the bare areas was noticed in case of “dataset 380 

0”, while the results obtained with datasets 1 and 3 were equivalent (see Figures S1, S3 and 381 

Table S2 for details). Adding NIR improved prediction quality in the bare areas, particularly at 382 

the quadrat sampling level.  383 

For SVR, only the maps obtained with datasets 0 and 1 represented relatively well the spatial 384 

distribution of macrophyte meadows on the Garonne River (Figure S2). Indeed, with “dataset 385 

3”, high densities were better predicted (few under-prediction errors) than with “dataset 2” but 386 

bare areas still presented considerable over-prediction errors (differences up to 28 % between 387 

predicted and observed covers) (Figure S4). Furthermore, the predictive advantage of adding 388 

NIR (“dataset 1”) was variable depending on the 2 sampling levels (i.e. plots or quadrats). For 389 

instance, improved results were noticed for models based on “dataset 0” (involving the 3 bands 390 
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in the visible) and on quadrats: this dataset yielded the lowest difference between predicted and 391 

observed covers (Figure S4). 392 

For the rest of result analysis, we excluded datasets 2 and 3 since they produce models that were 393 

poorly predictive, and we focused on models based either on RF and involving “dataset 1” or 394 

on SVR and involving datasets 0 and 1.  395 

3.2.2. Effect of the learning algorithm  396 

The two machine learning algorithms tested here and used on our two field datasets (55 plots 397 

and 880 quadrats) were able to predict the distribution and macrophyte cover on the Garonne 398 

River, reaching a maximum predicted cover value of 100 % (Table 2). Whether for plots or 399 

quadrats, no statistical pattern was highlighted through the comparison of the two algorithms. 400 

Regression models showed high R², oscillating between 0.67 and 0.74 and low prediction errors 401 

(RMSE around 19-21 %), even if SVR models reached slightly higher performance (Table 2).  402 

Overall the predicted cover maps reproduced the observed spatial distribution of submerged 403 

macrophytes, with dense meadows along the left bank over more than half of the site (Figure 404 

5c and Figures S1-S2). Nevertheless, there were two areas where the cover prediction error 405 

remained high (differences up to 100 % between the predicted and observed covers), namely in 406 

the backwater area, and downstream, within the dense meadow located along the left bank, 407 

where high densities (> 75 %) were detected as bare areas. These differences were identified 408 

by the dark red areas in the difference maps (e.g. Figure 5d). 409 

Besides, detecting the patchier distributions downstream, within the backwater and along the 410 

right bank seems to be more or less difficult depending on the algorithm. In that respect, the 411 

prediction accuracy of macrophyte cover along the riverbank in the middle of the study site was 412 

lower using the SVR algorithm than using the RF algorithm (Figures S1-S2).  413 
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In addition, a visual comparison between observed and predicted cover data allowed to point at 414 

certain characteristics of the regression algorithms (see Figures S3-S5 in supporting information 415 

for details). If we focus on results based on SVR, at the entity scale, data were globally noisier 416 

especially with important discrepancies for extreme values of cover (i.e. 0 and 100 %) (Figure 417 

S5). In that respect, more prediction errors were observed at these cover densities at the site 418 

scale, in particular for meadows upstream and within the central channel (Figure S4).In 419 

addition, average densities (i.e. those between 25 and 75 % of cover) were hardly predicted 420 

with SVR models. Indeed, those areas were often underestimated by this algorithm, with 421 

differences between predicted and observed cover reaching a maximum of 50 %. On the other 422 

hand, the fit of the regression model with the observed covers was better using RF, compared 423 

to SVR (Figure 5b and Figure S5). The different covers seemed globally well predicted by RF, 424 

with the different classes of macrophyte abundance better discriminated, even if the highest 425 

covers (i.e. above 90 %) were often slightly under-predicted (maximum of difference under 28 426 

%). Finally, the bare areas were better represented by this algorithm and, in case of over-427 

prediction, the maximum difference was still limited to 20 %, particularly along the riverbeds 428 

(Figure 5d).  429 

Consequently, the RF algorithm when associated with “dataset 1” was considered as the most 430 

convincing one for predicting the spatial distribution of submerged macrophyte cover. 431 

3.2.3. Effect of field sampling strategy: 55 plots vs 880 quadrats 432 

The comparison of the two sampling levels (plots vs. quadrats) highlighted clear differences 433 

between algorithms in their abilities to detect macrophyte patches. Whatever the algorithm, 434 

goodness-of-fits and spatial errors were not notably different between the two sampling entities 435 

although a model using 880 quadrats seemed to show performances somewhat higher than those 436 

obtained with 55 plots dataset (Table 2). Even if both of these sampling levels predicted a wide 437 

range of cover percentages, regression models based on quadrats predicted better the largest 438 
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cover values, especially those above 98 % (Table 2). Furthermore, the limits of the meadow 439 

patches seemed less well-defined with a model using 55 plots, compared to 880 quadrats. 440 

Finally, the difference maps revealed that the differences between predicted and observed 441 

covers were reduced using 880 quadrats (differences less than 20 % on average) (Figure S3). 442 

Consequently, although models based on the two field sampling levels were able to distinguish 443 

the spatial distribution of meadows, considering 880 quadrats instead of 55 plots showed better 444 

results. Overall, the best model for macrophyte cover prediction was obtained with RF using 445 

NIR band (§3.4.1 and 3.4.2) and based on field data sampled within 880 quadrats (Figure 5c). 446 

However, it remains to be seen whether these better performances are due to a finer size and/or 447 

to more numerous entities. 448 

3.2.4. Effect of the size of sampling entity 449 

The comparison of the models based on 3 different sizes (3 m, 1.5 m and 0.75 m side) of the 450 

sampling entities and with a fixed number of entities (n = 55) showed very clear differences 451 

regarding cover prediction accuracy. 452 

Actually, even if no meaningful difference in model metrics (R² and RMSE) could be seen 453 

between the different scales, the RF model built on sampling entities of 3 m side presented 454 

slightly better R² and RMSE compared to models using smaller sampling entities (R² = 0.70, 455 

RMSE = 21.3 %) (Table S2). Boundaries between the different macrophyte patches were better 456 

defined too (Figure S1). The difference maps also showed the least spatial difference between 457 

predicted and observed covers, with average differences amounting to +8 % in bare areas and -458 

40 % within macrophytes meadows. Spatial differences locally reached +12 % in bare areas 459 

and -72 % within meadows (Figure S3). Models based on quadrats of 0.75 m side showed the 460 

worst performances (R² = 0.62, RMSE = 23.7 %) (Table S2) and poor cover map results (with 461 

local prediction differences reaching +20 % in bare areas and -90 % within meadows) (Figure 462 

S3). With sampling entities of 1.5 m side, results were improved but still worse than a model 463 
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based on 3 m side sampling entities. Similar results were also observed with the SVR algorithm 464 

(see Figures S2, S4 for details). 465 

Therefore, for a limited number of entities (n = 55), predicting cover using 3 m side entities 466 

seemed more appropriate when addressing the spatial patterns of macrophytes. However as 467 

shown above, this sampling strategy was not fully effective for accurate prediction of cover, in 468 

particular compared to a sampling strategy with more entities. 469 

3.2.5. Effect of the number of entities 470 

Analysis of learning curves, which described the evaluation metrics of models based on 471 

different numbers of quadrats, showed that the maximum performance was reached for 110 472 

quadrats (and above) whatever the spectral dataset and algorithm used (Figure 6 and see Figure 473 

S6 in supporting information for the SVR results). More precisely, the R² and RMSE remained 474 

stable from 110 quadrats for the RF models (Figure 6). Regarding the SVR, the same 475 

observations could be made, though the metrics were really stable from 220 quadrats for 476 

“dataset 1” (RGB NIR).  477 

In terms of sampled surface, 220 quadrats correspond to 55 entities of 1.5 m side (i.e. 4 grouped 478 

quadrats of 0.75 m side each) and a 220 quadrats-based model has shown to be more performing 479 

than a 55 plots-based one (and, a fortiori, than a model based on 55 entities of 1.5 m) (Figure 6 480 

and Figure S6). Consequently, for a same sampled surface, cover estimate will be better with 481 

models involving more but smaller entities than with models using a limited number of larger 482 

entities.  483 

4. Discussion 484 

Surveying submerged macrophytes using remote sensing is somewhat more difficult than 485 

surveying terrestrial vegetation because of water reflectance issues (linked to the strong 486 

reflection of the water surface and attenuation of light by the water column) and the limited 487 
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spatial resolution of most sensors (Nelson et al., 2006; Underwood et al., 2006). In this study, 488 

we developed a new method for automatically mapping the cover of SAV on a river section 489 

during the peak of biomass. This method included very high-resolution (50 cm) spectral data 490 

from Pléiades pan-sharpened image combined with a machine-learning algorithm and an 491 

optimized method of macrophyte cover sampling. 492 

4.1. Developing a remote sensing method for automatic mapping of vegetation cover 493 

4.1.1. Choosing an appropriate machine learning algorithm 494 

The achievement of this remote sensing method did not really depend on the two regression 495 

algorithms tested (RF and SVR). Between both of them statistical results were similar, with 496 

only small differences in the predicted cover maps. They showed reasonable fitting capacity 497 

(R² around 0.7) and relatively low prediction errors (RMSE < 25 %). In fact, a correct 498 

parameterization of different machine learning algorithms must lead to similar results. 499 

However, fewer local prediction errors were observed for the RF models. The spatial 500 

boundaries of the meadow located along the right bank were also better defined. Actually, SVR 501 

is more sensitive to parameter assignment than RF (among them the choice of the γ parameter 502 

which allows optimal data discrimination) during the tuning step (§2.4.3) that can significantly 503 

alter the performance of SVR algorithms (Brown et al., 1999; Mountrakis et al., 2011). 504 

Additionally, the RF algorithm is known to be effective in quickly handling high dimensional 505 

data and multicollinearity (Belgiu and Drăguţ, 2016). It was thus considered as the most 506 

appropriate machine learning algorithm for river macrophyte mapping. 507 

4.1.2. Determining the best spectral features 508 

For models based on the RF algorithm, the best predicted results were obtained using datasets 509 

combining visible spectral and NIR bands (vegetation indices such as NDVI and GRVI were 510 

of no use for cover prediction). Adding NIR to visible spectral bands also seemed to slightly 511 
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benefit the prediction of low covers but did not systematically improve the quality of the 512 

prediction in the areas of higher expected covers. The advantage of adding NIR depended on 513 

the algorithm. Indeed, the use of NIR and the indices derived from it (NDVI) are still widely 514 

discussed in the aquatic remote sensing literature, because of the large absorption by water of 515 

red and, even more, NIR wavelengths (e.g. Pegau et al., 1997; Fyfe, 2003; Cho et al., 2008; 516 

Silva et al., 2008). Moreover, even if the green wavelengths normally provide greater light 517 

penetration in turbid waters, green and red regions are considered as the best ones for 518 

submerged macrophyte sensing (Fyfe, 2003; Han and Rundquist, 2003; Williams et al., 2003; 519 

Pinnel et al., 2005). The use of GRVI did not yet compensate for the low performance of NDVI 520 

in our study. Besides, a study carried out on wetlands has shown that red and NIR regions could 521 

be saturated beyond a certain biomass density (Peñuelas et al., 1993; Mutanga and Skidmore, 522 

2004). Finally, Chen et al. (2018b) have clearly demonstrated that NIR should only be used in 523 

the case of very shallow aquatic environments (< 1 m depth). NIR could thus be useful for 524 

predicting macrophyte meadows along the riverbanks, or when submerged macrophytes form 525 

a canopy just below the water surface, which is often the case in eutrophic waters at the biomass 526 

peak period.  527 

4.1.3. Optimizing field sampling  528 

Training sample size also influenced the prediction accuracy of macrophyte cover. With a 529 

limited number of entities (n = 55), using 3 m side entities was more effective than using smaller 530 

entities. Indeed, as the geolocation of the Pléiades image was not perfect, it is likely that the 531 

small sampling entities did not exactly match with the satellite image. In this case, increasing 532 

the size of the sampling entity would solve this problem and could explain the better results for 533 

3 m side size entities. However, for the RF (and SVR) regression models based on 55 plots, 534 

local prediction errors were larger, particularly for bare areas, than the model based on 880 535 

quadrats. For a same surface sampled, the latter actually showed the best predictions, even if 536 
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certain areas still presented local under-prediction errors. In fact, the bigger the training dataset 537 

the better the algorithm will learn. Predicted macrophyte meadows were particularly well 538 

distributed and, when present, local prediction errors were the lowest in comparison with other 539 

field sampling strategies. Both meadows along the riverbanks were well defined. Using a power 540 

relationship (R² = 0.8) between shoot biomass and cover previously established (unpublished 541 

study, see Figure S7 in supporting information), shoot biomass at the site scale was estimated 542 

to 2.3 t of dry matter for 10 ha. This is relatively consistent with the shoot biomass derived from 543 

photointerpretation (i.e. 2.6 t of dry matter) and confirmed the performance of our model. 544 

Machine learning algorithms were also influenced by the number of training data and their 545 

distribution into the study site. Learning curves confirmed that up to 55 quadrats (i.e. entities 546 

of 0.75 m side) the number of data was insufficient to make valuable predictions. Considering 547 

a higher number of training data, particularly in areas where reflectance values were highly 548 

fluctuating, would improve prediction accuracy by accounting for larger reflectance variability. 549 

Our results showed that for models using 110 (and above) quadrats, predicted cover maps and 550 

model statistics were very similar to those based on 880 quadrats; the estimates with 220 551 

quadrats were clearly improved in comparison to those obtained using 55 entities with higher 552 

sampling surface (1.5 or 3 m side), despite an equal or smaller total sampled surface. This study 553 

revealed the higher performance of sampling numerous (even smaller) entities. This criterion 554 

is particularly interesting regarding submerged macrophyte monitoring as the eye estimation of 555 

vegetation covers is relatively difficult at a 3 m scale, particularly in deep areas, due to the 556 

difficulty to get an overview of macrophyte cover on such a surface.  557 

Compared to 55 entities of 3 m side (i.e. plots), the sampling surface is also reduced by 8 using 558 

110 entities of 0.75 m side (i.e. quadrats). Even if using numerous smaller entities implies 559 

additional time in the field for movements in water and for GPS coordinate acquisition, this 560 

should be largely compensated by the time saved to estimate total cover within entities of 561 



24 
 

smaller size , and by handling a more ergonomic sampling accessory (i.e. a smaller PVC frame). 562 

From our experience, the sampling time spent on an entity was almost linearly linked to its 563 

surface, because of the need to split large entities in smaller sub-entities to get accurate cover 564 

estimates. Thus, in comparison with 55 plots, the overall sampling effort should be significantly 565 

reduced when using 110 quadrats, while increasing prediction performance. Consequently, for 566 

future monitoring campaigns along a river section of 1 km long, we recommend estimating 567 

cover in 100 to 200 individual quadrats of a surface comprised between 0.5 and 1 m2, which 568 

have shown to be optimal to obtain representative macrophyte mapping using Pléiades imagery. 569 

Despite our method performing reasonably well, macrophyte cover was still underestimated to 570 

some extent (maximum local difference between predicted and observed cover still reaching 28 571 

%) and some bare areas were overestimated (maximum local difference reaching 22 %). Some 572 

studies reviewed in Guo et al. (2017) have discussed the effect of imbalanced data on the quality 573 

of machine learning classification. When some field attributes are infrequently present they can 574 

be most likely predicted as rare occurrences, undiscovered or ignored, or assumed as noise or 575 

outliers which results to more prediction errors of certain covers (Ali et al., 2005). However, as 576 

pointed out by Visa and Ralescu (2005) perfect balanced training data is not a guarantee to 577 

improve a classifier performance. Field sampling has to be representative of the study site 578 

(Petersen et al., 2005). Therefore, regardless of the distribution of our macrophyte abundance 579 

classes (Table 1), it is possible that better balancing the entity numbers, particularly for the 580 

extreme covers (i.e. 0% and 100 %), will improve mapping results in future investigations. 581 

Indeed, this sampling strategy would include more reflectance variability, as it is particularly 582 

observed in open water entities.  583 

4.2. External factors influencing model quality 584 

Isolating plant signal from the water column interference is still the main challenge of remote 585 

sensing of SAV, due to the low contrast (Williams et al., 2003) and to the inherent difficulties 586 
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in interpreting reflectance values of water (Peñuelas et al., 1993; Lehmann and Lachavanne, 587 

1997). Numerous studies have revealed that the spectral signal of SAV can also be limited by 588 

environmental and biological factors, such as water depth, turbidity/transparency, distance 589 

between vegetation canopies and water surface (Maritorena et al., 1994; Han and Rundquist, 590 

2003; Vis et al., 2003; Dogan et al., 2009; Liew and Chang, 2012). For instance, local 591 

overestimations of low covers were observed in the central channel or downstream of our study 592 

site, where water flow and depth are high or where suspended matter is highly concentrated 593 

with a thick layer of mud on the bottom. For future investigations it would be interesting to 594 

determine if predictions of macrophyte cover could be improved by including substrate types 595 

or measures of water clarity (e.g. Secchi depth, chlorophyll a content) in our models, as stated 596 

by Nelson et al. (2006).  597 

Some of the 12 submerged species in our study site with low height (e.g. Elodea canadensis) 598 

could also be undetected. Several studies about submerged vegetation mapping have shown that 599 

non-canopy forming aquatic vegetation species generally lead to more detection errors (Vis et 600 

al., 2003; Valta-Hulkkonen et al., 2005; Wolter et al., 2005). It has been reported that SAV can 601 

be remotely sensed to a maximum depth between 2 m and 3 m (Han and Rundquist, 2003; 602 

Sawaya et al., 2003). Finally, low concentrations of some photosynthetic pigments in plant 603 

leaves, such as chlorophylls a and b, carotene and xanthophylls could also affect the spectral 604 

reflectance among vegetation (Kumar et al., 2001).  605 

5. Conclusion 606 

Our results provided further evidence that macrophyte cover can be reasonably well predicted 607 

with automated regression procedures based on machine learning algorithms and a limited 608 

number of sampling entities. 609 

Remote sensing of riverine submerged macrophytes by pansharpened Pléiades imagery 610 

associated to a Random Forest algorithm appeared to be a viable and valuable tool for 611 
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estimating biophysical measures, such as macrophyte cover, at very high spatial resolution (50 612 

cm) on a 1 km site on the Garonne River. Performance metrics were promising with R² above 613 

0.7 and prediction error rates around 20 %. In this paper we provided a new, efficient and less 614 

time-consuming tool for monitoring SAV which should help steering environmental 615 

management actions such as SAV restoration projects or overgrowth management. 616 

There is a significant opportunity for applying such a promising method to the multi-date 617 

monitoring of SAV in freshwater river environments. Indeed, the monitoring and mapping of 618 

macrophyte meadows over a range of spatial and temporal scales are of prime importance in 619 

assessing hydrosystem status. However, rivers are diverse and complex ecosystems, with 620 

significant variability of physical properties through both space and time. Future efforts 621 

involving detailed bathymetric data, light attenuation and water properties, may resolve depth-622 

related confusion of SAV with substrate type, and are a prerequisite for multi-date vegetation 623 

monitoring, based on time series images. 624 
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Figure 1. Study area. (a) Location of the study area in the southwest of France, north of 

Toulouse city on a raw Pléiades image; (b) Zoom in on a raw Pléiades image (50 cm of 

resolution) of the 1 km study site (Seilh). 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Toulouse 

Seilh 

Flow 

direction 

100 m 

France 

2 km 

(a) 



 
 

 

Figure 2. Sampling protocol for macrophyte monitoring. 

(a) Location of the 55 sampling plots on the site (Seilh). The red squares indicate the 

geographical positions of the 55 field sampled plots (P). 

(b) Diagram of a plot (P): the red square represents the sampling plot of a 9 m² surface and the 

blue squares correspond to quadrats (Q). The green “XY” dot symbolizes where GPS 

coordinates were taken.  
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Figure 3. Drone images of the study site.  (a) Image acquisition missions. Each point refers to 

a shooting, each colour corresponds to a mission; (b) Example of a raw drone image shot 30 m 

high above plurispecific macrophyte meadows; (c) Orthomosaic image fragment of the study 

site. The black rectangle represents the position of the individual shot in figure b.  
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Figure 4. Flow chart illustrating the process to get total cover predictions from the Pléiades 

satellite image. Sampling entities can be 55 plots of 3 m side, 55 entities of 1.5 m side, or n 

quadrats of 0.75 m side (with n = 15, 30, 55, 110, 220, 440 or 880).    

 

 



 

 

Figure 5. Results from the Random Forest regression model using “dataset 1” (RGB and 

NIR) and based on 880 quadrats. (a) Observed cover map obtained from drone image 

photointerpretation (b) Predicted cover as a function of observed cover within quadrats; (c) 

Predicted cover map and (d) Difference map between predicted and observed covers.  
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Figure 6. Learning curves for the Random Forest regression model using datasets 0 (RGB) 

and 1 (RGB and NIR): RMSE as a function of the number of quadrats of 0.75 m side. 

 

 

 

 

 



 

 

Table 1. Number of sampled entities according to macrophyte density ranges. Percentages in 

brackets represent the proportion of each cover group within the total number of samples. 

Macrophyte cover Plots (P) Quadrats (Q) 

0-1 % 16 (30 %) 359 (40 %) 

1-10 % 6 (11 %) 65 (7 %) 

11-25 % 7 (12 %) 99 (11 %) 

26-50 % 12 (21 %) 160 (18 %) 

51-75 % 10 (18 %) 100 (11 %) 

>75 % 4 (7 %) 97 (11 %) 

Total number of entities 55 880 

 



 

 

Table 2. Prediction accuracy for different runs (differing by the algorithm, spectral dataset, or 

sampling level), assessed with the R² coefficient of determination and the RMSE; only results 

involving datasets 0 and 1 are presented. This table is an extract of the most relevant results of 

table S2 (see Supporting Information). 

Algorithm Spectral data 

Entity 

side size 

(m) 

Number 

of entities 

Maximum 

predicted cover 

(%) 

R² 
RMSE 

(%) 

Random 

Forest 

RGB NIR 
(“dataset 1”) 

3 55 87.3 0.69 21.28 

0.75 880 100.0 0.71 20.30 

Support 

Vector 

Regression 

RGB 
(“dataset 0”) 

3 55 99.0 0.72 20.37 

0.75 880 100.0 0.74 19.40 

RGB NIR 
(“dataset 1”) 

3 55 100.0 0.72 21.28 

0.75 880 100.0 0.67 21.29 

 




