, Near-term Climate Change: Projections and Predictability, Climate Change 2013 - The Physical Science Basis, pp.953-1028

M. R. Allen, Framing and Context. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts To Eradicate Poverty, 2019.

C. P. Reyer, S. Leuzinger, A. Rammig, A. Wolf, R. P. Bartholomeus et al., A plant's perspective of extremes: terrestrial plant responses to changing climatic variability, Global Change Biology, vol.19, issue.1, pp.75-89, 2012.

B. Choat, T. J. Brodribb, C. R. Brodersen, R. A. Duursma, R. López et al., Triggers of tree mortality under drought, Nature, vol.558, issue.7711, pp.531-539, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01840984

C. Huntingford, P. Zelazowski, D. Galbraith, L. M. Mercado, S. Sitch et al., Simulated resilience of tropical rainforests to CO2-induced climate change, Nature Geoscience, vol.6, issue.4, pp.268-273, 2013.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, vol.408, issue.6809, pp.184-187, 2000.

B. G. Drake, M. A. Gonzàlez-meler, and S. P. Long, MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2?, Annual Review of Plant Physiology and Plant Molecular Biology, vol.48, issue.1, pp.609-639, 1997.

M. L. Roderick, P. Greve, and G. D. Farquhar, On the assessment of aridity with changes in atmospheric CO 2, Water Resources Research, vol.51, issue.7, pp.5450-5463, 2015.

S. C. Dekker, M. Groenendijk, B. B. Booth, C. Huntingford, and P. M. Cox, Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations, Earth System Dynamics, vol.7, issue.2, pp.525-533, 2016.

B. E. Medlyn, C. V. Barton, M. S. Broadmeadow, R. Ceulemans, P. De-angelis et al., Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis, New Phytologist, vol.149, issue.2, pp.247-264, 2001.

Y. Ryu, J. A. Berry, and D. D. Baldocchi, What is global photosynthesis? History, uncertainties and opportunities, Remote Sensing of Environment, vol.223, pp.95-114, 2019.

C. Le-quere, Global sea-level budget 1993?present, Earth System Science Data, vol.10, issue.3, pp.1551-1590, 2018.

S. Wenzel, P. M. Cox, V. Eyring, and P. Friedlingstein, Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2, Nature, vol.538, issue.7626, pp.499-501, 2016.

J. E. Campbell, J. A. Berry, U. Seibt, S. J. Smith, S. A. Montzka et al., Large historical growth in global terrestrial gross primary production, Nature, vol.544, issue.7648, pp.84-87, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606012

J. Berry, A. Wolf, J. E. Campbell, I. Baker, N. Blake et al., A coupled model of the global cycles of carbonyl sulfide and CO 2 : A possible new window on the carbon cycle, Journal of Geophysical Research: Biogeosciences, vol.118, issue.2, pp.842-852, 2013.

M. E. Whelan, S. T. Lennartz, T. E. Gimeno, R. Wehr, G. Wohlfahrt et al., Reviews and syntheses: Carbonyl sulfide as a multi-scale tracer for carbon and water cycles, Biogeosciences, vol.15, issue.12, pp.3625-3657, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104411

D. Asaf, E. Rotenberg, F. Tatarinov, U. Dicken, S. A. Montzka et al., Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux, Nature Geoscience, vol.6, issue.3, pp.186-190, 2013.

V. Haverd, B. Smith, L. Nieradzik, P. R. Briggs, W. Woodgate et al., A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis, Geoscientific Model Development, vol.11, issue.7, pp.2995-3026, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02621478

P. J. Franks, J. A. Berry, D. L. Lombardozzi, and G. B. Bonan, Stomatal Function across Temporal and Spatial Scales: Deep-Time Trends, Land-Atmosphere Coupling and Global Models, Plant Physiology, vol.174, issue.2, pp.583-602, 2017.

E. A. Ainsworth and A. Rogers, The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant, Cell & Environment, vol.30, issue.3, pp.258-270, 2007.

G. D. Farquhar, M. H. O'leary, and J. A. Berry, On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves, Functional Plant Biology, vol.9, issue.2, p.121, 1982.

L. A. Cernusak, N. Ubierna, K. Winter, J. A. Holtum, J. D. Marshall et al., Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants, New Phytologist, vol.200, issue.4, pp.950-965, 2013.

G. D. Farquhar, J. R. Ehleringer, and K. T. Hubick, Carbon Isotope Discrimination and Photosynthesis, Annual Review of Plant Physiology and Plant Molecular Biology, vol.40, issue.1, pp.503-537, 1989.

L. A. Cernusak, Gas exchange and water?use efficiency in plant canopies, Plant Biology, vol.22, issue.S1, pp.52-67, 2018.

J. Flexas, M. Carriquí, R. E. Coopman, J. Gago, J. Galmés et al., Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change?, Plant Science, vol.226, pp.41-48, 2014.

J. R. Ehleringer and T. E. Cerling, Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants, Tree Physiology, vol.15, issue.2, pp.105-111, 1995.

C. J. Still, J. A. Berry, G. J. Collatz, and R. S. Defries, Global distribution of C3and C4vegetation: Carbon cycle implications, Global Biogeochemical Cycles, vol.17, issue.1, p.6-1-6-14, 2003.

D. C. Frank, Water-use efficiency and transpiration across European forests during the Anthropocene, Nat. Clim. Chang, vol.5, pp.579-583, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02467515

P. Van-der-sleen, P. Groenendijk, M. Vlam, N. P. Anten, A. Boom et al., No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased, Nature Geoscience, vol.8, issue.1, pp.24-28, 2014.

M. Saurer, R. T. Siegwolf, and F. H. Schweingruber, Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years, Global Change Biology, vol.10, issue.12, pp.2109-2120, 2004.

J. Peñuelas, J. G. Canadell, and R. Ogaya, Increased water-use efficiency during the 20th century did not translate into enhanced tree growth, Global Ecology and Biogeography, vol.20, issue.4, pp.597-608, 2010.

K. M. Keller, S. Lienert, A. Bozbiyik, T. F. Stocker, O. V. Churakova-(sidorova) et al., 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models, Biogeosciences, vol.14, issue.10, pp.2641-2673, 2017.

G. A. Wang and X. H. Feng, Response of Plants? Water Use Efficiency to Increasing Atmospheric CO2Concentration, Environmental Science & Technology, vol.46, issue.16, pp.8610-8620, 2012.

J. D. Marshall and R. A. Monserud, Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers, Oecologia, vol.105, issue.1, pp.13-21, 1996.

S. L. Voelker, J. R. Brooks, F. C. Meinzer, R. Anderson, N. F. Bader et al., A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies, Global Change Biology, vol.22, issue.2, pp.889-902, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01516281

R. J. Brienen, E. Gloor, S. Clerici, R. Newton, L. Arppe et al., Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes, Nature Communications, vol.8, issue.1, p.288, 2017.

N. G. Mcdowell, B. J. Bond, L. T. Dickman, M. G. Ryan, and D. Whitehead, Relationships Between Tree Height and Carbon Isotope Discrimination, Tree Physiology, pp.255-286, 2011.

D. Bonal, S. Ponton, D. Le-thiec, B. Richard, N. Ningre et al., Leaf functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species: a historical ?13C and ?18O approach using herbarium samples, Plant, Cell & Environment, vol.34, issue.8, pp.1332-1344, 2011.
URL : https://hal.archives-ouvertes.fr/halsde-00675165

L. C. Pedicino, Southwestern Collection, Southwestern Historical Quarterly, vol.123, issue.3, pp.345-359, 2020.

J. Penuelas and J. Azcon-bieto, Changes in leaf Delta13C of herbarium plant species during the last 3 centuries of CO2 increase, Plant, Cell and Environment, vol.15, issue.4, pp.485-489, 1992.

R. F. Keeling, H. D. Graven, L. R. Welp, L. Resplandy, J. Bi et al., Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis, Proceedings of the National Academy of Sciences, vol.114, issue.39, pp.10361-10366, 2017.

Y. Yang, M. L. Roderick, S. Zhang, T. R. Mcvicar, and R. J. Donohue, Hydrologic implications of vegetation response to elevated CO2 in climate projections, Nature Climate Change, vol.9, issue.1, pp.44-48, 2018.

B. E. Medlyn, R. A. Duursma, D. Eamus, D. S. Ellsworth, I. C. Prentice et al., Reconciling the optimal and empirical approaches to modelling stomatal conductance, Global Change Biology, vol.17, issue.6, pp.2134-2144, 2011.

P. J. Franks, M. A. Adams, J. S. Amthor, M. M. Barbour, J. A. Berry et al., Sensitivity of plants to changing atmospheric CO2concentration: from the geological past to the next century, New Phytologist, vol.197, issue.4, pp.1077-1094, 2013.

E. I. Lammertsma, H. J. Boer, S. C. Dekker, D. L. Dilcher, A. F. Lotter et al., Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation, Proceedings of the National Academy of Sciences, vol.108, issue.10, pp.4035-4040, 2011.

D. L. Royer, Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration, Review of Palaeobotany and Palynology, vol.114, issue.1-2, pp.1-28, 2001.

D. J. Beerling and D. L. Royer, Reading a CO2 signal from fossil stomata, New Phytologist, vol.153, issue.3, pp.387-397, 2002.

P. J. Franks and D. J. Beerling, Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time, Proceedings of the National Academy of Sciences, vol.106, issue.25, pp.10343-10347, 2009.

A. J. Miller-rushing, R. B. Primack, P. H. Templer, S. Rathbone, and S. Mukunda, Long-term relationships among atmospheric CO2 , stomata, and intrinsic water use efficiency in individual trees, American Journal of Botany, vol.96, issue.10, pp.1779-1786, 2009.

T. J. Brodribb, S. A. Mcadam, G. J. Jordan, and T. S. Feild, Evolution of stomatal responsiveness to CO2and optimization of water-use efficiency among land plants, New Phytologist, vol.183, issue.3, pp.839-847, 2009.

R. J. Donohue, M. L. Roderick, T. R. Mcvicar, and G. D. Farquhar, Impact of CO2fertilization on maximum foliage cover across the globe's warm, arid environments, Geophysical Research Letters, vol.40, issue.12, pp.3031-3035, 2013.

Z. C. Zhu, Greening of the Earth and its drivers, Nat. Clim. Chang, vol.6, pp.791-795, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02894738

Y. Zhang, J. L. Peña-arancibia, T. R. Mcvicar, F. H. Chiew, J. Vaze et al., Multi-decadal trends in global terrestrial evapotranspiration and its components, Scientific Reports, vol.6, issue.1, 2016.

H. W. Linderholm, Growing season changes in the last century, Agricultural and Forest Meteorology, vol.137, issue.1-2, pp.1-14, 2006.

S. J. Jeong, C. Ho, H. Gim, and M. E. Brown, Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008, Global Change Biology, vol.17, issue.7, pp.2385-2399, 2011.

M. U. Kirschbaum and A. M. Mcmillan, Warming and Elevated CO2 Have Opposing Influences on Transpiration. Which is more Important?, Current Forestry Reports, vol.4, issue.2, pp.51-71, 2018.

T. F. Keenan, Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, Nature, vol.499, pp.324-327, 2013.

L. Cheng, L. Zhang, Y. Wang, J. G. Canadell, F. H. Chiew et al., Recent increases in terrestrial carbon uptake at little cost to the water cycle, Nature Communications, vol.8, issue.1, p.110, 2017.

M. J. Wang, Y. Chen, X. Wu, and Y. Bai, Forest?Type?Dependent Water Use Efficiency Trends Across the Northern Hemisphere, Geophysical Research Letters, vol.45, issue.16, pp.8283-8293, 2018.

A. Lavergne, H. Graven, M. G. De-kauwe, T. F. Keenan, B. E. Medlyn et al., Observed and modelled historical trends in the water?use efficiency of plants and ecosystems, Global Change Biology, 2019.

A. L. Swann, F. M. Hoffman, C. D. Koven, and J. T. Randerson, Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity, Proceedings of the National Academy of Sciences, vol.113, issue.36, pp.10019-10024, 2016.

V. Humphrey, Sensitivity of atmospheric CO 2 growth rate to observed changes in terrestrial water storage, Nature, vol.560, pp.628-631, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02895026

H. R. Mccarthy, R. Oren, K. H. Johnsen, A. Gallet-budynek, S. G. Pritchard et al., Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development, New Phytologist, vol.185, issue.2, pp.514-528, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02667089

R. J. Norby, CO2 enhancement of forest productivity constrained by limited nitrogen availability, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.19368-19373, 2010.

M. G. Ryan, Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research, Tree Physiology, vol.33, issue.11, pp.1123-1131, 2013.

B. D. Sigurdsson, Growth of mature boreal Norway spruce was not affected by elevated CO2 and/or air temperature unless nutrient availability was improved, Tree Physiol, vol.33, pp.1192-1205, 2013.

M. K. Bader, R. Siegwolf, and C. Körner, Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment, Planta, vol.232, issue.5, pp.1115-1125, 2010.

R. P. Phillips, E. S. Bernhardt, and W. H. Schlesinger, Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response, Tree Physiology, vol.29, issue.12, pp.1513-1523, 2009.

S. Palmroth, R. Oren, H. R. Mccarthy, K. H. Johnsen, A. C. Finzi et al., Aboveground sink strength in forests controls the allocation of carbon below ground and its [CO2]-induced enhancement, Proceedings of the National Academy of Sciences, vol.103, issue.51, pp.19362-19367, 2006.

J. E. Drake, Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO 2, Ecol. Lett, vol.14, pp.349-357, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652586