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Bias and accuracy of dairy sheep evaluations 
using BLUP and SSGBLUP with metafounders 
and unknown parent groups
Fernando L. Macedo1,2* , Ole F. Christensen3, Jean‑Michel Astruc4, Ignacio Aguilar5, Yutaka Masuda6 
and Andrés Legarra1

Abstract 

Background: Bias has been reported in genetic or genomic evaluations of several species. Common biases are 
systematic differences between averages of estimated and true breeding values, and their over‑ or under‑dispersion. 
In addition, comparing accuracies of pedigree versus genomic predictions is a difficult task. This work proposes to 
analyse biases and accuracies in the genetic evaluation of milk yield in Manech Tête Rousse dairy sheep, over several 
years, by testing five models and using the estimators of the linear regression method. We tested models with and 
without genomic information [best linear unbiased prediction (BLUP) and single‑step genomic BLUP (SSGBLUP)] and 
using three strategies to handle missing pedigree [unknown parent groups (UPG), UPG with QP transformation in the 
H matrix (EUPG) and metafounders (MF)].

Methods: We compared estimated breeding values (EBV) of selected rams at birth with the EBV of the same rams 
obtained each year from the first daughters with phenotypes up to 2017. We compared within and across models. 
Finally, we compared EBV at birth of the rams with and without genomic information.

Results: Within models, bias and over‑dispersion were small (bias: 0.20 to 0.40 genetic standard deviations; slope 
of the dispersion: 0.95 to 0.99) except for model SSGBLUP‑EUPG that presented an important over‑dispersion (0.87). 
The estimates of accuracies confirm that the addition of genomic information increases the accuracy of EBV in young 
rams. The smallest bias was observed with BLUP‑MF and SSGBLUP‑MF. When we estimated dispersion by comparing 
a model with no markers to models with markers, SSGBLUP‑MF showed a value close to 1, indicating that there was 
no problem in dispersion, whereas SSGBLUP‑EUPG and SSGBLUP‑UPG showed a significant under‑dispersion. Another 
important observation was the heterogeneous behaviour of the estimates over time, which suggests that a single 
check could be insufficient to make a good analysis of genetic/genomic evaluations.

Conclusions: The addition of genomic information increases the accuracy of EBV of young rams in Manech Tête 
Rousse. In this population that has missing pedigrees, the use of UPG and EUPG in SSGBLUP produced bias, whereas 
MF yielded unbiased estimates, and we recommend its use. We also recommend assessing biases and accuracies 
using multiple truncation points, since these statistics are subject to random variation across years.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Genetic progress in selection schemes depends on using 
correct models for genetic evaluation. Models are simpli-
fications of reality and never completely perfect, which is 
why tools to analyze systematic errors are necessary. 
There are three important aspects to check in genetic 
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evaluations: bias, dispersion and accuracy. Bias (
b0 = ¯̂u− ū

)
 is the difference between estimated breed-

ing values (EBV) û and true breeding values (TBV) u and 
could lead to over- or under-estimation of genetic trend 
and to poor selection decisions (for example, selecting 
too many young individuals instead of keeping old ones). 
In the same way, on the one hand, values of the slope of 
the regression of TBV on EBV less than 1 imply over-dis-
persion of the EBV and could lead to an overestimation 
of the genetic merit of pre-selected candidates. On the 
other hand, an unbiased estimate of accuracy (the corre-
lation between TBV and EBV) is important to correctly 
predict the response to selection.

Bias has been found in genetic evaluations of several 
species. The use of genomic information in dairy cattle 
selection is widespread and the existence of bias has been 
extensively studied (e.g. [1–4]). Bias has also been stud-
ied in other species, such as pigs [5], dairy goats [6], tur-
keys [7] and beef cattle [8–10]. In general, biases decrease 
with more adequate models. However, all these studies 
rely on the use of pre-corrected data such as deregressed 
proofs or daughter yield deviations (DYD), which may 
give wrong estimates of biases if fixed effects are not well 
estimated [11].

Studies in France and Spain using DYD detected bias 
in genetic evaluations of dairy sheep breeds. For example, 
predictions in Lacaune showed bias and over-dispersion 
of EBV, with more impact for traits under strong selec-
tion [12, 13]. Similar results were obtained for milk yield 
of Pyrenean dairy sheep breeds [14], although genomic 
evaluations decreased bias compared to pedigree evalu-
ations. Manech Tête Rousse (MTR) is one of the major 
French Pyrenean dairy sheep breeds. For this breed, the 
selection scheme switched to genomic selection in 2018 
and it is important to verify the bias, dispersion and 
accuracies, to avoid poor selection decisions. In particu-
lar, the bias detected in [14] is not well understood. How-
ever, it is difficult to assess such biases with DYD in dairy 
sheep, since DYD from “first crops” of 20 to 40 daughters 
are not very accurate.

Legarra and Reverter [11] described the linear regres-
sion method (LR method) to detect bias in genetic evalu-
ations. The advantage of this method is the simplicity of 
the application; it compares EBV of a group of individuals 
obtained in different evaluations, with less (“partial”) and 
more (“whole”) information. Comparing the two subsets 
of EBV, estimators of bias, dispersion and accuracies (rel-
atives or directs) are easily computed. Therefore, it is easy 
to analyze a genetic evaluation comparing the results of 
two consecutive evaluations.

To perform genetic evaluation, it should be possible to 
include genomic information and also to model missing 
pedigrees if needed. In this work, we tested models using 

only pedigree information (best linear unbiased predic-
tion (BLUP) model) or including genomic information 
(in a single-step genomic BLUP (SSGBLUP) model) and 
applying different strategies to deal with missing pedi-
gree. Missing pedigree may be a problem in most spe-
cies—in ruminants, parents may be unrecorded, whereas 
in monogastric species, new lines may be introduced. If 
we do not consider this missingness, we are assuming the 
same genetic mean for all missing parents in the pedi-
gree. In dairy sheep, females born from natural mating 
usually do not have an assigned sire. However, these nat-
ural mating rams are offspring of highly selected artificial 
insemination (AI) rams and thus their breeding value 
increases over time. In addition, new flocks that entered 
the breeding scheme until (roughly) 1990 did not have 
pedigree data. Two strategies can be used to model the 
missing pedigree: unknown parent groups (UPG) [15, 16] 
and metafounders (MF) [17]. There is some evidence that 
the use of MF improves the performance of genetic eval-
uation [18], but it has not been systematically studied.

The aim of this work was to analyze bias, dispersion, 
and accuracies in the genetic evaluation of milk yield of 
MTR using the LR method with several evaluation mod-
els and performed over many truncation points of data. 
A second aim was to compare different strategies (UPG 
or MF) to manage missing pedigree in BLUP and SSG-
BLUP contexts. In this manner, we assessed the genetic 
evaluation of MTR, addressed the best method to con-
sider missing pedigrees in SSGBLUP, and explored the 
possibilities of the LR method to discriminate models for 
prediction.

Methods
Records and pedigree
Milk production is recorded by the breeding scheme 
according to the International Committee for Animal 
Recording rules. The data that we analyzed were col-
lected between 1978 and 2017 and comprise 1,842,295 
performance records and 540,999 individuals in the pedi-
gree, with a generation interval of about 4  years. There 
are missing parentships, either “sire unknown and dam 
known” (~ 15% of all animals) or “both sire and dam 
unknown” (~ 15% of all animals). This situation is particu-
larly important in our case, because if we ignore the miss-
ing pedigree, the unknown parents of the more recently 
improved animals will be assigned to the base population 
at the beginning of the selection program. As a result, 
these animals will be unfairly penalized and it will not be 
possible to correctly model the genetic progress. Thus, 
we defined 13 UPG (or MF; see later). We computed 
a crude “number of equivalent records” from the first 
“offspring” of UPG (disregarding later generations). For 
instance, an individual with n records contributes n to its 
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ancestor UPG if both parents are unknown and n/2 if one 
parent is known. In all cases, the number of equivalent 
records was larger than 10,000.

Genomic information
We included genomic information on 3007 AI males 
(years of birth from 1999 until 2017), all of which have 
both parents known and are genotyped with the 50 k Illu-
mina chip OvineSNP50. Only autosomal SNPs were con-
sidered. Quality control included individual and marker 
call rate, minor allele frequency (MAF) higher than 0.05, 
removal of Mendelian conflicts, deviation from Hardy–
Weinberg equilibrium (number of heterozygotes deviat-
ing more than 15% from the expectation based on allele 
frequencies), and heritability of gene content (markers 
with an estimated heritability < 0.98 and significant p-val-
ues of the likelihood ratio test, p < 0.01, were discarded) 
[19]. After quality control, 37,168 effective SNPs were 
retained.

Focal individuals
It is possible to apply the LR method to any group of 
individuals of a population, provided that they represent 
a homogenous tier (i.e. they are similarly selected, and 
prediction at the time of selection is based on the same 
sources of information). In this work, we were interested 
in evaluating bias, dispersion and accuracy of males at 
the time of their selection, i.e. at birth before they have 
progeny with records. The reason we are interested in 
this group is that most of the genetic gain in dairy sheep 
is obtained via males. In total, 10 groups of focal individ-
uals were analyzed; each group corresponding to selected 
rams born from 2005 to 2014. These males were selected 
based on parent average to be progeny-tested and thus 
their genetic variation is smaller than that of their con-
temporaries [20].

Estimators of the LR method
In brief, the LR method estimates bias, dispersion and 
accuracies, based on the comparison of two subsets of 
EBV, estimated with less and more information, for the 
same group of individuals. In this paper, we will use the 
symbols ûp or  EBVp to refer to the EVB estimated with 
less information (or “partial” dataset) and ûw or  EBVw to 
refer to the EBV estimated with more information (or 
“whole” dataset). The LR method presents one estima-
tor for the bias ( �̂p ), one estimator for the dispersion ( ̂bp ) 
and four estimators related to the accuracies ( ρwp , acc2p , 
ρ2
wp,  r̂elp ). The estimators are summarized below; for a 

deeper overview and properties of the estimators see [11, 
21].

Bias ( �̂p)
The estimator of the bias is obtained from the differ-
ence between the mean of  EBVp and the mean of  EBVw, 
�̂p = ûp − ûw  . In absence of bias, the expected value of 
this estimator is 0.

Dispersion ( ̂bp)
The estimator of dispersion of EBV is the slope of the 
regression of  EBVw on  EBVp, b̂p = cov(ûp ,ûw)

var(ûp)
 . If over- or 

under-dispersion does not exists, the expected value of 
the estimator is 1, values of b̂p < 1 indicate over-disper-
sion whereas values of b̂p > 1 indicate under-dispersion.

Estimators related to accuracies
Ratio of accuracies ( ρ̂w,p)
This estimator estimates the inverse of the relative gain in 
accuracy from  EBVp to  EBVw. It is the correlation 
between  EBVp and  EBVw, ρ̂w,p = cov(ûp ,ûw)√

var(ûp)var(ûw)
 and the 

expected value is accp
accw

 . A high value of this estimator 
means a small increase in accuracy, whereas a low value 
means a large increase in accuracy, when we add pheno-
typic information to genetic evaluations. For instance, a 
value of 0.7 means that the evaluation with the “partial” 
dataset is quite similar to the evaluation with the “whole” 
dataset, i.e. more phenotypes do not add much new 
information. This can be seen also as the relative increase 
in accuracy brought by phenotypes is 1

ρ̂w,p
− 1 = accw−accp

accp
 

(Matias Bermann, University of Georgia, personal com-
munication). Thus, it is expected that genomic evalua-
tions have higher ρ̂w,p than pedigree-based evaluations.

Ratio of reliabilities ( ρ̂2
p,w)

This estimator is the slope of the regression of  EBVp on 
 EBVw, ρ̂2

p,w = cov(ûp ,ûw)
var(ûw)

 and, similar to the ratio of accu-
racies, it represents the inverse of the gain in reliabilities 
from  EBVp to  EBVw. The expected value is acc

2
p

acc2w
.

Selected reliability of  EBVp ( âcc2p)
In a general formulation, âcc2p = cov(ûp ,ûw)

σ 2
g∗

 , where σ 2
g∗ is 

the genetic variance of the group of individuals of inter-
est. We use this more general formulation as in [21] 
instead of the formulation used in [11], because the latter 
is adequate only for a group of animals that represent the 
whole population after selection. In this work, we ana-
lyzed EBV of sets of contemporary young rams of the 
population, in other words highly-selected individuals, 
which decreases reliability [20, 21]. A difficulty associated 
to this estimator is the necessity of an estimation of the 
genetic variance of a group of individuals. We estimated 
the genetic variance of each group of focal individuals 
following [22] using the complete dataset. We used Gibbs 
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sampling with the complete dataset with 150,000 itera-
tions and a burn-in of 15,000 iterations. At each 150-th 
iteration, we took samples of the EBV of all AI males in 
the 10 focal groups and we computed, for each of these 
groups, the variance of these samples. This results in 
samples from the posterior distributions of the 10 genetic 
variances, one for each group of AI males.

Unselected reliability of EBVp ( ̂relp)
This estimator estimates the reliability as if there was no 
selection, r̂elp = 1− σ 2

g∗
σ 2
g

(
1− âcc

2
p

)
 as in [23], where σ 2

g  is 

the genetic variance of the base population and σ 2
g∗ is the 

genetic variance of the group of individuals of interest 
(see above). A short derivation of r̂elp follows from [21, 
24], Cov

(
ûp, ûw

)
= σ 2

g∗ − PEV  , so PEV = σ 2
g∗ − Cov

(
ûp, ûw

)
 . 

The reliability that is unaffected by selection is 
r2 = 1− PEV

σ 2
g

 leading to r2 = 1− σ 2
g∗
σ 2
g

(
1− r2∗

)
 [23], 

where r2∗ is the selected reliability. The reliability r̂elp can 
be interpreted as if the focal individuals were not selected, 
or, in other words, as the average theoretical reliability of 
the focal individuals obtained from the mixed model 
equations (MME).

Data analysis
To apply the LR method, we have to obtain EBV from 
the partial dataset and the whole dataset. In this work, in 
order to obtain an empirical distribution of the statistics 
of the LR method, we performed several comparisons 
between  EBVp and  EBVw, taking  EBVp from rams born 
in year yp (2005 to 2014) and  EBVw from years yp + 2 
until year 2017 (last year of records for this work). The 
year of the first set of  EBVw was yp + 2 because the first 
daughters of the selected rams generally start to pro-
duce 2 years after birth. For example, if we take the EBV 
at birth of rams born in 2005 as  EBVp, we have  EBVw 
of these rams from years 2007 to 2017, thus we have 11 
sets of estimators; and if we take EBV from rams born in 
year 2014 as  EBVp, we only have  EBVw from year 2016 to 
2017, thus only two sets of estimators. In total, we per-
formed 65 comparisons, e.g. 2005 vs 2007, 2005 vs 2008 
... 2005 vs 2017 … 2014 vs 2016 and 2014 vs 2017.

Bias or accuracies are properties of the partial data-
set only, and not of the whole dataset. Sampling several 
“partial” years allows to describe possible variations due 
to chance, i.e. properties of BLUP only hold on expec-
tation. In addition, by considering multiple “whole” 
datasets, we tried to evaluate random deviations of 
the estimates of biases and accuracies. For instance, a 
ram may stop getting progeny performances after a few 
years, yet the estimates of contemporary groups may 

change. The theory of the LR method (actually, BLUP 
theory) shows that the estimators of the LR method are 
correct regardless of whether rams are selected (and 
having more and more offspring) or not.

We considered several models for the evaluations that 
are presented below. We applied the LR method within 
models, with both  EBVp and  EBVw obtained with the 
same model. We also applied this method across mod-
els:  EBVp obtained with one model, for example regu-
lar BLUP with MF, and  EBVw from another model, for 
example SSGBLUP with UPG. Finally, because the addi-
tion of genomic data to the evaluation can be seen as 
“more information”, it is possible to see EBV obtained 
at the same time but without and with genomic infor-
mation as  EBVp and  EBVw, respectively. Thus, we also 
compared the EBV of the rams at birth estimated with 
the BLUP and SSGBLUP models. For example, the EBV 
of rams at birth in 2005 were estimated with BLUP as 
 EBVp and estimated with SSGBLUP as  EBVw.

Although there is no theoretical support for using 
the LR method across models [21], our objective was 
to check the consistency of models with each other, 
in the sense that a refinement of the model should 
not introduce unexpected changes in the evaluations. 
Otherwise, one of the models could possibly be quite 
wrong. For instance, switching the genetic evaluation of 
milk yield from lactational measures to test-day mod-
els should not introduce big changes. Likewise, selec-
tion schemes that start adding genomic information 
to the genetic evaluations must change models with-
out too large changes in the EBV. Viewed in this way, 
it is important to check the coherence (lack of strong 
changes) from one model to the other. We focused on 
the regression coefficient b̂p , with an expected value of 
1.

To summarize the 65 comparisons, raw averages of 
estimators are not correct because some years are more 
represented that others, e.g. 2005 has 11 comparisons 
whereas 2014 has two comparisons. Thus, we used the 
pseudo-model espw = Xyp + Zyw + ε , where espw is a 
vector of the 65 values of the estimator ( �̂p , b̂p , ρ̂wp , 
âcc

2
wp , ρ̂2

pw , r̂elp ) from the comparison of  EBVp of the 
rams born in year p and of  EBVw of same rams obtained 
in year w , yp contains values for years p (2005 to 2014) 
and yw contains values for years w ( yp + 2 until 2017), 
and we report an estimable function that yields êspw as 
if the design was balanced: êspw = 1

np1
′ŷp + 1

nw1
′ŷw 

where np and nw are the number of different years for 
the “partial” dataset (8) and “whole” dataset (11). The 
pseudo-model was fit by least squares (lm function in 
R), and the R package Gmodels version 2.18.1 was used 
to compute the contrasts. The code is given in 
“Appendix”.
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Models
The genetic evaluations were performed using the regu-
lar linear model for genetic evaluation of MTR. This is 
a univariate model with repeated records for milk yield 
that accounts for heterogeneity of variances across con-
temporary groups [25]:

where � is a diagonal matrix of scaling factors for hetero-
geneity of variances, y is a vector of milk yield records, yc 
is a vector of the observations corrected for heterogeneity 
of variances, b is a vector of the fixed effects: contempo-
rary group, age and number of lactation, month of lamb-
ing and interval “from lambing to first milk recording”, u 
is a vector of breeding values, p is a vector of permanent 
animal effects, e is a vector of residuals, and X , Wp and 
Wu are incidence matrices for fixed effects, permanent 
animal effects, and breeding values. Following [25], the 
ith diagonal element in � is exp

(
τi
2

)
 ; a scaling factor for 

fixed and random effects. The linear model for τi = Siβ , 
where β is the vector of unknown effects for year (fixed) 
and flock-year (random) and Si is the design vector. Her-
itability was fixed at 0.30 (the value used in official evalu-
ations; an estimate calculated with the complete dataset 
was equal to 0.28). In models with UPG, EBV cannot be 
estimated, and the genetic basis changes with the model 
used. Therefore, we referred all estimates of EBV to the 
average EBV of the females born in 2005. Using this ani-
mal model, different (sub) models were defined depend-
ing on: (1) the use or not of genomic information, and (2) 
the strategy to model missing pedigree.

We used BLUP models with the matrix of additive 
genetic relationships A [24] and models that include 
the genomic information in a single step (SSGBLUP). 
The SSGBLUP models replaces A with a matrix H . 
that combines pedigree and genomic relationships 
[26–28].

To model the missing pedigree, we used three strat-
egies, unknown parent groups for A (UPG) and for H 
(EUPG) and metafounders (MF). Unknown parents 
groups were developed to avoid bias due to differences 
in genetic means of groups of individuals with differ-
ent origins [15, 29]. The theory of UPG adapted to 
SSGBLUP models was reviewed by [16]. Later, Legarra 
et al. [17] conceived the theory of MF that represents 
base populations by related, inbred pseudo-individu-
als. The aim of MF was to provide a coherent theory, 
where UPG would account for the reduction in genetic 
variance due to drift and for relationships across base 
populations. Using genomic information, it is pos-
sible to estimate the relatedness between groups of 

�y = yc = Xb+Wuu +Wpp+ e,

unknown parents ( Ŵ matrix) [17, 30], and this rela-
tionship matrix across MF can be used also in purely 
pedigree-based BLUP models. We estimated matrix 
Ŵ from observed genotypes using the GLS method of 
[30].

Let index 0 denote the base populations (either UPG or 
MF), index 1 “non-genotyped animals”, and index 2 “geno-

typed animals”. Denote A−1 =
(
A11 A12

A21 A22

)
 as the usual 

inverse of the relationship matrix and A−1
22  the inverse 

including only genotyped animals, A∗ =




A00 A01 A02

A10 A11 A12

A20 A21 A22


 

as the generalized inverse (as it is not full rank) including 

UPG, and A(Γ )−1 =




A(Γ )00 A(Γ )01 A(Γ )02

A(Γ )10 A(Γ )11 A(Γ )12

A(Γ )20 A(Γ )21 A(Γ )22


 as the 

inverse using MF. All three matrices are easily built using 
simple modifications of Henderson’s algorithm [31].

The SSGBLUP model proceeds by modifying the con-
ditional variances and covariances in the inverse matrices 
according to observed genomic information, by obtaining 
H−1 matrices from A−1 matrices. Corresponding matrices 
are, for SSGBLUP-UPG:

where G is the genomic relationship matrix that is built 
following the first method in [32], using observed allele 
frequencies, and made comparable to A22 following [5].

It is well known that this matrix is, at best, an approxima-
tion [16] because the theory of matrix H was derived under 
the constraint that A is full rank, which is not the case for 
A∗ . The same authors in [16] proposed a full transforma-
tion hereafter called “exact UPG” (EUPG) that can be writ-
ten as:

where Q2 is the matrix containing UPG compositions for 
genotyped animals.

Whereas in “regular” SSGBLUP the only changes con-
cern genotyped animals, here there are extensive changes 
that make programming difficult. In addition, because 
G accounts correctly for the different origins and does 

H∗
UPG =




A00 A01 A02

A10 A11 A12

A20 A21 A22


+




0 0 0
0 0 0

0 0 G−1 − A−1
22


,

H∗
EUPG =




A00 A01 A02

A10 A11 A12

A20 A21 A22




+




Q
′
2

�
G−1 − A−1

22

�
Q2 0 −Q

′
2

�
G−1 − A−1

22

�

0 0 0

−
�
G−1 − A−1

22

�
Q2 0 G−1 − A−1

22


,
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not need pedigree completion, there is, depending on 
the pedigree structure, some sort of double-counting as 
observed by [18]. These problems are solved by MF which 
proposes:

where G05 is built with allele frequencies of 0.5 and there 
is no extra scaling to match A(Γ )

22  , although there is blend-
ing as described below.

For all SSGBLUP models, the blending between G and 
A22 or between G05 and A(Γ )

22  was done using 0.95 and 
0.05, as respective weights [32–34]. An analysis using MF 
also needs to consider that the population is more related 
by construction. We used the scaling of genetic vari-
ance in [17] such that if the genetic variance consider-
ing BLUP_UPG was σ 2

u , the genetic variance component 
attributed to H∗

MF was σ 2
u/k for k = 1+ diag(Ŵ)

2 − Γ̄ .
Now we can describe the five models:

1. BLUP-UPG uses A∗ and is the reference method 
known to be robust.

2. BLUP-MF uses A(Γ )−1 . The main difference is that 
the latter assumes that MF are random effects and 
that they are correlated, whereas the former uses 
UPG that are fixed (unbounded a priori) effects.

3. SSGBLUP-UPG uses H∗
UPG and is expected to be 

somewhat biased because it is an approximation.

H∗
MF =




A(Γ )00 A(Γ )01 A(Γ )02

A(Γ )10 A(Γ )11 A(Γ )12

A(Γ )20 A(Γ )21 A(Γ )22




+




0 0 0

0 0 0

0 0 G−1
05

− A
(Γ )−1

22


,

4. SSGBLUP-EUPG is supposed to be biased also 
because there is some double-counting. However 
the bias is not necessarily the same as in SSGBLUP-
UPG.

5. SSGBLUP-MF is supposed to be the most accurate 
method.

All genetic evaluations were performed with heterf90 
(not publicly released), which solves the outer model for 
heterogeneity of variances as in [25], whereas inner itera-
tions used blup90iod2 [35]. To estimate the relationships 
across MF, we used gammaf90 (not publicly released), 
which uses the GLS method in [30].

Results
The estimated value of Ŵ is presented below (each row/
column corresponds to MF separated by 3 years). We did 
not explore these values in depth since it was out of the 
scope of this paper, but, in general, values showed mod-
erate relationships across MF, i.e. most correlations 
obtained as Ŵ(i,j)/

√
Ŵ(i,i)Ŵ(j,j) ranged from 0.5 to 0.6. 

The second and third MF present somewhat extreme val-
ues because they have few genotyped descendants. For 
instance, if the allele frequencies in the base generation 
were uniformly distributed, the expected value in the 
diagonal is 2/3 [36]. Matrix Ŵ is estimated from estimates 
of allele frequencies in the base population with standard 
errors ranging from 0.15 to 0.33, which are the highest 
values for the second and third MF. These errors seem 
large but we take the estimate of Ŵ as a crude guess, i.e. 
just as breeding programs start with guessed 
heritabilities.

Table 1 Average �̂p (expressed as σg ), b̂p , ρ̂wp , ρ̂2
pw , âcc2p and r̂elp within models

Standard errors for all values ≤ 0.01

Model �̂p b̂p ρ̂wp ρ̂
2
pw âcc

2
p r̂elp

BLUP‑MF 0.25 0.98 0.56 0.32 0.22 0.53

BLUP‑UPG 0.48 0.96 0.54 0.31 0.24 0.54

SSGBLUP‑MF 0.23 0.97 0.66 0.45 0.32 0.59

SSGBLUP‑UPG 0.32 0.94 0.64 0.43 NA NA

SSGBLUP‑EUPG 0.48 0.88 0.61 0.42 NA NA
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As for the LR method, Table 1 shows the values of esti-
mators within models, i.e. when the model to estimate 
 EBVp and  EBVw were the same. In this case, the small-
est bias ( �̂ of 0.23  genetic standard deviations ( σg ) and 
0.25 σg for SSGBLUP-MF and BLUP-MF, respectively) 
was obtained with MF. All models are slightly biased 

Ŵ =




0.53 0.24 0.37 0.38 0.39 0.39 0.41 0.41 0.41 0.42 0.44 0.43 0.40
0.92 0.24 0.30 0.37 0.37 0.37 0.38 0.39 0.40 0.39 0.39 0.37

0.96 0.39 0.33 0.39 0.37 0.38 0.38 0.39 0.38 0.38 0.38
0.72 0.37 0.34 0.37 0.38 0.37 0.38 0.37 0.39 0.37

0.81 0.36 0.36 0.38 0.39 0.39 0.39 0.40 0.37
0.68 0.38 0.37 0.38 0.39 0.39 0.40 0.38

0.69 0.39 0.38 0.38 0.40 0.41 0.38
0.61 0.39 0.39 0.40 0.40 0.38

0.63 0.40 0.41 0.39 0.38
0.59 0.42 0.41 0.39

0.52 0.43 0.40
0.83 0.41

0.59




and overestimate the genetic trend (around 0.25 genetic 
standard deviations, equivalent to 1 year of selection).

For the estimator of dispersion ( ̂bp ), for all mod-
els, except for SSGBLUP-EUPG, the values were close 
to 1, meaning absence of over- or under-dispersion of 
EBV. However, SSGBLUP-EUPG model was biased 
( ̂bp = 0.88 ), which indicates inflation of EBV. This agrees 
with [18] who found that SSGBLUP-EUPG was biased. 
In Fig.  1, we present the values of each estimate of b̂p 
for BLUP-MF (Fig.  1a), which has the average value of 
b̂p closest to 1, and for SSGBLUP-EUPG (Fig. 1b), which 
generates the most over-dispersion. The variability of the 
estimates of  EBVp within and across years is similar for 
both models, but the estimates of dispersion with SSG-
BLUP-EUPG are systematically the smallest. As Fig.  1 
shows, the year of birth 2008 seems to yield biased esti-
mators. This agrees with [14] who found biases for pre-
dictions of rams born in this year. Figure 1 also illustrates 
that there is a large variability of estimates within and 
across years of the “partial” and “whole” datasets, with 
the implication that a single time-point is not sufficient 
to describe the behavior of the genetic evaluation.

Estimator ρ̂wp represents the inverse of the relative gain 
in accuracy from  EBVp to  EBVw, thus high values of this 
estimator imply higher accuracy in the “partial” dataset, 
as expected for SSGBLUP. In agreement, values of this 
estimator were lower for the BLUP models (roughly 0.55) 
than for the SSGBLUP models (roughly 0.65). In other 
words, the EBV of the rams obtained without the records 
of theirs daughters were more accurate in SSGBLUP than 
in BLUP, which agrees with [14]. Similar results were 
found for ρ̂2

pw , which estimates the ratio between reliabil-
ities in  EBVp and  EBVw.

The direct estimators of accuracy ( âcc2p and r̂elp ), both 
based on the covariance between  EBVp and  EBVw, pre-
sented extremely high values (in some cases, the vari-
ance of  EBVw was larger than the genetic variance), for 
SSGBLUP-UPG and SSGBLUP-EUGP, and are therefore 
not reported. This may be an indirect indicator of the 

Fig. 1 Estimates of b̂p for models BLUP‑MF (a) and SSGBLUP‑EUPG (b) 
by year of  EBVp evaluated
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poor fit of UPG to SSGBLUP, whereas BLUP-UPG shows 
reasonable values that agree with the other estimates of 
accuracy. For BLUP models, âcc2p values were lower than 
for SSGBLUP-MF (0.24 vs 0.32), which agrees with the 
information obtained from the other estimates of accu-
racy. Although these values are apparently small, this 
is expected because this is a sample of animals that are 
selected based on parent average [20]. In contrast, the 
estimation of “unselected” reliabilities, r̂elp , results in 
values within the usual scale of individual model-based 
accuracies. Again, the SSGBLUP-MF model estimated 
higher reliabilities than the BLUP models (0.59 vs 0.54 
and 0.53, respectively). The increase in accuracy is fairly 
consistent across all four estimators of accuracy.

In Table 2, we presented the values of the slope of the 
regression of  EBVw on  EBVp ( ̂bp ) when  EBVp was esti-
mated with one model and  EBVw with another model. 
This gives some sort of measure of the disagreement 
across models, i.e. we expect models to behave similarly 
in terms of biases. Cases that estimate in a “partial” data-
set with SSGBLUP and in a “whole” dataset with BLUP 
are not considered, since they seem unnatural in practice; 
for instance the decision on which animals to genotype 
may be based on the information of the whole dataset. 
When we use pedigree-based models to estimate  EBVp 
and  EBVw, the dispersion is around 1 (0.93 and 1.01), 
regardless of whether UPG or MF are used.

When  EBVp were estimated with the BLUP models and 
 EBVw with SSGBLUP-UPG or SSGBLUP-EUPG (the case 
when genomic selection is implemented), we observed 
an important under-dispersion (around 1.25). However, 
SSGBLUP-MF yielded b̂p values close to 1. Similar results 

were obtained when we compared EBV of the rams at birth, 
estimated with the BLUP models as “partial” with those 
estimated with the SSGBLUP models as “whole” (Table 3). 
The models SSGBLUP-UPG and SSGBLUP-EUPG show 
important under-dispersion whereas SSGBLUP-MF results 
in values of b̂p close to 1. This indicates that if we want to 
change a pedigree-based genetic evaluation for one that 
includes genomic information, the use of MF is a better 
option. Moreover, SSGBLUP-EUPG is biased with itself as 
shown in Table 1, perhaps due to poor compatibility with 
the G matrices, because of double-counting, or both.

Discussion
This study provides a comprehensive analysis of bias, dis-
persion and accuracies in dairy sheep genetic evaluation 
with several truncation points of data and several models. 
Estimates of bias, dispersion and accuracy were obtained 
with evaluation models that used only pedigree or a com-
bination of pedigree and genomic relationship matrices 
with different strategies to model missing pedigree and 
using the LR method. The properties of such types of 
models have recently been extensively investigated [18, 
30, 36–40]. The current study adds further evidence that 
the metafounder approach should be the preferred one 
for genomic evaluation across species.

The values of accuracy estimators confirm that 
the inclusion of genomic information increases the 
accuracy of the EBV of individuals without daughter 
records, which is consistent with other studies [41–44].

For âcc2p , we found extremely high values for mod-
els SSGBLUP-UPG and SSGBLUP-EUPG, due to val-
ues out of the parametric space. For example, for 
SSGBLUP-UPG and the comparison 2010–2015, 
cov

(
ûp, ûw

)
= 235 , var

(
ûp

)
= 283 and var

(
ûw

)
= 580 , 

when the genetic variance in the base population is 565. 
This could indicate a difficulty for these models to man-
age correctly missing pedigree through UPG and the 
genomic information. Values within the expected range 
of reliabilities were found for the other models, and the 
SSGBLUP-MF model reached the highest average value. 
These results agree with the values of estimators of the 
ratio of accuracies ( ρ̂wp and ρ̂2

p ), since the use of genomic 

Table 2 Average b̂p when  EBVp was estimated with one model and  EBVw with other model

Standard errors for all estimations between 0.01 and 0.02. Diagonal include b̂p when both  EBVp and  EBVw were estimated with the same model

EBVp EBVw

BLUP-MF BLUP-UPG SSGBLUP-EUPG SSGBLUP-MF SSGBLUP-UPG

BLUP-MF 0.98 1.01 1.29 0.98 1.32

BLUP-UPG 0.93 0.96 1.23 0.92 1.25

SSGBLUP-EUPG 0.88 0.61 0.84

SSGBLUP-MF 1.28 0.97 1.31

SSGBLUP-UPG 0.92 0.69 0.94

Table 3 Average (standard deviation) of  b̂p when  EBVp
* 

was  estimated with  BLUP and  EBVw
* was  estimated 

with SSGBLUP

EBVp EBVw

SSGBLUP-UPG SSGBLUP-EUPG SSGBLUP-MF

BLUP-UPG 1.27 (0.06) 1.21 (0.07) 0.93 (0.05)

BLUP-MF 1.34 (0.06) 1.27 (0.07) 0.98 (0.05)
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information increases the reliability of EBV estimated 
without daughter records. We should note that âcc2p 
tries to estimate the square of the correlation between 
EBV and TBV in the focal individuals, that are selected 
and with reduced variance, whereas r̂elp would be the 
squared correlation if they were unselected. These two 
estimators have different purposes in practice [20]: the 
first, populational reliability âcc2p , describes the possi-
ble genetic gain, whereas the second describes stability 
of EBV. In the current breeding scheme of the Manech 
Tête Rousse, more candidates are genotyped for selec-
tion, so that our estimate âcc2p is possibly a lower bound.

Concerning the bias ( ̂�p ), the lowest values were observed 
when MF were used to model the missing pedigree. As for 
the estimator of dispersion ( ̂bp ), we did not observe impor-
tant over- or under-dispersion, except for SSGBLUP-EUGP. 
The closest values to 1 of this estimator were obtained when 
we used BLUP-MF and SSGBLUP-MF. Similar results were 
obtained in a recent work [18], which indicates that MF could 
be the best option to manage missing pedigree for SSGBLUP 
models. In the case of SSGBLUP-EUPG, an important infla-
tion of EBV was observed. A possible cause for this behavior 
could be that EUPG ignores the covariance between genetic 
groups (average relationship across MF is 0.38) whereas this 
relationship is included in G . Similar results were reported by 
[18] using simulated data to compare the same three strate-
gies to model missing parents, and they found that MF gen-
erated the smallest bias in evaluations.

In general, when BLUP or SSGBLUP_MF were used, no 
bias was found, although Legarra et al. [14] found biases 
in these same breeds using DYD both as pseudo-pheno-
types and for validation. However, as we already men-
tioned, the validation set in [14] was composed of rams 
born in 2008–2009 with predictions that were also biased 
according to the LR method, which was due to a problem 
in collecting elite rams across flocks.

Finally, we consider important to highlight that a single 
cut-off point to estimate accuracy or bias is highly uncer-
tain, as shown in Fig. 1. Breeding schemes should not rely 
on a single study based on a single point in time to define 
models for genetic evaluation.

Conclusions
The addition of genomic information increases the accu-
racy of the EBV of young rams in Manech Tête Rousse. 
In this population, that has missing pedigrees, the use 
of UPG and “exact UPG” in SSGBLUP produced bias, 
whereas MF yielded unbiased estimates and, thus we rec-
ommend its use. We also recommend assessing biases 
and accuracies using multiple truncation points, as these 
statistics are subject to random variation.
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Appendix
R code to obtain estimable functions of statistics in LR 
method
We used function estimable() from the R package Gmod-
els v. 2.18.1

#https ://www.rdocu menta tion.org/packa ges/gmode ls/
versi ons/2.18.1/topic s/estim able

library(gmodels)
# read input file
input = read.table(“input.txt”)
# 1 represent the intercept, 9 is number of years in “par-

tial” minus one (included in the intercept), 10 is number 
of years in “whole” minus one (included in the intercept) 
cm = c(1,rep(1/9,9),rep(1/10,10))

# example with bias
lm_bias  =  lm( bias  ~ as . factor(y_par t ia l )  +  a s .

factor(y_whole),data = input)
# estimable function
estimable(lmbias,cm,conf.int = 0.95)

https://www.rdocumentation.org/packages/gmodels/versions/2.18.1/topics/estimable
https://www.rdocumentation.org/packages/gmodels/versions/2.18.1/topics/estimable
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