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Abstract
Easy-to-use tools using modern data analysis techniques are needed to handle spatio-tem-
poral agri-data. This research proposes a novel pattern recognition-based method, Multi-
temporal Yield Pattern Analysis (MYPA), to reveal long-term (> 10 years) spatio-temporal 
variations in multi-temporal yield data. The specific objectives are: i) synthesis of informa-
tion within multiple yield maps into a single understandable and interpretable layer that is 
indicative of the variability and stability in yield over a 10 + years period, and ii) evaluation 
of the hypothesis that the MYPA enhances multi-temporal yield interpretation compared to 
commonly-used statistical approaches. The MYPA method automatically identifies poten-
tial erroneous yield maps; detects yield patterns using principal component analysis; evalu-
ates temporal yield pattern stability using a per-pixel analysis; and generates productivity-
stability units based on k-means clustering and zonal statistics. The MYPA method was 
applied to two commercial cereal fields in Australian dryland systems and two commercial 
fields in a UK cool-climate system. To evaluate the MYPA, its output was compared to 
results from a classic, statistical yield analysis on the same data sets. The MYPA explained 
more of the variance in the yield data and generated larger and more coherent yield zones 
that are more amenable to site-specific management. Detected yield patterns were associ-
ated with varying production conditions, such as soil properties, precipitation patterns and 
management decisions. The MYPA was demonstrated as a robust approach that can be 
encoded into an easy-to-use tool to produce information layers from a time-series of yield 
data to support management.
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Introduction

Yield data were one of the earliest forms of precision agriculture (PA) data available to 
growers and researchers, with Global Navigation Satellite System (GNSS) enabled grain 
yield monitors becoming commercially available in the early 1990s. The spatial variation 
displayed in these early grain maps was certainly a principal driver for the initial develop-
ment of site-specific crop management. Grain yield mapping remains widely accessible to 
growers in mechanized production systems and is the only definitive method for spatially 
auditing the actual at-harvest yield. Despite this, the adoption of yield mapping has been 
relatively slow (Bramley 2009; Fountas et  al. 2005; Kutter et  al. 2011; Say et  al. 2018; 
Schimmelpfennig and Ebel 2011), and a recent survey in Australia (Bramley and Ouzman 
2018) has identified that yield maps are considered to be under-used by the industry and 
growers. Despite this, Bramley and Ouzman (2018) reported that the adoption and use of 
yield maps was highly “valuable as a lever to gaining ‘buy-in’ to sensing and PA more 
broadly”.

There are several complementary reasons for yield data being under-utilised.

	 (i)	 Yield data can be inherently noisy and there are a variety of operational and calibra-
tion conditions that contribute to the noise in the data (Leroux et al. 2018a; Lyle 
et al. 2013). Noisy data are often difficult to interpret when mapped, and while many 
approaches for data-filtering and mapping have been proposed (e.g. Lyle et al. 2013; 
Robinson and Metternicht 2005; Sudduth and Drummond 2007; Sun et al. 2013 
among others), these have not been well translated into industry services for growers 
to date (Leroux et al. 2018b).

	 (ii)	 Spatial yield patterns are also often affected by managerial as well as environmental 
effects. Local expertise is therefore often needed for correct interpretation, which 
requires a time investment from the grower and the service provider. Yield maps 
can also be potentially unstable, particularly in dryland systems, where differences 
in the amount and timing of precipitation often influences yield patterns (see Taylor 
et al. 2007 for examples).

	 (iii)	 Increasing time-series may make interpretation more difficult, not easier, in the 
absence of clear agri-diagnostic tools to simplify the multi-seasonal yield data. Even 
if data are correctly processed and local expertise is available to interrogate the yield 
maps, adding additional layers each year/season can make long-term visual and 
statistical interpretation more difficult.

All these issues mean that interpreting yield patterns, and therefore deriving spatial 
decisions from spatio-temporal yield data, is rarely a straightforward process. In the first 
instance, growers would like to know where yield is temporally consistent; consistently 
high, low or average, and where yield response is more variable over time, i.e. inconsistent.

From an early stage of yield monitor data analysis, it has been recognized that the inter-
annual temporal variability in yield patterns may be as important as annual spatial yield 
variability (McBratney et  al. 1997). Based on per-pixel calculations, multiple studies in 
the late 1990s and early 2000s investigated temporal variation using local yield means 
and variance statistics on relatively short time series of yield maps (2–6  years) (Black-
more and Moore 1999; Blackmore et al. 2003; Li et al. 2007; Ping and Dobermann 2005; 
Ping et al. 2005; Stafford et al. 1996). These statistical approaches assumed that crop yield 
response and its spatial distribution are mainly affected by permanent soil characteristics, 
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which leads to the same spatial yield pattern in each year (Blackmore et al. 2003). How-
ever, non-stable factors (e.g. climate patterns, crop type and rotation, soil water content, 
infiltration and crop water use) also have a significant influence on spatio-temporal yield 
variability and interact dynamically with spatially stable properties (e.g. soil texture, land-
scape position) (Basso et al. 2012). Such interactions impose a clear limitation on statisti-
cal approaches to analysing spatio-temporal yield variability. However, it should be noted 
that the analysis of the variability in multi-year yield data is not necessarily only limited to 
the coherence and stability of yield patterns. Spatio-temporal yield data has also been used 
to inform other decision models, such as drainage effects in irrigated corn (Delbecq et al. 
2012), however, the models used in such approaches are not valid for yield pattern analysis.

Most previous research using yield data has focused on spatial analysis of yield and 
not on the temporal or spatio-temporal variability in yield data (Griffin et al. 2008; McK-
inion et al. 2010; Stafford et al. 1996). In part, this may be explained by a realization that 
the early temporal studies were data-limited and based on some assumptions of stability 
between crop types and rotations (Bakhsh et al. 2000; Kitchen et al. 2005; Ping and Dober-
mann 2005). These short time series were unlikely to capture the full range of potential 
crops, rotations and potential production climatic conditions. This limitation no longer 
exists and time series of yield data > 10 years and across multiple rotations are commonly 
available (e.g. Leroux et al. 2018b) when working with growers who were early adopters of 
grain yield monitoring in the 1990s and early 2000s. These longer time series form a more 
coherent and robust data set, which should facilitate a better understanding of temporal and 
spatio-temporal variation in production. It also permits temporal analyses to be targeted 
to specific conditions e.g. a specific crop type or specific climatic pattern (Leroux et  al. 
2018b. However, as noted above, longer time series pose a problem for visual interpreta-
tion. Interpreting 10–20 + individual yield maps is not an easy task, especially if the maps 
contain noise and artefacts.

To realize the potential of having long time series of high spatial resolution yield data, 
easy-to-use tools with modern data analysis techniques are needed to handle these data 
(Bramley and Ouzman 2018). Such tools must support high throughput computation and 
deliver interpretable and understandable results to producers and agronomists at a low 
computational cost (Bauckhage and Kersting 2013; Raj et al. 2015). Despite the recognized 
need, methods to simplify and interrogate observed (spatio-) temporal yield variation for 
site-specific decision-making are not available to growers. Recent papers have revisited this 
need: Leroux et al. (2018b) worked from a presumption that the yield data are cleaned but 
not interpolated, i.e. they exist as irregular points, and using a multivariate segmentation 
approach. Layton et al. (2019) developed a probability-based approach for identifying yield 
productivity zones, assuming that the yields corresponding to a given yield productivity 
zone behave similarly and therefore derive from the same probability distribution. Other 
studies have formed some assumption between crop vigour and yield and used multi-tem-
poral satellite imagery to interrogate temporal variation in production (e.g. Boydell and 
McBratney 2002; Georgi et al. 2018; Tagarakis et al. 2013). These approaches tend to use 
image analysis techniques (or derivatives). When yield is correctly interpolated onto a reg-
ular grid, an image is generated. It is therefore possible to directly apply image analysis 
techniques to interpolated yield dat—either by assuming each map is a single-band image 
or each map is a band within a constructed multi-band image.

Generally, digital image processing and analysis in the remote sensing discipline uses 
simple or complex computer algorithms to reduce noise in data and prepare images for 
subsequent processing, information extraction and interpretation. Simple arithmetic 
pixel operations (e.g. data sums and differences, colour mixing, multispectral ratio and 
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vegetation indices) and more complex pixel operations (e.g. spectral transformations) 
allow for image enhancement, feature extraction and pattern recognition by exploiting the 
resulting (sometimes synthetic) images (Albertz 2009; Sabins 1996; Schowengerdt 2007). 
In a multi-temporal context (e.g. satellite time series analysis), these spectral operations are 
highly suitable for the evaluation of spatio-temporal pattern variability and change detec-
tion (e.g. Blasch et al. 2015a, b). They should equally be suitable to the analysis of yield 
map time-series; however, such an approach has yet to be tested.

To address the limitation of commonly-used purely statistical approaches, the need for 
easy-to-use tools capable of the efficient handling of high-resolution yield data and long 
yield map time series, and the demand of interpretable and understandable results for 
growers and agronomists, this study proposes a novel pattern recognition-based method—
the Multi-temporal Yield Pattern Analysis (MYPA)—to reveal the long-term variation in 
yield, expressed in categorical productivity-stability units (PSUs). A PSU is a relatively 
homogenous unit in terms of its relative productivity (yield) each year and the temporal 
stability of this relative yield. The overall goal is to develop an alternative method to purely 
statistical approaches, based on modern image analysis techniques. The specific objec-
tives are: to i) detect erroneous data sets within the yield map time series, ii) synthesis the 
information within multiple yield maps into a single understandable and interpretable layer 
that indicates the relative yield response and its stability over a 10 + years period by using 
principal component analysis (PCA), statistical per-pixel calculations and k-means clus-
tering, and iii) evaluate the hypothesis that the novel MYPA approach enhances insights 
into spatio-temporal yield variation compared to existing statistical approaches. To evalu-
ate the hypothesis, the MYPA output was compared and validated to a statistical approach 
(STAT), adopted from the methods proposed by Blackmore et  al. (2003) and Ping and 
Dobermann (2005).

Materials and methods

Sites description

Four fields were chosen for validation of the MYPA. The fields were characterized 
by having a relatively long time series of available yield data (10 + years). Two rela-
tively large fields (Field 1: 80 ha; Field 2: 132 ha) were available from the cropping 
belt near Gurley (− 9.8204, 150.0314) in North-West New South Wales, Australia, 
and two smaller fields (Field 3: 21  ha; Field 4: 25  ha) from a lowland arable farm 
near Warkworth (55.3597, − 1.6485) Northumberland, UK. These provided two con-
trasting production systems on which to test the methodology. The Australian fields, 
with predominantly heavy cracking clays, are dryland production systems in a humid, 
subtropical zone with warm to hot summers (average annual maximum temperature of 
26.1 °C) and summer dominant rainfall. The annual average precipitation is ~ 650 mm. 
Winter cropping systems are short (~ 6 months) and reliant on stored moisture rather 
than in-season precipitation. Wheat production is strongly water-limited and typically 
2–5 ton ha−1 on average. The UK fields mainly contained loamy and light clayey soils 
with slow hydraulic permeability. The fields are in a cool-climate production system 
(annual average maximum temperature is 12.2  °C) with regular monthly rainfall dis-
persed throughout the year (annual average precipitation of 690  mm). The growing 
season for winter crops is longer (~ 9 to 11 months) and wheat yields tend to be 7–10 
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ton ha−1 on average. Yield is strongly temperature/radiation limiting, and despite the 
small difference in annual precipitation with the Australian sites, waterlogging is often 
more problematic than water-deficit due to the much lower levels of evapotranspiration 
in northern England.

Pre‑processing of yield data and yield map generation

Yield maps were obtained for a 10 + year period for all four fields. Not every year 
had available yield data, either due to crop failure (Australian fields), fallow rota-
tions, alternative crops (particularly potatoes in the UK) or poor yield sensor operation 
(missing data). Yield data from the Australian fields was not available after 2006 due 
to a reorganization of the field boundaries. If the yield data for a year was missing, 
nonsensical or not relevant, then it was not included in the analysis. The decision on 
which years to include, or not include, was subjective and involved some local knowl-
edge. Table 1 lists the yield data from grain and seed crops that were considered suit-
able after discussion with the growers for mapping and use in the analysis.

The following data pre-processing steps are based on the protocol of Taylor et  al. 
(2007) for establishing management classes, developed for broadacre production sys-
tems at The University of Sydney. The yield data were filtered and cleaned to remove 
outliers and erroneous values before interpolation. Due to differences in mean yield 
between the Australian and UK fields and between canola and wheat in the UK, poten-
tial yield values were set to 0.1–10 ton ha−1 for all Australian fields and canola fields 
in the UK and to 1–20 ton ha−1 for UK wheat fields. Values outside these ranges were 
considered improbably low, as even bare areas in fields still record yield due to decon-
volution within the combines (Whelan and McBratney 2000), or impossibly high based 
on known yield potentials and removed as a first step in data clean-up. Each field was 
then individually trimmed to values within ± 2.5σ (σ = standard deviation) of the field 
mean. This follows the simple filtering approach proposed by Taylor et  al. (2007) 
that was derived using similar yield data sets. Interpolation onto a 5 m grid was done 
using block-kriging (20 m blocks) with a local variogram using the Vesper shareware 
(Minasny et al. 2005). Statistics of the filtered yield are shown in Table 1. It is recog-
nized that the approach of Taylor et al. (2007) is simplistic and will not identify local 
spatial outliers and that other more sophisticated yield filtering approaches are now 
available (e.g. Leroux et al. 2018a; Vega et al. 2019). However, the use of local block 
kriging interpolation will provide additional smoothing of the data and has been shown 
to diminish the effect of local spatial outliers in the maps (Whelan and McBratney 
1999). There are various ways that the yield data could be pre-processed, but the key 
points are that a well understood and robust method was used and that the same inter-
polated data will used as an input into the different methods of deriving yield patterns. 
The interpolation grid was kept constant for each year so that all yield predictions were 
co-located at the end of the process and the same yield maps were used for all compar-
isons. Georeferenced single-band raster data sets (saved in the GeoTIFF format) were 
generated for each year yield map using R (R Core Team 2018) and the R package “sp” 
(Bivand et al. 2013; Pebesma and Bivand 2005). These raster data sets were stacked to 
a multi-temporal layer stack for subsequent use as input data.
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Multi‑temporal yield pattern analysis workflow

The intent of the analysis is to synthesis the information within multiple yield maps into a 
single layer as a final output/map.

The MYPA process uses the multi-temporal layer stack for both pattern detection and 
pattern stability analysis before determining yield PSUs. The four processing steps: (1) 
Data Preparation, (2) Pattern Detection, (3) Pattern Stability Analysis and (4) Delineation 
of PSUs are described in the following sections. The MYPA final output is a map repre-
senting yield PSUs (Fig.  1a) that indicates the relative yield response (e.g. high, low or 
medium) and how stable that response is (i.e. the certainty associated with it). While the 
final output is a single image, intermediate outputs are also generated and can also be inter-
rogated for relative yield only or stability only. The process is designed to be as automated 
as possible once a decision on suitable yield maps (and correct yield interpolation) has been 

Table 1   All study fields—
descriptive statistics of yield 
data collected from each year, 
including crop harvested. All 
data expressed as ton ha−1

Yield (ton ha−1) Mean Standard 
deviation

Minimum Maximum

Field 1—Australia
 Wheat 1997 3.45 1.28 0.40 6.27
 Sorghum 1998 5.41 0.71 3.05 7.21
 Chickpea 1999 1.31 0.32 0.06 2.25
 Wheat 2000 2.55 0.60 0.78 4.30
 Wheat 2004 4.85 0.59 2.52 6.22
 Sorghum 2005 3.53 0.54 1.65 4.80
 Chickpea 2006 1.70 0.35 0.87 2.58

Field 2—Australia
 Sorghum 1998 4.41 1.18 0.27 7.76
 Wheat 1999 4.28 1.03 0.46 6.66
 Sorghum 2001 3.73 1.11 0.07 7.09
 Wheat 2003 4.04 1.01 0.30 8.81
 Wheat 2005 3.93 0.73 1.23 7.17
 Wheat 2006 2.43 0.44 0.77 3.73

Field 3—UK
 Wheat 2002 8.24 0.77 5.85 10.44
 Canola 2004 3.65 0.76 1.90 6.17
 Canola 2007 4.15 0.20 3.15 4.79
 Wheat 2008 10.24 0.97 6.51 12.01
 Canola 2010 3.73 0.37 2.56 4.75
 Wheat 2014 8.99 0.86 5.60 10.80
 Canola 2016 2.71 0.23 1.77 3.30

Field 4—UK
 Wheat 2004 7.68 1.07 4.49 10.32
 Wheat 2007 9.57 0.81 5.58 11.30
 Canola 2011 5.23 0.33 3.39 6.30
 Wheat 2012 9.94 1.12 5.61 13.12
 Canola 2014 3.84 0.32 2.53 4.62
 Wheat 2015 12.58 1.39 7.47 15.71
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performed. Overall, the MYPA algorithm was implemented in R (R Core Team 2018)—a 
free software environment for statistical computing—using specific R packages for spatial 
and image analysis and raster/vector data such as “cluster” (Maechler et al. 2018), “gstat” 
(Pebesma 2004; Graeler et al. 2016), “raster” (Hijmans 2017), “rgdal” (Bivand et al. 2018), 
“RStoolbox” (Leutner et  al. 2018) and “sp” (Bivand et  al. 2013; Pebesma and Bivand 
2005), and basic R packages for plotting (“ggfortify”; Tang et  al. 2016; Horikoshi and 
Tang 2016) and statistical analysis (“stats”; R Core Team 2018). Maps were generated in 
QGIS (QGIS Development Team QGIS Development 2009) and all plots in R.

Data preparation

In order to analyse multi-temporal yield data from the same field, two main production 
constraints must be overcome: (a) the crop rotation effect and (b) the presence of erroneous 
data sets. The crop rotation effect refers to the varying absolute yield from year to year due 
to changing crop types within a specific crop rotation system or due to varying inter-annual 
weather conditions. Table 1 shows clearly that years with wheat or sorghum or canola have 
relatively high absolute yield values compared to years with chickpea (Australia: wheat: 
0.3–8.8 ton ha−1, sorghum: 0.1–7.8 ton ha−1, chickpea: 0.1–2.6 ton ha−1; UK: wheat: 
4.5–15.7 ton ha−1, canola: 1.8–6.3 ton ha−1). Generally, the physical soil properties (e.g. 
organic matter content, soil texture) of a field are relatively stable over the analysis period 
of 10 + years, if no major erosion events or extensive land use changes occur. Secondly, 
unusual or outlying data sets might exist in the time series. If these are erroneous due to 
specific management effects (e.g. one-off incorrect or unusual management decisions) and/
or sensor/calibration errors, they must be eliminated from the time series in order to avoid 
“contaminated” results. However, unusual data sets originating from soil, weather, site-
specific conditions or variable weather patterns should remain in the time series.

Fig. 1   Schematic illustrating the workflow and processing steps of a the proposed MYPA approach and b 
the conventional statistical-based STAT approach, including data preparation and key actions, to generate a 
final map
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To ensure a yield map time series free of erroneous yield map(s) for subsequent pro-
cessing, data normalization and semi-automated map outlier detection are performed on 
the layer stack. This ensures that maps will exhibit the same range of yield response, with-
out any influence of different crop types or crop rotation effects (Blackmore 2000). The 
two main goals of the data preparation step are;

a)	 Data normalization to permit comparison of yield from different crops with potentially 
very different absolute yield values (Li et al. 2007; Schenatto et al. 2017). For each layer 
(year), the yield maps were normalized to the maximum observed yield in that year 
(Table 1) using Eq. 1. This results in all maps having normalized yield values expressed 
between 1 and 2.

where Ynorm is the normalized yield pixel value, Y the original yield pixel value, and Ymin 
and Ymax the minimum and maximum pixel value from the same yield map within data 
set. A constant of 1 was added to the equation so that the output is in the range [1,2] and 
suitable for any type of subsequent analysis, i.e. it cannot contain zero values. The natural 
variation in yield originating from soil properties, other site-specific conditions (e.g. relief, 
hydrology) or weather are still preserved in the data.

b)	 The identification and elimination of outlier yield maps from the yield map time series; 
years with unusual yield data should be identified and omitted before analysis in con-
sultation with the grower/agronomist. However, this may not always be done properly. 
To validate the selected yield maps, a PCA was performed on the multi-temporal layer 
stack of all yield maps (see Yield Pattern Detection for PCA description).

Yield pattern detection

To detect spatio-temporal yield patterns, a transformation using PCA (R package “RStool-
box”; Leutner et  al. 2018) was used. The normalized yield maps form an image where 
each yield map layer is one spectral band in the image and each pixel is considered as a 
discrete point with n years of yield data. The PCA transformation—a linear transforma-
tion of the (usually) correlated original spectral bands—is a common complex pixel opera-
tion in image analysis. It allows the analysis of highly correlated multi-dimensional data 
to remove redundant information, isolate noise components and reduce dimensionality 
without significant information loss (Panda et al. 2010). By rotating original spectral bands 
to a data variance maximum, the uncorrelated output bands (principal components—PCs) 
allow for the identification of patterns in the data, here yield data. The PCs highlight simi-
larities and differences between bands (maps) to reveal the underlying dimensionality in 
the multi-band image. They also form a method of compressing the original image data 
(Abdel-Kader 2011; Mulla 2013; Smith 2002). This makes PCA a powerful tool for pat-
tern recognition. Compared to the classic statistical approaches, as proposed by Blackmore 
et al. (2003), the PCA approach is free of any one or more factorial assumptions regarding 
inter-annual repetitiveness of yield response and its spatial distribution.

Following the PCA, plots of the first and second PCs (PC1 and PC2) and the eigen-
vectors associated with each layer (yield map) can be used to quickly and easily iden-
tify potential issues. If an outlying map is detected, the reasons for it being an outlier are 

(1)Ynorm =
Y − Ymin

Ymax − Ymin
+ 1
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investigated. If it is considered to be erroneous (e.g. due to specific management effects, 
sensor/calibration errors), it is removed, usually after consultation with an expert with local 
field knowledge, such as the grower or agronomist. If data is removed, the PCA is repeated 
on the remaining layers until a stable solution (no clear outlying maps) is found. If a good 
selection process was employed in the pre-processing, then it is very plausible to have no 
outliers identified and no data removed at this step. This process is considered useful and 
necessary because it permits spatial differences in yield response to be simply expressed as 
a graph. The PC1 vs PC2 graph may help to identify issues not immediately obvious from 
a visual inspection of the maps. It also permits the user to err towards keeping, instead of 
omitting, maps in the initial selection of the yield data in the knowledge that truly unusual 
maps will be removed at this step.

Once a stable outcome from the PCA is achieved, the band (normalized yield) and PC 
values were extracted for each pixel, a linear regression performed for all combinations 
of years and PCs and the coefficient of determination (R2) computed. PCs with at least a 
moderate relationship (R2 ≥ 0.5) with at least one year of data were selected for the final 
processing according to the rationale that if over half the variation in any one yield map 
was explained, then the PC was relevant for management and must be included.

Temporal pattern stability analysis

The temporal stability of the normalized yield response was determined by using statistical 
per-pixel analysis on the layer stack. For each pixel, the standard deviation (σ) of normal-
ized yield was calculated across the multi-year stack. This generated a single final image 
of the σ of yield response, i.e. the relative stability of normalized yield response, across all 
analysed field-years.

Yield productivity‑stability units delineation

The best performing PCs (§ Yield pattern detection) selected for yield productivity 
and the overall stability σ (§ Temporal pattern stability analysis) were subsequently 
stacked into one final layer stack. The k-means clustering algorithm (R package “clus-
ter”; Maechler et al. 2018) was used to find groups (clusters) in the unlabelled data of 
the final stack. Briefly, the k-means clustering method aims to allocate the pixel val-
ues of desired data layers (here: various PCs and σ) into k-classes (clusters) in order to 
minimize the within-class variability and maximize the differences between the means 
of the k-classes (Hartigan and Wong 1979). Hard and soft (fuzzy) k-means clustering 
are widely used approaches for management class/zone delineation in PA (e.g. Guasta-
ferro et al. 2010; Lark and Stafford 1997; Moral et al. 2010; Morari et al. 2009; Ortega 
and Santibáñez 2007; Pedroso et al. 2010; Ping and Dobermann 2005; Ping et al. 2005; 
Rodrigues Junior et al. 2011; Tagarakis et al. 2013; Taylor et al. 2007; Van Meirvenne 
et  al. 2013). Easy-to-manage and coherent management units are desired for site-spe-
cific management (Tisseyre and McBratney 2008). Statistical approaches to calculate 
the optimum solution from fuzzy k-means classification algorithms exist (Boydell and 
McBratney 2002; Córdoba et  al. 2013), but an agronomic solution for the optimum 
number of management units remains somewhat subjective. From the final layer stack, 
a 2-, 3-, 4-, 5-, 6- and 7-class solution from the k-means classification was performed to 
produce final PSUs options. In order to identify a preferred value for k, a validation step 
was performed using the zonal opportunity index derived from McBratney et al. (2000). 



	 Precision Agriculture

1 3

This index is based on the result of a multivariate analysis of variance (MANOVA) and 
the number and size of discrete PSUs generated from the 2–7-class solutions (details 
given in § Validation of final map quality and comparison of methods). Once the best 
solution was identified, PSU mean values of all yield data sets (excluding removed erro-
neous data sets), selected PCs, and the overall stability (σ) were calculated for each 
PSU. These PSU statistics were used to assign a descriptive label to each specific PSU 
indicating both productivity and stability, such as (a) high productive and stable, (b) 
high productive and unstable, (c) low productive and stable and (d) low productive and 
unstable. To assign the labels, all PSUs were first ranked according to their average 
yield response across all years and then secondly, the overall stability (high or low) of 
the two highest yield response clusters were analysed and described. For example, if 
for a specific cluster, the majority of yield data sets showed a high zonal mean yield 
response and a low σ, it was assigned to the high productive and stable unit, if the 
majority showed a high yield response and a higher σ than the neighbouring PSU, it is 
the high productive and unstable unit.

Statistical approach for multi‑temporal yield data analysis

As the intent is to propose an alternative approach to multi-temporal yield analysis, the 
MYPA output was compared and validated against a purely statistical approach (STAT), 
derived from the method of Blackmore et al. (2003) and Ping and Dobermann (2005), 
applied to the same initial data set.

The STAT approach differs in two main areas, i) the visual outlier detection in the 
data preparation step, such that the final selected yield data stacks could differ between 
the two approaches and ii) the yield pattern detection step that does not use any form of 
data compression or translation (PCA) (Fig. 1b). It only uses a statistical simplification 
to calculate the pixel mean (µ) across the normalized yield maps. All other processing 
steps were kept equal to the MYPA approach in order to maintain comparability. Con-
sequently, the σ layer is the same as the layer used for the MYPA approach (§ Tempo-
ral Pattern Stability Analysis). A two-layer stack, comprising the µ and σ layers, was 
generated to delineate PSUs. To make a direct comparison between both approaches 
possible, the PSUs were derived using the same k-means classification as the MYPA 
approach (and again with a range of 2–7 for k) and validated the same way (§ Validation 
of final map quality and comparison of methods) to assess the STAT PSU outputs. Lin-
ear regression analysis was used to reveal the relationships between the individual year 
yield data, individual PCs and µ.

Validation of final map quality and comparison of methods

To validate the quality of the PSU map outputs and statistically compare which approach 
delineated more feasible PSUs (PSUMYPA vs. PSUSTAT​), the following three methods were 
used: (a) MANOVA, (b) descriptive statistical analysis and (c) zonal opportunity index. 
The zonal opportunity index is also a key component of the cluster validation step during 
the PSUs delineation procedure. It allows for the identification of the best class solution 
(i.e. the most suitable number of PSUs) and the corresponding k-level (§ Yield productiv-
ity-stability units delineation).
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Multivariate analysis of variance

A MANOVA analysis was performed with the yield data as the dependent variables and 
the derived PSUs from the two different approaches (PSUMYPA and PSUSTAT​) as the inde-
pendent variables. MANOVA uses discriminant analysis to reduce the multi-temporal yield 
data to a single variable that is then related to the yield units of both approaches (Olson 
1974). It has been shown to be effective in assessing the quality of zoning in agricultural 
fields (Ping et  al. 2005; Taylor and Whelan 2011; Uribeetxebarria et  al. 2018). Pillai’s 
Trace, with a higher value indicating a better model fit, and Wilks’ Lambda, with lower 
values indicating better model fit, were generated to determine how well the MANOVA 
performed. The MANOVA analysis was conducted in R.

For each field the MANOVA outputs for PSUMYPA and PSUSTAT​ were compared and 
ranked between each level of k, with a score of 1 assigned to the method with the higher 
Pillai’s value and the lower Wilks’ lambda. The mean ranks for both statistics were derived 
across all k-levels for each individual field. This provided a summary of which method, 
PSUMYPA or PSUSTAT​, performed best according to the MANOVA output across all pos-
sible outcomes (k[2,7]).

Descriptive statistics of yield productivity‑stability units

The final PSU raster maps across all levels of k for both approaches were converted in R 
into a polygon map and the area of each polygon recorded. Descriptive statistics across 
the PSUs generated by each method, for each field were calculated. This included the total 
number of discrete zones generated, the number of zones > 0.25 ha and the mean area of 
all zones and mean area of zones > 0.25 ha. The choice of the 0.25 ha threshold was made 
as zones smaller than this are likely to be unmanageable in these cereal systems given the 
speed and width (often 24 m) of typical, current input applications. However, this thresh-
old is arbitrary, and could be easily altered to accommodate a change in cropping type, 
e.g. if MYPA is applied into narrow row perennial horticultural systems, or a change in 
operational resolution of future machinery. From these data, the percentage area of the 
field that was considered ‘unmanageable’ was calculated. While the MANOVA tests how 
well the PSUs account for yield variance, these statistics relate to the technical opportunity 
to respond to the yield PSU patterning (Tisseyre and McBratney 2008). The presence of 
many small units would increase the uncertainty associated with variable-rate applications.

Zonal Opportunity Index

To identify the preferred output for each field from the range of potential k-levels [2,7], 
an adaption of the zonal opportunity index (McBratney et al. 2000), based in turn on the 
Akaike Information Criterion (AIC) (Akaike 1974), was used

where Oz is the Zonal Opportunity Index, z the number of zones generated by each level 
of k-classification (i.e. discrete units not the number of classes), Λ (Wilks’ lambda) 
from MANOVA is a measure of the percent variance in dependent variables (yields) not 
explained by differences in levels of the independent variable (classes) thus subtracted 
from 1 to provide an estimation of ‘goodness of fit’ and, ns the number of (independent) 
data (errors) in the data set. Due to spatial auto-correlation in the data, ns< n (and n is the 

(2)Oz = 2z − ns ∗ ln(1 − �)
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number of grid points in the interpolated data). For the comparison and ranking of k out-
puts within a field, ns will be constant. For this analysis, ns was set at 1000 for all fields, 
which is approximately 12% of the data in the smallest field (Field 3) and greater than the 
maximum z observed in the analyses (z = 755, Field 3, PSUMYPA, k = 7).

The Oz allowed the k-level outputs for both approaches to be compared within a field. 
However, the use of a constant ns value across the four fields restricted comparisons to 
within, and not between, fields. Approaches to estimating ns exist (see discussion of Tay-
lor and Bates 2012), but, as the intent here is to identify the preferred solution within a 
field (and not to try to identify if one field outperforms another), the use of a constant was 
considered sufficient. The use of the form of the AIC permits the quality of the fit to be 
corrected against the number of discrete units (zones) generated, with higher numbers of 
zones penalized as this makes management potentially more difficult (Pedroso et al. 2010). 
The value of z can be altered to reflect either the total number of zones (polygons) in the 
output or the total number of ‘manageable’ zones (here defined as zones > 0.25 ha). For 
this analysis, both were used in a two-step process. Firstly, the Oz was calculated using 
the total number of polygons in the output to identify the k-level associated with the best 
PSUSTAT​ solution based on the whole data set. Then, for this selected level of k, the Oz 
was recalculated and compared for the PSUSTAT​ and PSUMYPA approach based on the num-
ber of ‘manageable’ zones (i.e. polygons > 0.25 ha in the output). This was termed zonal 
opportunity of manageable zones (Oz-man) and considered a more rigorous comparison as 
the intent is to identify PSUs that could be managed agronomically, and not to find a purely 
statistical solution. The percentage area associated with small, ‘unmanageable’ zones was 
also considered when comparing the outputs and, if it was > 10% of the total area, then the 
nearest k-level with an ‘unmanageable’ area < 10% was also considered in the analysis.

Results and discussion

Data preparation

The normalized interpolated yield maps for Field 1—Australia are shown in Fig. 2 (other 
normalized map series are presented in Supplementary Data S1a–c). Field 1—Australia 
has been chosen as an illustration as it contains maps that appear to have linear and unu-
sual features (particularly 1997 and 2006). The field had seven years of yield data between 
1997 and 2006 with wheat, sorghum and chick-pea crops (Table 1, Fig. 2). The plotting 
of PC1 vs. PC2 and the eigenvectors (Fig. 3a) indicated that the 1997 yield map (Fig. 2a) 
was an outlier in the yield map stack. In 1997, the northern part of the field had a very low 
yield response relative to the southern part that does not repeat in any other year. This was 
due to different management in the northern section creating lower-yielding conditions. As 
this management was a ‘one-off’, and not intended to be repeated, this information is not 
relevant to future management. The 1997 yield data was removed and the PCA repeated, 
which showed no remaining outlying years (Fig. 3b). However, there is some management 
effect in the Sorghum 2006 data (Fig. 2g). The 2006 yield map was similar to the Wheat 
2004 map (Fig. 2e) in the attribute space (Fig. 3b). This map could have been removed 
based on local opinion and an apparent observable management effect (Fig. 2g). However, 
since statistically it was not mapped as an outlier, the decision was made to include it in the 
subsequent analysis. The PCA plots of the other three fields did not indicate any outlying 
yield maps (Fig. 4).
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Fig. 2   Field 1—Australia: Normalized yield maps with varying crop types (Sorghum, Chickpea and Wheat) 
including the outlying yield map (wheat 1997)

Fig. 3   Field 1—Australia: Eigenvectors (red arrows) and data values by PC1 and PC2 (black points)—a 
of all yield data sets after first iteration; b of remaining yield data sets after second iteration of the outlier 
detection process (Color figure online)
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Yield pattern detection

From the PCA, the individual PCs were extracted and mapped. The first PC extracted a 
pattern that best describes the dominant pattern across all years. This pattern was then 
removed, and the second PC found the dominant pattern in the remaining data and so forth. 
Again, Field 1—Australia is used as an example to visualize the individual PCs arising 
from the PCA (Fig. 5) (other PC map series are presented in Supplementary Data S2a-c). 
Table 2 shows the R2 values associated with a linear regression between the individual PCs 
and the individual yield maps for all 4 fields as well as the percentage of total variation 
explained by each PC. The R2 values between the annual yields and the mean yield map (µ 
map) from the STAT method are also shown. 

The PC maps tended to show an increasing trend in short-range variation as PC number 
increased. This is typical as the first PCs tend to extract the larger trends and patterns in the 
data, leaving the later PCs to explain more random effects and a much lower percentage of 
the overall variation (Table 2). The first two PCs explained 76-81% of the yield variation in 
each year (Table 2).

Using the PCA-based pattern recognition approach, relatively good relationships for 
individual yield data years were found with individual PCs, however, i) not all the PCs 
were found to have a good relationship with a yield year and ii) different fields had differ-
ent PCs that exhibited a good relationship with individual year yield maps (R2 > 0.5). This 
threshold value (0.5) for a good relationship could be altered to be more or less strict in the 

Fig. 4   Eigenvectors (red arrows) and data values by PC1 and PC2 (black points) of all yield data sets after 
first iteration: a field 2—Australia; b Field 3—UK; (c) Field 4—UK (Color figure online)
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selection of PCs. The rationale here was that if over half the variation in a yield map was 
explained, then the PC was relevant for management. It also meant that for any one yield 
year, only one PC could be selected as representative for that year. Using this threshold, 
there were between one and four PCs selected per field (Table 3). As expected, PC1 was 
always selected, and was related to multiple years in all fields. Fields where the yield maps 
differed considerably between years, tended to have PCs that related to individual years and 
more PCs chosen. Conversely, Field 2, with a very similar year-to-year pattern, only had 
PC1 selected (maps in Supplementary Data S2a).

The relationships between the µ map and the individual year yield maps (Table 2) were 
more varied than for the PCs. For example, Field 3—UK had 4 PCs selected, but the µ map 
did not have a R2 > 0.5 with any year. In contrast, Field 2—Australia, had 5 years related to 
µ and only 4 years related to a PC. The µ maps for each field are shown in Fig. 6. The mean 
pattern tends to follow the PC1 pattern (Fig. 4 and in Supplementary Data S2a–c).

Temporal pattern stability analysis

To evaluate the temporal-spatial stability of yield, statistical pixel-wise analysis using σ 
over time as a measure was applied on the layer stack of the remaining normalized yield 
data. This pattern stability evaluation method enabled the identification and visualiza-
tion of yield variability in space and time for all four fields (Fig. 7), where a high σ per 
pixel indicated high variability (unstable yield pattern) and low σ per pixel indicated low 
variability (stable yield pattern). Using Field 1—Australia again as an example (Fig. 7a), 
there was a highly stable area in the south-western part of the field and moderate to highly 
unstable areas along the field boundary, especially in the northern and central-eastern part 

Fig. 5   Field 1—Australia: Maps of the first 6 Principal components showing the spatial patterns associated 
with each PC (a–f are respectively PCs 1–6)
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Table 2   Model fits (R2) for the linear relationship between normalized yield (dependent variable) and the 
PCs/µ (independent variable)

Relationships where more than 50% of the yield variance was explained by a PC or µ are indicated in bold 
font (Explained Variation = Percentage of explained yield variation across years)

Yield PC1 PC2 PC3 PC4 PC5 PC6 PC7 µ

Field 1—Australia
 Sorghum 1998 0.73 0.16 0.09 0.02 <0.01 <0.01 0.48
 Chickpea 1999 0.35 <0.01 <0.01 0.05 0.59 0.01 0.44
 Wheat 2000 0.78 <0.01 0.02 0.18 0.01 <0.01 0.67
 Wheat 2004 0.2 0.72 0.05 <0.01 <0.01 0.02 0.39
 Sorghum 2005 0.67 <0.01 0.22 0.10 <0.01 0.02 0.63
 Chickpea 2006 0.23 0.33 <0.01 0.06 0.01 0.36 0.49
 Explained variation 56.7% 21.6% 7.8% 6.5% 3.9% 3.4%

Field 2—Australia
 Sorghum 1998 0.76 0.13 0.05 0.01 0.04 <0.01 0.65
 Wheat 1999 0.76 0.06 <0.01 0.16 0.01 <0.01 0.71
 Sorghum 2001 0.53 0.40 0.07 <0.01 <0.01 <0.01 0.57
 Wheat 2003 0.65 0.04 0.28 0.02 0.01 <0.01 0.63
 Wheat 2005 0.49 0.10 <0.01 0.11 0.29 <0.01 0.52
 Wheat 2006 0.27 0.20 <0.01 <0.01 0.08 0.45 0.44
 Explained variation 64.2% 16.0% 8.4% 4.9% 4.7% 1.8%

Field 3—UK
 Wheat 2002 0.03 0.76 0.18 0.03 <0.01 <0.01 <0.01 0.28
 Canola 2004 0.26 0.45 0.23 0.06 <0.01 <0.01 <0.01 0.08
 Canola 2007 0.01 0.21 0.05 0.01 0.07 0.17 0.48 0.41
 Wheat 2008 0.84 0.05 0.06 0.06 <0.01 <0.01 <0.01 0.41
 Canola 2010 0.33 0.04 <0.01 0.07 0.54 <0.01 <0.01 0.39
 Wheat 2014 0.75 0.02 0.03 0.21 <0.01 <0.01 <0.01 0.28
 Canola 2016 0.03 0.10 <0.01 <0.01 <0.01 0.80 0.07 0.32
 Explained variation 50.5% 25.5% 10.1% 8.8% 2.7% 1.6% 0.1%

Field 4—UK
 Wheat 2004 0.38 0.37 0.23 0.02 <0.01 <0.01 0.28
 Wheat 2007 0.57 0.04 0.06 0.33 <0.01 <0.01 0.67
 Canola 2011 0.25 0.14 <0.01 0.10 0.36 0.15 0.48
 Wheat 2012 0.17 0.74 0.05 0.03 <0.01 <0.01 0.34
 Canola 2014 0.32 0.15 <0.01 <0.01 0.34 0.19 0.59
 Wheat 2015 0.89 <0.01 0.10 <0.01 <0.01 <0.01 0.62
 Explained variation 53.8% 27.4% 10.9% 5.6% 1.5% 0.7%

Table 3   The Principal 
Components (PCs) selected in 
the yield pattern step to be used 
for clustering in the MYPA 
methodology (derived from 
Table 2)

Field ID Location PCs selected

1 Australia 1, 2 and 5
2 Australia 1
3 UK 1, 2, 5 and 6
4 UK 1 and 2
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(denoted “A”). This area of instability was associated with a small gully and an area of 
heavier clay soils in the field. In drier years, this area had better soil moisture availability, 
generating higher yields. However, in ‘wet’ years, its landscape position and heavier soil 
type was susceptible to water-logging effects. It tended to be either an area of relatively 
higher or lower yield.

Yield productivity‑stability units delineation

In order to produce information layers to support management decisions (especially risk 
management), the derived yield pattern layers (Fig.  5, Supplementary Data S2a-c and 
Fig. 6) were merged with the stability layer (Fig. 7). All possible solutions (k = [2,7]) for 
both the MYPA and STAT approaches were derived. An example, using the k = 4 solution 
for Field 1, is shown in Fig. 8 for both the MYPA and STAT approaches. The outputs for 

Fig. 6   Detected mean yield pattern by the STAT approach for each demonstration field: a Field 1—Aus-
tralia, b Field 2—Australia, c Field 3—UK and d Field 4—UK
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all fields and all levels of k were passed to the validation and comparison analyses to iden-
tify the optimal output.

Within Fig. 8, similar broad patterns were observed for the two methods, but clear dif-
ferences were also noticeable. At this stage it is unclear which is preferred, but the key 
observation is that there are differences in the two outputs (see also Fig. 10).

Validation of final map quality and comparison of methods

Multivariate analysis of variance

Visually, the PSUMYPA appears to be slightly more coherent, with larger more contiguous 
zones (Figs. 8 and 10). It may be expected that this increased coherence would come at 
a statistical price. However, the mean scores from the ranking of the MANOVA output 

Fig. 7   Temporal stability of yield pattern as σ of all normalized yield maps, showing the spatial yield vari-
ability over time for each demonstration field: a Field 1—Australia, b Field 2—Australia, c Field 3—UK 
and d Field 4—UK
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(Table  4 and Supplementary Data S4) indicated that the MYPA model was statistically 
better than the STAT (lower Wilks’ Lambda and the higher Pillai’s Trace) in three of the 4 
fields (Fields 1, 3 and 4). In these fields, the MYPA approach outperformed STAT for all 
values of k. For Field 2, which only had PC1 selected for the MYPA yield stability analy-
sis, Pillai’s trace indicated that the STAT approach was optimal (but not for all k-levels) 
and there was no difference between the STAT and MYPA approach using Wilks’ lambda 
(mean score of 0.5).

Descriptive statistics of clustering

Comparing both approaches, for a given k-level, the MYPA approach generated more dis-
crete zones (polygons) at lower values of k (≤ 4) in the larger Australian fields (Fields 1–2) 
(Fig. 9a). With higher values of k (> 4), the MYPA almost always produced fewer poly-
gons than the STAT approach (Field 2, k = 7 is the only exception). Figure 9b shows the 

Fig. 8   Examples of the final PSU maps derived for Field 1 using k = 4 for both the MYPA (a) and STAT 
(b) approaches. Maps are shown in raster format. Comparisons between classes within a map were used to 
assign labels (high/low productivity; stable/unstable response). The mean annual yield, overall mean yield 
and mean PC response are given in Supplementary Data (S3a and S3b)

Table 4   Mean scores for the 
performance of the MYPA vs. 
STAT calculated across all fields 
and all levels of k classes

A value of 1 was assigned when the MYPA outperformed STAT 
(lower Wilks’ Lambda or the higher Pillai Trace), and conversely a 
value of 0 if STAT was superior, before the calculation of the mean 
scores. As the mean score approaches 1, the more dominant the 
MYPA method was compared to the STAT method

Field ID Mean Score
Pillai’s Trace

Mean Score
Wilks’ lambda

1 1.0 1.0
2 0.3 0.5
3 1.0 1.0
4 1.0 1.0
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total area associated with small (considered ‘unmanageable’) polygons in each output. The 
smaller UK fields tended to have a more rapidly escalating percentage area associated with 
small polygons, but the trend for the MYPA to have less area associated with ‘unmanage-
able’ polygons was constant in Fields 3 and 4. At low k-levels, Field 1 is similar for the two 
approaches, but the MYPA had a consistently lower percentage area of ‘unmanageable’ 
zones at higher k-levels, while Field 2 showed little divergence between the two methods.

Zonal Opportunity Index

Results for the calculation of Oz for all values of k[2,7] for the two methods (MYPA and 
STAT) in the four fields are shown in Table 5 (full details of variables used in the calcula-
tion are given in Supplementary Data S5). For Field 1 and 2, the larger Australian fields, 
lower values of k indicated a better fit for the STAT method, while higher values showed 
a preference for MYPA. However, Field 2 was very similar in Oz responses at all levels of 
k. Fields 3 and 4 indicated that the MYPA was consistently the better performed method 
based on the Oz metric. The best performed k-level is indicated in bold in Table 5 for both 
STAT and MYPA. Although a small sample size (four fields), the optimum k-level for 
MYPA was equal to or less than the STAT optimum k-level in all cases. For the four fields, 
the k-level associated with the best performed STAT model was selected and used for a 
direct comparison between the MYPA and STAT output (Table 6). 

When the zonal opportunity was recalculated using only zones of a manageable size, 
i.e. z = number of zones > 0.25 ha, a more pronounced outcome was achieved in favour of 
MYPA (Table 6). Despite selecting the k-level associated with the best performed STAT 
method in Table 5, the MYPA outperformed STAT in 3 of the 4 fields (lower Oz-man). Field 
1 switched from having a lower STAT Oz to having a lower MYPA Oz-man. For Field 2, 
the STAT Oz-man was lower, but the difference between the two methods was much closer, 
with similar Oz-man and percentage area values. For the other three field (Fields 1, 3-4), 

Fig. 9   a The total number of discrete polygons (zones) created by k [2,7] classes using the MYPA (solid 
bars) and STAT (hatched bars) methodologies in four different fields and, b the total percentage area of 
small (‘unmanageable’ polygons < 0.25 ha) in each field for both methodologies (MYPA solid lines; STAT 
dashed lines)
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the lower MYPA Oz-man was also associated with a smaller percentage of ‘unmanageable’ 
area, i.e. more of the field was manageable and the zoning was preferable using MYPA. 
For Field 3, the analysis was redone using k = 3 as the preferred result (k = 5) from Table 5 
had 14.9% of the field area in zones < 0.25 ha for both methods. A maximum of 10% was 
set as an acceptable threshold, but this is arbitrary and should be adjusted to suit the target 
production system. It is noted that the levels of k selected in this process (3-4) reflect other 
work that has indicated that a 2-4 class solution tends to be optimal when classification is 
applied to spatial data sets (Pedroso et al. 2010).

Figures 8 and 10 illustrate that the two approaches generate similar patterns although 
there are some differences. In particular, the MYPA approach tended to generate larger 
and more coherent units, which translated into fewer and larger zones when converted into 
polygons and less area in small ‘unmanageable zones. This is a desired result, as the more 

Table 5   Zonal Opportunity (Oz) calculated for 6 levels of classification (k[2,7]) using both the STAT and 
MYPA methods for generating Productivity-Stability Units (PSUs)

The best performed k-level (for both STAT and MYPA) are given in bold
Oz calculated using the total number of zones (polygons) in the PSU output. Lower values indicate a better 
result

Number of 
Classes (k)

Field 1 Field 2 Field 3 Field 4

STAT​ MYPA STAT​ MYPA STAT​ MYPA STAT​ MYPA

2 456.2 453.7 503.1 532.0 436.3 305.9 451.4 380.4
3 320.5 374.2 461.0 484.0 311.4 187.7 257.2 181.4
4 297.2 388.9 468.5 552.8 285.5 183.1 252.3 204.1
5 549.2 414.5 873.5 718.2 270.0 222.3 384.7 205.4
6 788.7 495.1 1144.6 1093.5 401.0 242.1 382.8 217.6
7 947.9 529.7 1499.7 1541.4 391.7 287.8 497.7 260.6

Table 6   Zonal opportunity 
of manageable zones (Oz-man) 
calculated for the best performed 
k-level from the Oz STAT 
analysis in each field (see 
Table 5)

Only the number of manageable zones was considered in the Oz-man 
calculation (c.f. total number of zones in Table 5). The best solution 
in Field 3 (k = 5) had a total unmanageable area > 10% and was redone 
with k = 3, such that there was < 10% unmanageable area for both the 
STAT and MYPA approaches). Lower Oz-man values indicate a better 
model fit
#Field 3 redone with k = 3 due to a large percentage of unmanageable 
area (< 0.25 ha) in the k = 5 solution

Field ID k-level STAT​ MYPA

Oz-man % Area
(< 0.25 ha)

Oz-man % Area
(< 0.25 ha)

1 4 131.17 4.0 102.91 3.5
2 3 210.97 3.0 219.97 3.8
3 5 88.00 14.9 62.33 14.9
4 4 199.19 3.7 137.42 3.0
#3 3 193.44 7.9 115.69 3.9
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coherent the zoning the fewer the changes and decisions that need to be made when per-
forming differential (variable-rate) operations. There is a cost and a level of uncertainty 
associated with any rate change (Tissyre and McBratney 2008). The smoother zoning 
is particularly evident in the UK fields (Field 3-4) and indicated that the MYPA pattern 
is more amenable to site-specific management and technical constraints (Tisseyre and 
McBratney 2008), although a formal analysis of this has not yet been done.

Field 2 exhibited very little difference (visually and statistically) between the two 
approaches. This is the most temporally uniform field of the four. It had the highest per-
centage of variance explained by PC1, and PC1 was the only PC that was selected. This 
indicated a stable spatio-temporal pattern. In addition, 5 of the 6 individual years had a 
R2 > 0.5 with the mean yield map (Table 2). Under these conditions there appears to be 
no advantage to the MYPA method. Using a straight statistical (µ and σ) approach to yield 
zoning is just as effective in temporally stable systems. This, however, is not usually the 
norm in dryland systems, as indicated by the other three fields where the MYPA approach 
was better.

Field 1 presented the biggest deviation between the two maps, particularly in the unsta-
ble area “A” identified in Fig. 7a that was classed as stable with the MYPA approach and 
unstable in the STAT approach. As described previously, this area was characterized by 
deeper, clay soils that tended to yield the highest in a normal year (e.g. 1998, 2000) but 
were prone to waterlogging in ‘wet’ years, with significant in-season rainfall (e.g. 2004), 
and had a relatively lower yield in those years. In the ‘wet’ years, the shallower, lower 
clay soils in other areas of the field tended to improve their yield. However, while the rela-
tive yield was lower in the “A” area in 2004, the actual yield tended to be fairly stable, 
and it was actually slightly higher in this area in 2004 compared to 2000. The MYPA has 

Fig. 10   Final PSU maps derived for Field 2, 3 and 4 using the optimal k-level solution for both the MYPA 
(a–c) and STAT (d–f) approaches. Maps are shown in raster format. Comparisons between classes within a 
map were used to assign labels (high/low productivity; stable/unstable response). The mean annual yield, 
overall mean yield and mean PC response are given in Supplementary Data S6ab–8ab
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identified that this area was stable in absolute terms, if not in relative terms between nor-
mal and ‘wet’ years.

Further discussion

Using the Oz statistic and the MANOVA outputs, the MYPA explained more of the yield 
variance and generated larger, more coherent zones than the established STAT approach. 
Furthermore, it offered an opportunity to assess the quality of the yield maps being used, 
unlike the STAT approach. However, while the Oz provides a metric for ranking and com-
parison, it is not intended to be an absolute statistic. It should be used with some degree 
of interpretation. In this study, it was used in conjunction with information relating to the 
percentage field area that was described by small, unmanageable zones (< 0.25 ha for these 
fields) and the patterns and mean area of the PSU zones. The MYPA was particularly more 
effective when only areas of the field that could be differentially managed were considered.

The MYPA is semi-automated; with the specification of fixed threshold values, associ-
ated with the selection of yield maps and of PCs, it could be fully automated. However, 
in the form presented here it invites the user to verify and engage in the PSU process. 
The STAT approach could equally be fully automated, but provides no options to vary the 
yield pattern analysis to cope with different types of yield data, e.g. arable cereal yield vs. 
field horticulture root crops vs. vineyard yields vs. tree crop yields etc. Different types of 
production have different effects and limitations with their yield data and, while the inter-
polation process can smooth some of these differences, it is not always intuitive to use a 
one-size fits all approach to analysing very different time-series of yield data.

The PSUs presented here are not potential management units (or zones), they are yield 
units. They could be used as management units; however, this is not recommended. The 
PSUs are intended to simplify and synthesize time-series of yield data. As such, the PSU 
maps could be used in the derivation of management units or for on-the-go differential 
management, but they should be used in conjunction with other relevant and available 
information, e.g. spatial soil data, maps of canopy vigour etc.…, when making agronomic 
decisions. The intent with this MYPA workflow is not to generate management units but to 
present a simpler, more coherent yield data layer that growers can interpret and work from 
(instead of a long time-series of yield maps) and to do this in a logical and quasi-automated 
fashion.

The MYPA primarily presents a new approach to assessing productivity patterns. Yield 
stability uses the same method, the σ over time at a point, as the STAT. The σ was consid-
ered a good method to assess stability. However, PSU delineation may benefit from alter-
native methods of assessing yield stability and is a potential area for further development.

Conclusions

In this study, a novel pattern recognition-based method—Multi-temporal Yield Pat-
tern Analysis (MYPA)—was proposed for multi-year yield data analysis in arable crop-
ping systems as an alternative approach to purely statistical approaches. Applying pattern 
recognition techniques to long yield time series offered a high potential to reveal long-
term spatio-temporally yield production units at the local scale. The MYPA method was 
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designed free of assumptions of how both stable (e.g. permanent soil conditions) and non-
stable factors (e.g. weather pattern, crop type and cycle) affect yield response and temporal 
variability. This approach synthesizes the information within multiple yield maps into a 
single layer that indicated the relative yield response and how stable that response was 
across a 10 + year period. Image analysis techniques, principal component analysis (PCA) 
and k-means clustering, were demonstrated as useful techniques, capable of handling high-
resolution yield data and long yield map time series efficiently. For the detection of erro-
neous yield data sets from multi-year yield maps, PCA was demonstrated as an efficient 
approach to identify years with management effects (e.g. “one-off” management decisions 
such as double cropping). Compared to more commonly used purely statistical analysis 
approaches, the MYPA approach generated larger, more coherent units and with these 
four examples presented a better statistical solution. The hypothesis that the novel MYPA 
approach enhances the insights into spatio-temporal yield variation compared to purely 
statistical approaches was demonstrated by multivariate analysis of variance (MANOVA) 
and a zonal opportunity index. The advantages of the MYPA approach appear to be 
stronger when yield data do not exhibit strong spatio-temporal patterns, i.e. yield maps are 
changeable between years. Overall, the MYPA demonstrated its potential high value as a 
robust approach that can potentially be encoded to easily produce interpretable and under-
standable information layers to support management decisions, especially for risk manage-
ment. Further work will examine if this holds true with other yield time series, such as sat-
ellite biomass time-series, and how it compares to other emerging approaches (e.g. Layton 
et al. 2019; Leroux et al. 2018b).
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