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ABSTRACT The unprecedented possibility to acquire high resolution Satellite Image Time Series (SITS)
data is opening new opportunities to monitor the different aspects of the Earth Surface but, at the same time,
it is raising up new challenges in term of suitable methods to analyze and exploit such huge amount of rich
image data. One of the main tasks associated to SITS data analysis is related to land cover mapping. Due
to operational constraints, the collected label information is often limited in volume and obtained at coarse
granularity level carrying out inexact and weak knowledge that can affect the whole process.
To cope with such issues, in the context of object-based SITS land cover mapping, we propose a new deep
learning framework, named TASSEL (aTtentive weAkly Supervised Satellite image time sEries cLassifier),
to deal with the weak supervision provided by the coarse granularity labels. Our framework exploits
the multifaceted information conveyed by the object-based representation considering object components
instead of aggregated object statistics. Furthermore, our framework also produces an additional outcome
that supports the model interpretability. Quantitative and qualitative experimental evaluations are carried out
on two real-world scenarios. Results indicate that not only TASSEL outperforms the competing approaches
in terms of predictive performances, but it also produces valuable extra information that can be practically
exploited to interpret model decisions.

INDEX TERMS Weakly supervised learning, object-based image classification, satellite image time series,
land cover classification, deep learning.

I. INTRODUCTION
Nowadays, modern Earth observation systems continuously
collect massive amounts of satellite information that can
be referred to as Earth Observation (EO) data. A notable
example is represented by the Sentinel-2 mission1 from the
Copernicus programme, supplying optical information with
a revisit time period between 5 and 10 days thanks to a
constellation of two twin satellites. Due to the high revisiting
period exhibited by such satellites, the acquired images can

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyu Du .
1https://sentinel.esa.int/web/sentinel/missions/sentinel-2

be organized in Satellite Image Time Series (SITS), which
represent a practical tool to monitor a particular spatial area
through time. SITS data can support a wide number of appli-
cation domains like ecology [1], agriculture [2], mobility,
health, risk assessment [3], land management planning [4],
forest [5] and natural habitat monitoring [6] and, for this
reason, they constitute a valuable source of information to
follow the dynamic of the Earth Surface. The huge amount
of regularly acquired SITS data opens new challenges in
the field of remote sensing in relationship with the way
the knowledge can be effectively extracted and how spatio-
temporal interplay can be exploited to get themost out of such
rich information source.
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One of the main tasks related to SITS data analysis
is associated to land cover mapping, where a predictive
model is learnt to make the connection between satellite
data (i.e., SITS) and the associated land cover classes [4].
SITS data captures the temporal dynamics exhibited by land
cover classes, thus supporting a more effective discrimination
among them [7].

Despite the increasing necessity to provide large scale (i.e.,
region or national) land cover maps, the amount of labeled
information collected to train such models is still limited,
sparse (annotated polygons are scattered all over the study
site) and, most of the time, at coarser scale with respect to
pixel precision. This is due to the fact that the labeling task is
generally labour-intensive and time costly in order to cover a
sufficient number of samples with respect to the extent of the
study site.

Object Based Image Analysis (OBIA) [8] refers to a cat-
egory of digital remote sensing image analysis approaches
that study geographic entities, or phenomena through delin-
eating and analyzing image-objects rather than individual
pixels [9]. When dealing with supervised Land Use / Land
Cover (LULC) classification, the recur to OBIA approaches
is motivated by the fact that, in modern remote sensing
imagery, most of the common land cover classes present an
heterogeneous radiometric composition, and classical pixel-
based approaches typically fail to capture such complex-
ity. Of course, this effect is even more important when the
aforementioned complexity is exhibited also in the temporal
dimension, which is the case for SITS data.

To address this issue, in the OBIA framework, the main
idea is to group adjacent pixels together prior to the classi-
fication process, and subsequently work on the so-obtained
object layer in which segments correspond to more repre-
sentative samples of such complex LULC classes (e.g. ‘‘land
units’’) [10]. This is typically achieved by tuning the segmen-
tation algorithms to provide object layers at an appropriate
spatial scale, at which objects are generally not radiometri-
cally homogeneous, especially on the most complex LULC
classes. Matter of facts, most of the common segmentation
techniques used in remote sensing allow for the parametriza-
tion of the spatial scale [11], e.g. by using an heterogene-
ity threshold as in [12], by defining a bandwith parameter
specifically for the spatial domain as in Mean-Shift [13] or,
recently, by specifying the number of required objects as
in SLIC [14].

Based on these assumptions, the typical approach in the
OBIA framework for automatic LULCmapping is to leverage
agglomerate descriptors (i.e. object-based radiometric statis-
tics) to build proper samples for training and classification,
without explicitly managing within-object information diver-
sity. To illustrate this point, Figure 1a depicts a segmentation
result of a Urban area. Focusing on a single segment: this
typically contains, simultaneously, sets of pixels associated
to buildings, streets, gardens, and so on, which are all equiva-
lently important in the recognition of the Urban LULC class.
However, in many cases, the components of a single segment

FIGURE 1. Results of a segmentation process considering: (a) an Urban
Area and (b) a Forest landscape. Regarding both land cover classes,
we can note that the produced segments exhibit a certain degree of
within-object diversity.

do not equally contribute to their identification as belonging
to a certain land-cover class.

In another scenario, i.e. the one repoted in Figure 1b,
we can have segments associated to a Forest land cover class
that may contain only trees in the denser areas, or a mix of
trees and bare soil pixels in the more open areas. Evidently,
in this case the ‘‘tree’’ component is likely to provide the
most discriminative information for classification, while the
‘‘bare soil’’ component may be irrelevant or even represent
a source of noise, especially if it does not occur frequently
in the Forest class. Our contribution is motivated by the fact
that none of the recently proposed supervised classification
frameworks [15], [16] relying on object-based SITS repre-
sentation for land cover mapping explicitly takes into account
these within-object information diversity.

We highlight that theOBIA strategy is different from recent
semantic segmentation methods since the former extracts
objects (segments) from the remote sensing image in a totally
unsupervised fashion prior to any subsequent analysis; the
latter is a supervised approach where a deep learning network
is learnt over densely labeled data (which must hence be
available) with the aim to provide pixel-level classification.

In this work, we propose TASSEL, a new deep-learning
framework to deal with object-based SITS land cover map-
ping which can be ascribed into the weakly supervised learn-
ing (WSL) setting [17], [18].We locate our contribution in the
framework ofWSL since the object-based land cover classifi-
cation task exhibits label information that intrinsically brings
a certain degree of approximation and inaccurate supervision
to train the corresponding learning model, related to the pres-
ence of non-discriminative SITS components within a single
labelled object.

Our framework includes several stages: firstly, it iden-
tifies the different multifaceted components on which an
object is defined on. Secondly, a Convolutional Neural Net-
work (CNN) extracts an internal representation from each
of the different object component. Here, the CNN is espe-
cially tailored to model the temporal behavior exhibited by
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the object component. Then, the per component represen-
tation is aggregated together and used to provide the deci-
sion about the land cover class of the object. Beyond the
pure model performance, our framework also allows to go a
step further in the analysis, by providing extra information
related to the contribution of each component to the final
decision. Such extra information can be easily visualized
in order to provide additional feedback to the end user,
supporting spatial interpretability associated to the model
prediction.

In order to assess the quality of TASSEL, we perform
extensive evaluation on two real-world scenarios over large
areas with contrasted land cover features and characterized
by sparsely annotated ground truth data [19]. Unfortunately,
such a label-specific constraint prevent us to leverage stan-
dard semantic segmentation strategies [20] as competitors.
To this end, the evaluation is conducted considering state of
the art land cover mapping approaches for sparsely annotated
data in the OBIA framework. Finally, an in depth qualitative
analysis is drawn to underline the ability of our framework to
provide extra information that can be effectively leveraged to
support the comprehension of the classification decision.

The main contributions of our work can be summarized as
follows:

• We propose a new deep-learning framework to cope
with object-based SITS classification devoted tomanage
the within-object information diversity exhibited in the
context of land cover mapping;

• We design our framework with the goal to provide as
outcomes not only the model decision but also extra
information that can provide insights about (spatial)
model interpretability;

• We conduct an extensive evaluation of our framework
considering both quantitative and qualitative analysis on
real-world benchmarks that involve ground truth data
collected during field campaigns and featured by opera-
tional constraints.

The rest of the article is structured as follows: the literature
related to our work is introduced in Section II; Section III
introduces the Weakly Supervised Learning classification
problem for object-based SITS data; Section IV describes the
TASSEL framework and Section V describes the data and the
considered study area. Experimental settings, data and results
are detailed and discussed in Section VI. Finally, Section VII
concludes the work.

II. RELATED WORK
In this section we cover the literature associated to our
research work. We focus on the machine learning paradigms
related to the proposed framework (i.e., Weakly Supervised
and Multiple Instance learning) and their connection with
remote sensing analysis. Successively, we introduce recent
object-based SITS classification strategies from the remote
sensing literature and we conclude by highlighting the nov-
elty of our contribution.

A. WEAKLY SUPERVISED LEARNING
Weakly supervised learning [18] refers to a set of approaches
that have the objective to deal with weak supervision: incom-
plete, inexact and inaccurate. In [21], the authors introduce
a convolutional neural network aimed at the joint detection
and localization of objects of interest inside images. Since
the only available information at training time is the presence
of the object in an image, weak supervision is here used to
tackle the localization problem. [22] proposes to leverage
weak supervision in the context of semantic segmentation.
A constrained Convolutional Neural Network is trained with
labels at image level (multiple labels can be associated to an
image) and the model automatically detects which part of the
image is associated to the various labels. The method uses
a novel loss function to optimize a set of linear constraints
on the output space. Temporal action localization can also be
treated using a weakly supervised approach. Authors in [23]
propose a framework in which only video level labels are
supplied and the deep learning system is capable to tem-
porally localize multiple actions inside the video sequence.
Also in this case the unit of analysis (the video) can be
characterized bymultiple actions and the multiple actions can
be detected inside each video. In the remote sensing field,
similarly to standard Computer Vision, weakly supervised
learning frameworks are mainly devoted to deal with object
localization tasks [24] or semantic segmentation [25] of high
resolution (single date) satellite images.

B. MULTIPLE INSTANCE LEARNING
Multiple Instance learning [26] (MIL) is a supervised learn-
ing paradigm in which a classification model is learnt to
supply prediction for a group of instances. A bag is com-
posed of a set of instances and the (weak) supervision is
available only at bag level. Commonly, MIL approaches
deal with binary classification tasks in which a negative bag
is composed only by negative examples while a positive
bag contains at least one positive example. Recently, [27]
proposed a MIL framework based on deep learning where
the decision is provided by leveraging an attention based
pooling strategy. Considering the remote sensing domain,
MIL frameworks have been leveraged to deal with hyper-
spectral [28] and multi-spectral image classification [29]
or landmine detection exploiting ground penetrating radar
images [30].

C. OBJECT-BASED SATELLITE IMAGE CLASSIFICATION
Object-Based image analysis [8] (OBIA) considers object
instead of pixels as unit of analysis. Working at object instead
of pixel granularity has several advantages: i) objects rep-
resent a more coherent piece of information since they are
simpler to interpret [10], ii) label annotations can be collected
with a limited human effort and iii) objects facilitate data
analysis scale-up since, for the same image, the number
of objects is usually smaller than the number of pixels by
several orders of magnitude. The latter point is particularly
important in operational remote sensing where information
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analysis can cover large areas (regional or national scales)
involving satellite image at metric or decametric spatial
resolution [16].

In [31], an object-based change detection approach of bi-
temporal SITS data is introduced. The task is treated as a
binary classification problem where the classification model
predicts if an object changes or not between two observed
time stamps. The approach is based on a supervised max-
imum likelihood classification. [15] tackles the problem of
grasslands classification using univariate SITS data of Nor-
malized Difference Vegetation Index (NDVI). The unit of
analysis is the object but, instead of considering only the
average object representation, they also retain the covariance
matrix as an additional, second order, statistic characterizing
the internal object distribution. Finally, a Gaussian mean
kernel based on the first and second order information is
developed and coupled with an SVM model in order to
cope with classification. The method is especially tailored
for univariate time series and its extension to multidimen-
sional SITS is not straightforward. [32] evaluates the use
of a Recurrent Neural Network (Gated Recurrent Unit) to
cope with Land Use Land Cover (LULC) mapping con-
sidering both pixel-based and object-based optical (multi-
variate) SITS data. Object-based representation is derived
via average aggregation of the pixel information belonging
to the object. [33] introduces a Convolutional Neural Net-
work (CNN) applied on the temporal domain to explicitly
consider the dynamic associated to the SITS data. Despite
the fact that the proposed approach is evaluated considering
pixel-based time series, the same approach can be directly
transposed to object-based SITS objects. The study reports
an in depth evaluation of CNN models for optical SITS
data and it highlights the quality of such models to manage
the temporal information characterizing Earth Observation
data.

In our framework we leverage weak supervision with the
aim to disentangle the contributions of the different por-
tions of the SITS object and to deal with the misalignment
or approximation between the object level annotation and
the object content. To this end, our aim is to deal with
the multifaceted information on which the object is defined
with the aim to pay more attention to useful components
and, simultaneously, paying less attention to less relevant
ones.

III. PROBLEM DEFINITION AND WEAKLY SUPERVISED
LEARNING CHARACTERIZATION
Given a set of objects O = {oi}

|O|
i=1 where each oi has

an associated label information yi ∈ Y (Y is the set of
possible labels), the goal is to build a classification model
f2(o) parametrized with 2 to predict the label values for
unlabeled objects. The parameters 2 are learnt over training
information Train = {oi, yi} where yi ∈ Y and yi is the label
information associated to object oi. In addition, the object oi is
composed by a set of pixel time series oi = {ptsik}

|oi|
k=1 where

ptsik is k-th pixel time series of the object oi. We remind that

the label yi associated to oi can represent a combination of
object components or a portion of the object content. Such
approximate or inaccurate label information can be referred
as weak supervision [18].

Standard approaches in Object-Based Satellite Image Time
Series Analysis [15], [32] manage the object representation
via average or median aggregation over the set of pixels
time series belonging to it. We can indicate the averaged
information of the object oi as õi. In this context, the original
classification problem is formulated as y = f2(õ).
The aggregation procedure, that supplies the standard

object characterization for satellite image time series (õi),
unfortunately, can smooth and flatten the different signal
components on which the original object is defined on and
it fails to deal with the weak supervision provided by object-
level annotation.Moreover, it can also be sensible to outlier or
anomalous signal components that can negatively influence
the aggregated representation.

Differently from such standard procedure, our goal is to
explicitly manage the degree of approximation and inaccurate
supervision, carried out by the object-level label informa-
tion, in the training of the classification process. More in
detail, by leveraging the weakly supervised learning frame-
work [17], [18], we propose to deal with the object-based
classification of SITS data by means of a classification model
f2({ptsik}

|oi|
k=1) directlyworking on {ptsik}

|oi|
k=1, where an object

oi can be seen as a bag of pixels.
Due to the fact that object components usually involve a

set of homogeneous pixels, we can consider, without loss
of generality, that the pixels belonging to an object can be
partitioned in a number L of components based on their
radiometric similarity: oi = {cl}Ll=1 and cl = {ptsils}

|cl |
s=1 and

∀cl1,cl2cl1∩cl2 = ∅ and
⋃

cl = oi. The set {cl}Ll=1 is a partition
of the pixels of object oi. In this case, an object can be
seen as a bag of components. Considering object components
instead of original object pixels, the classification model will
be redefined as f2({cl}

|L|
l=1).

Problem Definition: WSL for object-based SITS classifica-
tion Given a set of objects O = {oi}

|O|
i=1 with associated label

information Y , each object can be represented as a partition
of the pixels information belonging to it (oi = {cl}Ll=1) and
we refer to each cl as a (object) component. Each object
can be seen as a bag of components. The goal is to build a
classification model y, α = f2({cl}Ll=1) parametrized with
2 to provide the class information values (y) for unlabeled
objects as well as an additional extra information α that
disentangles the contribution of each component cl on which
the object is defined on.

Such formulation allows to consider fine-grained informa-
tion to model the classification problem, i.e., object com-
ponents information instead of aggregated objects statis-
tics. In addition, it also underlines that the outcomes of
the classification process includes an extra information α,
that can be leveraged to move towards the comprehension
and the analysis of the decision made by the prediction
model.
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FIGURE 2. The general overview of TASSEL. Firstly, the different
components that constitute the object are identified. Secondly, a CNN
block extracts information from each of the different object components.
Then, the results of each CNN block are combined via attention. Finally,
the classification is performed via dedicated Fully Connected layers. The
outputs of the process are the prediction for the input object SITS as well
as the extra information α that provides an information related to the
contribution of each object component.

IV. METHOD
In this section we introduce TASSEL (aTtentive weAkly
Supervised Satellite image time sEries cLassifier),
a framework to deal with the object-based weakly supervised
classification of SITS data following the problem definition
introduced in Section III.

Figure 2 supplies a general overview of TASSEL. Given
an object time series, firstly, the different components that
constitutes the object are identified. Secondly, a Convolu-
tional Neural Network (CNN) block is adopted to extract
information from each of the different object components.
The same set of weights is shared among all the CNN blocks.
Then, the results of each CNN block (the component rep-
resentation) is aggregated/combined via an attention mecha-
nism [34] in which the components contribution are weighted
proportionally to the information they are bringing on. After
the attention combination, the new object representation is
obtained and it is successively fed into the Fully Connected
layers that will provide the final classification. In Figure 2 we
can also observe that the outcomes of the process not only
involve the model decision, but also the extra information α.
Such outcome is finally leveraged to derive attention maps
with the aim to analyze object contributions and, at the same
time, provide qualitative information about the general model
decision.

A. COMPONENT PROCESSING STEP
The first step of our framework is related to the identification
of components on which the SITS object is defined and the
processing of such components. Firstly a fixed number of
homogeneous groups, in terms of radiometric information,
from each object are extracted and, successively, each com-
ponent is processed by means of a Convolutional Neural

Network. The output of this step is a feature representation
for each of the L components. We can refer to the feature rep-
resentation of component cl with hl ∈ Rd ,H = {h1, ·, hl} the
set of all the feature representations and d the dimensionality
of the vector hl .

To detect and extract such object components, we perform
clustering on the pixel time series. To this aim, we use
K-Means clustering with a number of clusters equals to L
(the presumed number of components in an object). Once the
clustering process is performed, we use the cluster prototypes
(or centroids) as component information. Successively, each
component information is processed by means of a Convolu-
tional Neural Network. Due to the nature of the input signal to
process (cluster prototypes of time series data), we adopt one
dimensional convolutional neural network (CNN1D) where
the convolution operations are applied on the time dimen-
sions. In this way, the Convolutional Neural Network will
allow to explicitly manage and exploit the temporal dimen-
sion conveyed by the time series data. Our choice is also
supported by recent remote sensing literature [33] where
CNN1D has recently demonstrated to be competitive and
well suited to extract useful representations to support the
land cover classification task. Moreover, we underline that
the same CNN1D model is applied on all the different object
components in order to extract an invariant per-component
representation.

B. ATTENTIVE AGGREGATION STEP
The second step of our framework is devoted to the aggre-
gation of the object components with the aim to find a
global object representation. To this end, we combine all
such information by means of attention [34] with the goal,
in the feature aggregation, to consider the contribution of each
object component differently. The outputs of this step are an
object representation which we refer as h̃ as well as the extra
information α that is related to the importance/contribution
of each component on which the object is defined on.

Attention mechanisms [34] are extensively employed
nowadays in standard signal processing (1D signal, language
or 2D signal). At the beginning this approach was introduced
to work in conjunction with recurrent neural network models,
in order to combine the information extracted at different
time stamps [35]. Successively, attention mechanisms were
applied on 2D images [36] as well as to manage weak super-
vision and bag level classification [27], [37].

Given H = {h1, . . . , hl} the set of all the components
representations, we attentively combine such information as
follows:

h̃ =
L∑
l=1

αl · hl (1)

where each αl is defined as:

αl =
exp(vᵀa tanh(Wa hl + ba))∑L
l′=1 exp(v

ᵀ
a tanh(Wa h′l + ba))

(2)
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where matrixWa ∈ Rd,d and vectors ba, ua ∈ Rd are param-
eters learned during the process. These parameters allow to
combine the vectors contained in matrix H . The purpose of
this procedure is to learn a set of weights (α1, . . . , αL) to
estimate the contribution of each component representation
hl . The SoftMax(·) function is used to normalize weights
α so that their sum is equal to 1. In addition, the attention
aggregation is a permutation-invariant operation. This means
that the results h̃ is invariant w.r.t. the order in which the
elements of H are processed. This is a useful and important
property for aggregation operation over a set of unordered
elements.

C. CLASSIFICATION STEP AND TRAINING PROCEDURE
The representation h̃ obtained at the previous step is finally
processed by means of several Fully Connected layers with
the objective to provide the final classificationw.r.t. the object
SITS data. In our context we use two Fully Connected layers
with a number of neurons equals to 512 each. Each Fully
Connected layer is associated to a Rectifier Linear Unit non-
linearity and followed by a Batch Normalization layer in
order to avoid weight oscillation and ameliorate network
training:

Cl(h̃)=W3BN (ReLU (W2(BN (ReLU (W1h̃+b1)))+b2))+b3
(3)

where W1, W2, W3, b1, b2 and b3 are parameters learnt by
the model to process the attentive aggregated representation
h̃, with W3 ∈ Rd,|Y | and b3 ∈ R|Y | the parameters associated
to the output layers, thus showing a dimension equal to the
number of classes to predict.

The model training is performed end-to-end. Due to the
fact that our classification is multi-class, we adopt standard
categorical cross-entropy as cost function. The categorical
cross-entropy is defined as follows:

CE(Y , Ŷ ) = −
|O|∑
i=1

|Y |∑
j=1

yijlog(ŷij) (4)

where yi∗ is the class vector (under one hot encoding) associ-
ated to object Oi and ŷi∗ is the class distribution vector (after
Sofmax operation) predicted by the deep learning model for
the corresponding satellite image time series object oi.

We have empirically observed that optimizing only
categorical cross-entropy by considering the output of the
classification layer does not allow the network to learn dis-
criminative and effective representation for the classification
task, especially in the case of small size benchmark. This is
due to the way in which the gradient flow back in the net-
work and how the network parameters are updated. For this
reason, we have introduced an additional auxiliary classifier
to directly retropropagate error at the attentive aggregation
level. Such auxiliary classifier is only considered at training
time and it is defined as follows:

Claux(h̃) = W ′3h̃+ b
′

3 (5)

FIGURE 3. The spatial extent of an object associated to the Annual crops
land cover class. On the left the RGB image and on the right the same
image with the attention map superimposed to the RGB image. The
yellow line represent object contours. The legend on the right of the
example reports the scale (discretized considering quantiles) associated
to the attention map.

where W ′3 and b
′

3 are the learnt parameters that allow to map
h̃ to the auxiliary classification output.
The final loss function employed to learn the whole set of

parameters associated to TASSEL is defined as:

L = CE(Y ,Cl)+ λCE(Y ,Claux) (6)

where λ ∈ [0, 1] is an hyper-parameter that control the impor-
tance of the auxiliary classification in the learning process.
We remind that, at inference time, the output of the auxiliary
classifierClaux(h̃) is discarded and only the decision obtained
via the Cl(h̃) classifier is considered.

D. SPATIAL INTERPRETATION VIA THE EXTRA
INFORMATION α

Beyond the predictive ability of the proposed learning model,
we highlight that extra information α can be leveraged to per-
form qualitative analysis related to the model behavior. In this
direction, such extra information is exploited to interpret the
internal decision of TASSEL and evaluate the contribution of
each component on which the object is defined on. Thanks
to such information we can produce a spatial attention (or
saliency) map [38] associated to each classified object SITS.
More in detail, given an object o, the α information relates
a weight αl to each object component cl ∈ o. Since each
component cl corresponds to a set of pixels, we can assign to
all the pixels p ∈ cl the same value αl . In this way we can
visually highlight homogeneous areas (in terms of spectral
evolution along the SITS) and depict their contribution to
the decision process performed by TASSEL. An example of
the outcome of this procedure is depicted in Figure 3 where
the same area is replicated twice: on the left we observe the
original area while on the right the attentionmap (blue area) is
superimposed to the object extent and the degree of blue (light
to dark) is proportionally related to the α values associated to
the object components to which the pixel belongs to. Such
tool supplies insights on the way the deep learning decision
is obtained and it visually indicates which information is
considered as more or less relevant by the system accord-
ing to the particular land cover class. Such a stage of our
framework is deeply investigated via qualitative evaluation
in Section VI-B3.
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TABLE 1. Architectures of the One Dimensional Convolutional Neural
Network (CNN1D) where nf are the number of filters, k is the one
dimensional kernel size, s is the value of the stride while act is the
nonlinear activation function.

E. DETAILS OF THE CNN ARCHITECTURE
The One Dimensional Convolutional Neural Networks
(CNN1D) we adopt in TASSEL is reported in Table 1. We fol-
low general principles applied in the design of Convolutional
Neural Networks [39], where the number of filters along the
network structure grows and the convolutional operations are
followed by non linear activation function (Rectifier Linear
Unit in our case), Batch Normalization and Dropout. Our
CNN1D has ten blocks where the first eight involves param-
eters associated to Convolutional and Batch Normalization
operation. We adopt filters with a kernel size equals to 3,
except for block 7 and block 8 where convolution with k = 1
are employed with the aim to learn per-feature combinations.
The ninth block concatenates the outputs of blocks 7 and
8 along the filter dimension and the tenth block computes the
global average pooling with the aim to extract one value for
each feature maps by means of average aggregation.

V. SATELLITE IMAGE TIME SERIES DATA
AND GROUND TRUTH
The analysis is carried out on the Reunion Island dataset
(a French overseas department located in the Indian Ocean)
and the Koumbia dataset (a rural municipality in the province
of Tuy, Burkina Faso).

The Reunion Island dataset consists of a time series
of 21 Sentinel-2 images acquired between January and
December 2017. The Koumbia dataset consists of a
time series of 23 Sentinel-2 images acquired between
January 2016 and December 2016 (see Fig 4 for acquisition
date details).

FIGURE 4. Overview of the acquisition dates of the Sentinel-2 (S2)
images over the two study sites: Reunion and Koumbia. S2 acquisitions
are sparse due to the ubiquitous cloudiness.

All the Sentinel-2 images we used are those provided at
level 2A by the THEIA pole 2 and preprocessed in surface
reflectance via the MACCS-ATCOR Joint Algorithm [40]
developed by the National Centre for Space Studies (CNES).
For all the Sentinel-2 images we only considers band at
10m: B2, B3, B4 and B8 (resp. Blue, Green, Red and Near-
Infrared). A preprocessing was performed to fill cloudy
observations through a linear multi-temporal interpolation
over each band (cfr. Temporal Gapfilling, [4]). Two additional
indices: NDVI 3 (Normalized Difference Vegetation Index)
and NDWI, defined by McFeeters 4 (Normalized difference
water index), are also calculated. Finally, each Sentinel-2
image has a total of six channels.

The spatial extent of the Reunion island site is
6 656 × 5 913 pixels corresponding to 3 935 Km2 while
the extent for the Koumbia site is 5 253 × 4 797 pixels
corresponding to 2 519 Km2. Figure 5 depicts the study sites
with the associated ground truth polygons.

Considering the Reunion island dataset [41], the ground
truth (GT) was built from various sources: the Registre Par-
cellaire Graphique (RPG) 5 reference data for 2014, (ii) GPS
records from June 2017 and (iii) visual interpretation of very
high spatial resolution (VHSR) SPOT6/7 images (1.5-m)
completed by a field expert with knowledge of territory to
distinguish natural and urban areas.

Regarding the Koumbia dataset [7], the reference database
is a collection of (i) digitized plots from a GPS field mis-
sion performed in October 2016 and mostly covering classes
within cropland and (ii) additional reference plots on non-
crop classes obtained by photo-interpretation by an expert.

A. GROUND TRUTH STATISTICS AND SEGMENTATION
Considering both datasets, ground truth comes in GIS vector
file format containing a collection of polygons each attributed
with a unique land cover class label. To ensure a precise spa-
tial matching with image data, all geometries have been suit-
ably corrected by hand using the corresponding Sentinel-2
images as reference. Successively, the GIS vector file con-
taining the polygon information has been converted in raster
format at the Sentinel-2 spatial resolution (10m).

2Data are available via http://theia.cnes.fr
3https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
4https://en.wikipedia.org/wiki/Normalized_difference_water_index
5RPG is part of the European Land Parcel Identification System (LPIS),

provided by the French Agency for services and payment
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FIGURE 5. Location of the Koumbia (a) and Reunion (b) study sites. The
RGB composite is a SPOT6/7 image upscaled at 10-m of spatial resolution.
The corresponding ground truth polygons are overlaid to each image.

TABLE 2. Per Class ground truth statistics for the Reunion Island Dataset.

The ground truth data includes 880 669 pixels
(resp. 6 265 polygons) distributed over 11 classes for
the Reunion Island dataset (Table 2) and 90 123 pixels
(resp. 1 137 polygons) distributed over 8 classes for the
Koumbia benchmark (Table 3).
To analyse data at object-level, a segmentation was pro-

vided by field experts for each study site using the VHR
images (SPOT6/7 image) which have been upsampled at 10m
of spatial resolution via bicubic interpolation and coregistered
with the corresponding Sentinel-2 grid to ensure a precise

TABLE 3. Per Class ground truth statistics for the Koumbia Dataset.

spatial matching. The field experts adopt such a strategy
since the SPOT6/7 images were acquired, on both study sites,
with favorable atmospheric condition. The VHR images were
segmented using the SLIC algorithm [14] available via the
scikit-image toolkit [42]. The parameters were adjusted so
that the obtained segments fit as closely as possible field plot
boundaries. We remind that the segmentation information is
an input of our process and it is not a part of our pipeline.
Then, for each study site, the ground truth data were spatially
intersectedwith the obtained segmentation finally resulting in
new comparable size labeled 10 578 objects for the Reunion
Island (resp. 1 379 segments for the Koumbia site).

VI. EXPERIMENTS
In this section we introduce the experimental protocol,
the data on which the evaluation is carried out and the results
we obtained. Firstly, we describe the real-world SITS dataset
we used in our evaluation and the associated preprocessing.
Seconldy, we report the experimental settings associated to
the competing methods involved in the evaluation and the
metrics we adopt. Successively, we report and discuss both
quantitative and qualitative experiments with the aim to val-
idate the classification performances with the former and to
assess the quality of the extra information α with the latter.

A. EXPERIMENTAL SETTINGS
To assess the quality of TASSEL, based on recent literature,
we select a panel of competitors exhibiting different and
complementary characteristics:
• Random Forest (RF) classifiers since such general pur-
pose machine learning approach is commonly employed
to deal with the classification of SITS data [43].

• A Multi Layer Perceptron (MLP) model that consider
the SITS data as a flat vector information. The MLP has
two hidden Fully Connected Layers with 512 neurons
each and ReLU activation function. Each Fully Con-
nected layers is followed by a Batch Normalization and
Dropout layers.

• A Long-Short Term Memory model [44] (LSTM) with
a recurrent unit with 512 neurons. Recurrent Neural net-
works are well suited to explicitly manage the temporal
information that is contained in time series data. The
LSTM representation is passed through a MLP block
(like the one previously described) to perform SITS
object classification. The model is learnt end-to-end.
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• A Gated Recurrent Unit model [35] (GRU) with a
recurrent unit with 512 neurons. GRU is another kind
of Recurrent Neural networks, with a lighter architec-
ture w.r.t. LSTM unit, that is demonstrating competitive
performance considering both NLP and signal process-
ing applications. Also in this case the GRU is stacked
together with a MLP to provide the final classification.
The model is learnt end-to-end.

• A one dimensional Convolutional neural network model
that has the same structure of the CNN1D module
employed by TASSEL. Also in this case the CNN is
stacked together with the MLP block to provide the final
classification decision. The model is learnt end-to-end.
We refer to this competitor as CNN.

• An ablation of our framework TASSEL without the
auxiliary classifier Claux(h̃). This ablation allows
us to evaluate the effectiveness and the appropri-
ateness to directly retropropagate the error at the
attentive aggregation level. We name this competitor
TASSELnoAUX .

All the competitors, with the exception of TASSELnoAUX ,
are evaluated considering the standard average object
representation.

For each study site, we split the corresponding data into
three parts: training, validation and test set. Training data are
used to learn the model, while validation data are exploited
for model selection by varying the associated parameters.
Finally, the model that achieves the best performance on
the validation set is successively employed to perform the
classification on the test set. The datasets were split into
training, validation and test set with an object proportion
of 50%, 20% and 30% respectively. The values were normal-
ized per band (resp. indices) considering the time series, in the
interval [0, 1].
Considering the models leveraging the Random Forest

classifier, we optimize the model via the tuning of two param-
eters: themaximum depth of each tree and the number of trees
in the forest. For the former parameter, we vary it in the range
{20,40,60,80,100} while for the latter one we take values in
the set {100, 200, 300,400,500}. The weight λ is set to 0.5 for
TASSEL.
Considering all the deep learning models, parameters

learning is performed using the Adam optimizer [45] with
a learning rate equal to 1 × 10−4. The training process, for
each model, is conducted over 5 000 epochs with a batch
size equals to 32. For TASSEL and TASSELnoAUX , regarding
the quantitative evaluation, we set the number of components
equal to 6.

The assessment of the model performances are done con-
sidering Accuracy, F-Measure and Kappa measures. The
F-Measure assessment criteria is particularly useful in our
context since the benchmarks associated to both study sites
exhibit high class unbalance. To reduce bias induced by the
train/validation/test split procedure, for each benchmark and
for each evaluation metric, we report results averaged over
five different random splits.

TABLE 4. Average (and standard deviation) F-Measure, Kappa and
Accuracy performances of the different competing methods considering
the KOUMBIA study site.

TABLE 5. Average (and standard deviation) F-Measure, Kappa and
Accuracy performances of the different competing methods considering
the REUNION study site.

Experiments are carried out on a workstation with an Intel
(R) Xeon (R) CPU E5-2667 v4@3.20Ghz with 256 GB of
RAM and four TITAN X GPU. All the Deep Learning meth-
ods (including TASSEL) are implemented using the Python
Tensorflow library, while Random Forest approaches are
implemented using Python scikit-learn library. The source
code of TASSEL is available online.6

B. RESULTS
With the aim to assess the quality of TASSEL, we per-
form several kinds of analyses to understand the behavior of
our framework. Firstly, we provide a quantitative evaluation
considering metric performances of the different competing
methods. During this evaluation, we report average results as
well as a per-class analysis. Secondly, we conduct a sensi-
bility analysis on the behavior of TASSEL with respect to
the number of components. Finally, an in-depth qualitative
evaluation is carried out to investigate and exploit the extra
information (α) provided by TASSEL to disentangle the con-
tribution of component objects based on the learning process.

1) QUANTITATIVE RESULTS
In this section we report the quantitative results obtained
by the competing methods involved in the experimen-
tal evaluation. We consider both average and per-class
analysis.

Table 4 and Table 5 show the average results in terms of
F-Measure, Kappa and Accuracy considering the KOUMBIA
and the REUNION benchmarks, respectively. Considering
the REUNION study site, the worst average performances
are obtained by the Random Forest approach. The CNN
strategy outperforms all the other deep learning baselines
methods (LSTM, GRU and MLP) while the best average

6https://gitlab.irstea.fr/dino.ienco/tassel.git
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TABLE 6. Per class F-Measure performances of the different competing methods considering the KOUMBIA study site. Best and second best
performances are shown in bold face and underlined, respectively.

TABLE 7. Per class F-Measure performances of the different competing methods considering the REUNION study site. Best and second best performances
are shown in bold face and underlined, respectively.

performances, considering all the three evaluation metrics
are achieved by our proposal TASSEL. A bit different is
the situation regarding the KOUMBIA benchmark. On this
study site, the RF method shows better performances than
(LSTM, GRU andMLP) strategies but it is still outperformed
by all the rest of the approaches. Also in this evaluation the
best average behaviour is exhibited by TASSEL. On both
datasets, the comparison between TASSEL and its ablation
variant (TASSELnoAUX ) underlines the effectiveness of the
auxiliary classifier training strategy that allows to systemat-
ically increases the classification precision, this fact under-
lines that such component plays an important role in the
training strategy. This phenomenon is particularly evident
for the KOUMBIA benchmark that is characterized by high
class imbalance and a limited number of labeled samples.
Due to the reported results, we can speculate on the fact
that, in presence of a limited number of labeled samples,
directly inject weight updates in the middle of the network
seems to facilitate the training process. Still on theKOUMBIA
study site, we can observe that all the methods exhibit high
variability (high standard deviation). This is related to the
small number of samples and imbalanced class ratio such
dataset exhibits. For this reason, the method performances
are highly sensitive to the way the training/validation/test
splits are done. Conversely, on the Reunion benchmark the
standard deviation values are smaller but high difference
(around 7 points) can be noted between the worst (RF) and
the best (TASSEL) competing method.
Table 6 and Table 7 report the per class F-Measure of the

different competing methods considering the KOUMBIA and
the REUNION study site, respectively.

Regarding the KOUMBIA study site (Table 6), we can
observe that TASSEL achieves almost all the time the
best (bold) and the second best (underlined) results consid-
ering the eight land cover classes on which this study site
is defined on. The only exception is related to the Built up
class inwhich TASSEL achieves results that are comparable to
the CNN method. The most notable gain, on this benchmark,
can be observed for the Fallows class. Regarding this land
cover class, TASSEL achieves almost 10 points of gain w.r.t.
the second direct competitor (CNN) and almost 20 points
of F-Measure gain considering the worst competitor (RF).
Such class constitutes a complicated land cover target since
it covers heterogeneous examples that easily overlap with
examples of other classes. This is also the motivation while
absolute performances are quite small on such class consid-
ering all the competing methods. Nevertheless, the proposed
approach is the one that better deals with the internal diversity
of such heterogeneous and complicated land cover class.

Considering the REUNION study site (Table 7), we can
note that both TASSEL and TASSELnoAUX consistently out-
perform all the other competitors considering all the land
cover classes with the former winning on 7 land cover classes
over the total of 11 land cover classes on which the multi-
class classification problem is defined. In addition, the gap
between our method and its ablation are coherent with the
average differences observed in Table 7. Gains between the
best (TASSEL) and the worst (RF) competitors on this dataset
vary from 19 points (on Greenhouse crops) to a couple of
points (on Relief shadows). In the middle, we can observe
notably amelioration regardingMarket gardening, Orchards,
Moor, Pasture and Wooded areas classes. All the objects
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FIGURE 6. The results of the sensitivity analysis of TASSEL regarding the
nc parameter on the two real-world benchmarks on the Koumbia and
Reunion study sites.

of such classes, considering the landscape associated to this
study site, are highly prone to contain within-object infor-
mation diversity or noisy/irrelevant components conversely
to class like Relief shadows that represents more homoge-
neous landscape and it mainly contains highly homogeneous
information. This fact supports the ratio behind our weakly
supervised learning framework and its adequateness to deal
with object-based Satellite image time series classification.

2) SENSITIVITY ANALYSIS w.r.t. THE NC PARAMETERS
Figure 6 depicts the behavior of TASSEL varying the value
of the nc parameters in the range 2, 4, 6, 8, 10. In addition,
the plot reports the average values (averaged over five dif-
ferent splits) and the associated standard deviation as error
bar. We can observe that TASSEL exhibits a coherent stable
behaviors on both benchmarks in terms of average F-Measure
performance. Considering the standard deviation, it shows a
per benchmark coherence. While the Reunion dataset has a
small standard deviation, on the Koumbia benchmark higher
standard deviation is associated to all values of the nc param-
eters. For the latter study site, this is due to the reduced size
of the associated dataset that can induce high performance
variation depending on the specific training/validation/
test split.

Generally, we can see that, considering both benchmarks,
a number of object components equals to two is sufficient
to achieve high level performances w.r.t. all the competitors
evaluated in Section VI-B1. This is not a surprising behavior
and it is in accord with the hypotheses our framework is built
on. By definition, remote sensing objects represent suitable
‘‘land units’’ that involve multiple radiometric components
but, in general, the related land cover to which the object is
associated can be directly related to one of them. For this
reason, a binary partition (in the majority of the cases) is
sufficient to isolate relevant w.r.t. less relevant information.

3) ASSESSING COMPONENTS IMPORTANCE FOR SPATIAL
INTERPRETATION
In this section we provide a qualitative analysis related to
the use of the extra information α provided by TASSEL to

interpret its internal decision and the related contribution of
the object components.

With the aim to clearly highlight the internal selection
process carried out by TASSEL, we evaluate the attention map
derived by our framework with nc equals to 2. According
to the results obtained in Section VI-B2, TASSEL is stable
w.r.t. such parameter and such configuration will also pro-
mote the visual investigation via higher contrasted spatial
regions. The visualization we proposed is achieved consider-
ing extra images (SPOT6/7 7 andBing aerial view 8) with very
high spatial resolution (less than 2m). Such fine background
images allow to visually depict details that are not visible for
human eye at the spatial resolution of the Sentinel-2 images
but, on the other hand, the pixel contours are not perfectly
aligned due to the difference in spatial resolution.

Details of the attention map for the Reunion and Koumbia
study sites are reported in Figure 7 and Figure 8, respectively.
Associated to each detail a legend shows the color scale from
light blue (small value of attention) to dark blue (high value
of attention). With loss of generality, we can assume that the
higher the attention value the more importance the model
gives to a certain component.

Considering the Reunion study site, Figure 7a depicts an
object SITS associated to theWater land cover class. We can
clearly observe that higher importance (dark blue) is given to
the component covering the dense water vegetation zone that
is, probably, a confident indicator of the water class. The sec-
ond detail, reported in Figure 7b, illustrates a pasture area
that is recognized by TASSEL thanks to the high importance
supplied to the brown zone that is the direct result of animal
or harvesting activities. The last detail, shown in Figure 7c,
proposes a portion of the Roland Garros Reunion Airport,
located in the north of the study site and classified as Urban-
ized areas. Due to the fact that this land cover class mainly
includes buildings, TASSEL exhibits a coherent behavior and
it assigns an high attention value to the object component
related to the white building (at the bottom of the detail)
w.r.t. the one associated to the landing strip that cover the
majority of the object extent. Such behavior pinpoints the fact
that TASSEL is able to recognize and leverage common (or
similar) components among the examples belonging to the
same coarse land cover class.

Regarding the Koumbia study site, Figure 8a depicts an
object SITS associated to the Annual crops land cover class.
Due to the agricultural practices associated to this region of
the Burkina Faso state, it is common to observe shea trees
in the middle of agricultural parcels. Unfortunately, such
unrelated element (with respect to the main land cover class)
can negatively influence the methods leveraging the average
object representation since it can inject noise in the average
information. Here, we can clearly note that TASSEL is able
to filter out irrelevant information assigning a low attention
value (light blue) to the object component associated to the

7https://en.wikipedia.org/wiki/SPOT_(satellite)#SPOT_6_and_SPOT_7
8https://www.bing.com/maps
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FIGURE 7. Three examples of the use of the extra information α provided
by TASSEL to interpret its internal decision on the Reunion study site. The
blue, green and white lines represent object contours. Example 7a refers
to the Water land cover class. Example 7b shows a sample related to the
Pasture and fodder class while example 7c depicts an instance related to
the Urbanized areas land cover class. The legend on the right of each
example reports the scale (discretized considering quantiles) associated
to the attention map.

shea tree. The second detail, reported in Figure 8b, illustrates
an object depicting a forest area. Also in this case TASSEL
discriminates between relevant and irrelevant information
and recover with high attention value (dark blue) the spatial
extent covered by vegetation w.r.t. the spatial zone character-
ized by bare soil that is, clearly, unrelated to the Forest land
cover class. The last detail, shown in Figure 8c, proposes an
urban areas involving multiple objects (the red lines delimit
object contours). Considering this bunch of objects, we can
observe that generally, for each of them, TASSEL attributes
high attention score (dark blue) to built up pixels while low
attention values (light blue) are related to vegetation zones
coherently to the general land cover class (built up) to which
all the objects are assigned.

To sum up, the qualitative evaluation, conducted on several
details from the two study sites, has pointed out the ability of
TASSEL to effectively manage the multifaceted information
exhibited by the object representation and, simultaneously,
distinguish between relevant and irrelevant information to
support and ameliorate the analysis of object SITS data for
land cover mapping. Despite the fact that objects can contain
high within-object information diversity, noisy signal compo-
nents and, labels represent knowledge only at coarse granular-
ity, TASSEL is able to overcome such issues. More in detail,
our framework is capable to learn invariant and distinctive
signals with respect to a particular land cover class and, at the

FIGURE 8. Three examples of the use of the extra information α provided
by TASSEL to interpret its internal decision on the Koumbia study site. The
yellow, green and red lines represent object contours. Example 8a refers
to the Annual Crops land cover class. Example 8b shows a sample related
to the Forest class while example 8c depicts an instance related to the
Built up land cover class. The legend on the right of each example reports
the scale (discretized considering quantiles) associated to the attention
map.

same time, adjust the contribution of each object components
smoothing the impact of possible irrelevant information.

VII. CONCLUSIONS
Due to the fact that object-based Satellite Image Time
Series representation is characterized by high within-object
information diversity, we introduce a new method, named
TASSEL, to deal with object SITS land cover mapping under
the lens of weakly supervised learning setting. Our frame-
work, firstly, identifies the different components on which an
object is defined on via cluster analysis. Secondly, a CNN
block is adopted to extract an internal representation from
each of the different object components. Thirdly, the results
of each CNN block is aggregated via attention. Finally,
the model outputs the land cover prediction associated to the
object SITS as well as the extra information, referred as α,
that is related to the contribution of each component to the
model decision. Such outcome is directly actionable to derive
attentionmapswith the aim to provide qualitative information
about the general model behavior.

An extensive experimental evaluation on real world bench-
marks underline the effectiveness of TASSEL, in terms
of classification metrics w.r.t. state of the art competing
approaches. Furthermore, the qualitative analysis pinpoints
how our framework extracts knowledge that can be directly
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related to its decision and help the spatial interpretation of the
obtained classification.

Several follows up can be drawn from the proposed work.
Firstly, the CNN encoder we proposed can be ameliorated and
extended according to recent research studies that investigate
the use of deep learning approaches for the general analy-
sis of time series data [46]. Secondly, other per component
aggregated statistics can be considered as input for the one
dimensional CNN (i.e. we can consider median value instead
of mean value). Thirdly, novel strategies to adapt the number
of components for each object can be inspected. Finally,
the attention mechanism can be extended to also cope with
the temporal dimension with the aim to discard irrelevant
information and strengthen the general interpretability of our
framework for spatio-temporal analysis.
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